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Abstract 
 
Atomistic scale simulation can predict state transition processes such as adsorption, diffusion, 
and reaction. The challenge of the accurate prediction is to obtain a global view of many local 
minima and saddle points on the potential energy surface (PES) of a material system. The 
transition conditions are determined by the saddle points on the PES with the minimum energy 
barrier between local minima. In this paper, a new algorithm is developed to exhaustively search 
local minima and saddle points within a region of PES in order to provide a global view of the 
energy landscape. Unlike the existing saddle point search methods, the algorithm represents a 
transition path by a parametric Bézier curve with control points. It uses multiple groups of such 
curves, each of which represents a multistage transition path. During the searching process, each 
group of curves communicates with others to maintain cohesion and avoid collision based on a 
collective potential model. The algorithm is integrated with density functional theory calculation 
and demonstrated by diffusion of hydrogen atoms in the FeTiH system. 
 

Introduction 
 
Creating new materials and new processes by design based on a problem-solving and needs-
driven paradigm will be a major mission for product and manufacturing engineers in the future. 
Computational tools are one of the key components to realize such paradigm. Understanding 
material properties as well as the detailed physical and chemical processes during synthesis and 
fabrication at the atomistic scales is essential for rational design of materials and manufacturing. 
For instance, designing functional materials that are used to store information or energy requires 
a good understanding the phase transition processes. Enhancing the strength of super alloys 
needs the knowledge of how defects are initiated and propagated in polycrystalline structures. 
Improving the scalability of nanomanufacturing requires the fundamental knowledge of physical 
processes or chemical reactions during the synthesis and fabrication. Atomistic simulation can be 
very helpful for the predictions of the above phase transition or transformation processes.  
 
The prediction of phase transition processes at atomistic scales requires the information of 
potential energy surface (PES), which represents the potential of a group of atoms as a function 
of internal coordinates, is generated. It characterizes the energy levels for various possible 
configurations of the material system. PES can be regarded as a hyper surface in a high-
dimensional configuration space, where the minima correspond to the stable or metastable states. 
Then a minimum energy path (MEP) [1, 2], which is the lowest energy path for re-organization 
of the atoms from one stable configuration to another, is located. The maximum potential energy 
along the MEP is the saddle point which determines the activation energy. The activation energy 
is the barrier that the material system needs to overcome to complete the transition. The MEP can 
be interpreted as the steepest descent path on the PES from saddle point(s) connecting the initial 
and final stable configurations, also respectively known as the reactant and the product, with 
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local minimum energy level on the PES. Finally the activation energy is obtained by finding the 
saddle point energy along the MEP and the transition rate is calculated using the transition state 
theory [3]. The challenge of accurately predicting a phase transition is the knowledge of the true 
value of transition rate, which is determined by the energy barrier that exists between the initial 
and final stable configurations. Mathematically it is the saddle point on the PES with the global 
minimum energy barrier that determines the transition rate.  
 
A number of methods [4-8] that search for saddle points on a PES have been developed over the 
past few decades. Those methods can generally be categorized into two groups: single-ended 
methods [9, 10] and double-ended methods[11, 12]. Single-ended methods start with one 
configuration to search the saddle point on a PES without locating the corresponding MEP. 
Double-ended methods are to locate the saddle point and corresponding MEP between two 
starting states. The major group of single-ended methods is eigenvector-following methods [9, 
10] that follow the eigenvector of Hessian matrix with local quadratic approximations of the 
PES. The most popular double-ended ones are chain-of-states methods including nudged elastic 
methods (NEB) [13, 14] and string methods [15, 16]. Those methods intend to locate a single 
transition path with one saddle point between reactant and product at a time. Thus they are 
unable to provide an overview of the PES landscape. Recently, we developed a concurrent search 
algorithm [17] to locate all local minima and saddle points along a multi-stage transition path 
simultaneously. The algorithm improves the accuracy of activation energy estimation since it is 
able to locate all of the local minima and saddle points along the path connecting the reactant and 
product. However, for complex PES’s, the transition from one stable configuration to another 
could follow more than one possible path. The most interesting path is the one with the lowest 
energy barrier. Since the existing saddle point search methods are local search methods, the 
result sensitively depends on the initial guess of the transition path. The path identified by those 
methods may not be the MEP. Consequently, this will lead to an overestimation of the energy 
barrier between two states. To solve this problem and provide a global view of the energy 
landscape, in this paper, a curve swarm algorithm is developed to exhaustively locate the local 
minima and saddle points within a region on the PES concurrently. The algorithm uses groups of 
curves to thoroughly search an area on the PES. A collective potential model is developed to 
avoid collision and maintain cohesion between curve groups.  
 
In our algorithm, the transition path is represented by a parametric Bézier curve that is defined 
by some control points. Each control point represents an image along the transition path. For 
each Bézier curve in one group, two end control points are minimized to locate two local 
minima, while intermediate control points move along their corresponding search directions to 
refine the shape of the curve. If the refined curve crosses an extra energy basin with local 
minimum, it is broken into two curves that represent two stages of transition at one breakpoint. 
The breakpoint is then minimized to locate the extra local minimum. The shape of each of the 
newly created curves is refined following the same procedure as the previous one for one curve. 
The process continues until each curve crosses only two adjacent energy basins and their end 
control points locate two local minima. Then the algorithm selects the control point with the 
maximum energy within each of those curves and let it climb up to locate the saddle point. 
Different from the previous concurrent search algorithm, the intermediate control points in the 
proposed curve swarm algorithm are subject to both collective forces and true potential forces 
when moving along the search direction.  
 
In the remainder of the paper, the curve swarm algorithm is first presented. Then the algorithm is 
demonstrated by examples of the Rastrigin function, Schwefel function, and the diffusion 
process of the hydrogen atoms in the FeTiH system.  
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Curve Swarm Search Algorithm 
 
Previously we developed a concurrent search algorithm [17] for searching multiple local minima 
and saddle points along one transition path without the prior knowledge of initial and final stable 
configurations on a PES simultaneously. The algorithm uses a Bézier curve to represent a 
transition path. Each control point represents one intermediate state (i.e. atomic configuration) 
along the transition path. The searching algorithm consists of three stages: 1) a single transition 
pathway search, 2) multiple transition pathway search, and 3) climbing process to locate the 
saddle position. The curve swarm search algorithm uses groups of curves to search local minima 
and saddle points, which is an extension of the concurrent search algorithm. 
 
A Single Transition Pathway Search in Curve Swarm Algorithm 
 
In the curve swarm algorithm, the intermediate control points are subject to both the collective 
force, which is from their neighbors, and the true potential force, which is the gradient of the 
PES. In each iteration, a set of conjugate directions are constructed for each intermediate control 
point using Eqn.(5) in [17]. Then the intermediate control points move along the directions 
which are the weighted sum of the collective force and the parallel components of true potential 
force along the corresponding conjugate direction. That is, for the thk intermediate control point 

on a curve φ with at least one end control point not located at the local minimum, the thi search 
direction is  
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the thk intermediate control point on curve φ is defined as a weighted sum of the pairwise 
potential ψ between the control point and other curves in its neighboring groups. That is, 

, 1 ( )C L

k l l klV w r  , in which 
lw  is the weight for the ( 1 )thl l L  curve from its neighbor groups; 

L  is the total number of curves from its neighboring groups; 
kl

r is the minimum Euclidean 

distance between the thk  point to the thl  curve in its neighborhood. The key issue here is to 
model the pairwise potential that is able to maintain cohesion and avoid collision between two 
curves. The following sections gives a detailed description on the pairwise potential model.  
 
Pairwise Potential Model 
 
Since the collective force between two curves could be either attractive or repulsive depending 
on the distance between two curves, the collective potential model used here is the Lennard-

Jones potential. The potential is defined as 12 64 [( / ) / ) ]r r     , where ε is the depth of the 

potential well; σ is the characteristic distance at which the pairwise potential is zero; r is the 
distance between two atoms or molecules. The central issue here is to define the three 
parameters, which are ε, σ, and distance r , to make the model well serve the purpose of 
maintaining cohesion and avoiding collision among curves. 
 

The Depth of the Potential Well ε:  Since the curves in this algorithm evolve under the forces 
from both true potential (i.e. energy potential) and imaginary potential (i.e. collective potential 
among curves), the criteria of determining   is that the value of imaginary collective potentials 
has the same magnitude as the energy potential of the system. To capture more information of 
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the potential energy surface, the depth of the potential well is adaptive. Based on this criterion,   

is defined as the average of the potential energies, 1endE  and 2endE , at the two local minima 

identified by the end control points of the breakable curve, which is 1 2( ) / 2end endE E   . 

 
The Characteristic Distance σ:  The characteristic distance σ is the distance at which the pairwise 
potential is zero. Since the movements of the curves are directly controlled by the collective 
forces, it is difficult to directly define the distance at which the potential between two curves is 
zero. Since the algorithm breaks one curve at a breakpoint, the zero-force distance 

0r  associated 

with two curve sections which share the same breakpoint is defined as the minimum distance 

between the breakpoint 
break

x  and the corresponding two end control points 
end1

x  and 
2end

x , i.e. 

0 1 2
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break end break end
r   x x x x . The characteristic distance is determined by solving 

equation / 0  r  which produces 1/62r  . By replacing r  by 
0r  in 1/62r  , the 

characteristic distance is calculated as 
0

0.8909r  . 

 
In the algorithm, both the depth of the potential well   and the characteristic distance σ are 
adaptive to precisely capture the information of energy landscape on the fly during the searching 
process. In calculating the pairwise interacting forces between two newly created curves and 
other groups, the depth of the potential well   and the characteristic distance σ are updated using 
the position of the breakpoint of the two curves and the end control points. 
 
Pairwise Force:  The pairwise force between one curve and its neighboring curve is the gradient 
of the pairwise potential as 

 ( ) ( )f r
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in which r is the distance between two curves. For the Lennard-Jones potential, the pairwise 
force calculated from Eqn.(2) will be infinite when ( )r x  approaches zero. As a result, the 

collective force which is the weighted sum of the pairwise forces will dominate the searching 
process and push two curves too far away from each other, which violates the cohesion criterion. 
On the other hand, when two curves are far away from each other, they should not interact with 
each other since there may be a third curve between them as the curves are usually evenly 
distributed. However, the force calculated from the pairwise force model is not zero, which 
violates the requirement. To resolve these two issues, we introduce two cut-off distances. The 
first one is introduced to keep the collective force at the same magnitude with the true potential 

force, which is defined as L cutr c  , where 
cutc  is a constant. That is, if ( ) Lr rx , the pairwise 

force is defined as the force calculated at ( ) Lr rx . The second cut-off distance is introduced to 

deactivate the interaction among curves when they are far away from each other, which is 

defined as 2.5Ur  . If ( ) Ur rx , the pairwise force is set to be zero. Hence, the pairwise force in 

this algorithm is defined as 
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The collective force is the weighted sum of the pairwise forces as  
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Minimum Euclidean Distance r:   The minimum Euclidean distance is used to calculate the force 
to push two curves away at their closest position. Since it is computationally expensive to locate 
exactly the closest position between two curves using traditional distance based optimization 
methods, the minimum Euclidean distance is approximated by locating several pairs of control 
points. Each intermediate control point on curve φ has its own corresponding collective forces 
which are the weighted sums of the pairwise forces from φ’s neighboring curves. To obtain the 
pairwise forces for each intermediate control point on curve φ, the algorithm first locates the 
minimum distance between a control point of the curve and its neighboring curves. To locate the 
pair of control points with the minimum distance between a newly created curve and one of its 
neighboring curves, we first represent the locations of their intermediate control points in two 
separate matrices with identical row dimensions. Starting with the first column of the matrix for 
the newly created curve, the Euclidean distance between this location and each location in the 
matrix of its neighboring curve is calculated. The process is then repeated for all the columns in 

the matrix of the newly created curve. The pairwise forces for the thi  intermediate control point 
on curve φ with respect to the neighboring curve are calculated using Eqn.(3). The same 
procedure is then applied to calculate the pairwise force for each of the intermediate control 
point. After all the pairwise forces are obtained, the collective force for each of the intermediate 
control point is calculated using Eqn.(4).   
 
After the collective forces for each intermediate control point are obtained, the shape of the curve 
can be refined by moving the intermediate control points along their corresponding search 
directions which are determined using Eqn.(1). The detailed description of moving two end 
control points, redistribution of the intermediate control points, curve subdivision scheme to 
divide the breakable curves, and climbing process can be found in Ref. [17].  
 

Demonstration 
 
Here the Rastrigin function and Schwefel function, which are among the most used benchmark 
functions for global optimization, are first used to demonstrate the new algorithm and visualize 
the searching process and results. The algorithm’s capability to exhaustively search local minima 
and saddle points within an area by comparing the results from the curve swarm algorithm and 
the ones from the concurrent search algorithm without applying collective force. The results are 
shown in Figure 1 for Rastrigin function and Figure 2 for Schwefel function. Figure 1 (a) shows 
that two curves may duplicate the search efforts and find the same result when there is no 
communication among curves. Figure 1 (b) shows that the collective force introduced in the 
curve swarm algorithm pushed those two curves away and pulled the third curve which is far 
away closer. Similarly, there are overlaps among curves in Figure 2 (a). After introducing the 
collective force, there is no overlap among curves in Figure 2 (b), which indicates that the curve 
swarm algorithm works well to avoid collision. Since computational cost is always the concern 
for searching algorithms, the scalability of our algorithm is tested by gradually increasing the 
number of the initial curves on the PES. Figure 1 (c) shows a near quadratic relationship between 
the total CPU time and the total number of initial curves which is acceptable in terms of 
computational efficiency. The convergence is also tested by gradually increasing the number of 
initial curves within one fixed area. Figure 2(c) shows the result of convergence test. For saddle 
point, more initial curves are needed to converge.  
 
We also apply the algorithm to the FeTiH system to study the diffusion process of the hydrogen 
atoms. Three initial curves are first given to start the search. A total of 14 paths with 17 local 
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minima are located.  Figure 3 shows the atomic structures of three examples of those transition 
paths. The total energy of each image is also shown on the top of the corresponding structure. 
For example, Figure 3 (a) shows the transition from the initial state with the total energy of 
−37.1027eV to the final state with the total energy of −40.5671eV. In the figure, red atoms are 
Fe’s, gray ones are Ti’s, and blue small ones are H’s. To reach the final state, the atomic 
structure of FeTiH gradually changes from the first image to the last one following the sequence 
of the pictures shown in Figure 3 (a). Along this transition path, the fifth image with the highest 
energy level (−35.0117eV) is the estimation of the saddle point along the path. The energy 
difference between the fifth image and the initial one is the activation energy, which is 2.091eV. 
Similarly, the fourth image along the path in Figure 3 (b) is the saddle point for the transition 
from the initial state with the total energy −38.1313eV to final state with the energy of 
−39.7098eV. The activation energy for this transition process is 9.9719eV. The second image in 
Figure 3 (c) is the saddle point for the transition from the initial state with the total energy 
−40.5484eV to final state with the energy of −40.1526 eV. The activation energy for this 
transition process is 8.8485 eV. 
 
 

 
Figure 1: Test result for curve swarm algorithm by example of Rastrigin function (a) concurrent 
search algorithm without collective force (b) curve swarm algorithm (c) scalability test 
 

 
Figure 2: Test result for curve swarm algorithm by example of Schwefel function (a) concurrent 
search algorithm without collective force (b) curve swarm algorithm (c) convergence test 

 

(a) (b) 

(a) (b) 

(c) 

(c) 
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(a) 

 
(b) 

 
(c) 

 
Figure 3: Results of the example transition paths for the diffusion process of the hydrogen atoms 
in the FeTiH system (a) transition path No. 9; (b) transition path No. 10 (c) transition path No. 13 

 
Conclusion and Future Work 

 
In this paper, we presented a curve swarm algorithm to survey the energy landscape of a PES, 
which intends to exhaustively search local minima and saddle point within an area on the PES. 
Different from the existing transition path and saddle point search methods, the algorithm uses 
groups of curves instead of one curve during searching. It is able to locate multiple transition 
paths between two stable configurations. It provides a global view of PES. The algorithm uses 
the concept of flocking that describes the collective behavior among curve groups during the 
search process. A collective potential model is devised to serve this purpose. 
 
In the current scheme, the collective potential is defined as a weighted sum of pair potentials 
between two groups of curves. The weights are assigned to be equal, which does not consider the 
physical implication of PES’s. If the distance between two groups is very large or there exists a 
third group between them, a slight difference about the collective behaviors could be observed. 
The equal weights however do not model such differences. In the future, the model could be 
improved by optimizing the weight function. For example, the weights could be a function of the 
distance between two groups. The longer the distance is, the lower the weight should be. In the 
future work, we will test the algorithm with more material systems with higher dimensions. 
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