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ABSTRACT 
Simulating phase transformation of materials at the 

atomistic scale requires the knowledge of saddle points on the 

potential energy surface (PES). In the existing first-principles 

saddle point search methods, the requirement of a large number 

of expensive evaluations of potential energy, e.g. using density 

functional theory (DFT), limits the application of such 

algorithms to large systems. Thus, it is meaningful to minimize 

the number of functional evaluations as DFT simulations 

during the search process. Furthermore, model-form 

uncertainty and numerical errors are inherent in DFT and 

search algorithms. Robustness of the search results should be 

considered. In this paper, a new search algorithm based on 

Kriging is presented to search local minima and saddle points 

on a PES efficiently and robustly. Different from existing 

searching methods, the algorithm keeps a memory of searching 

history by constructing surrogate models and uses the search 

results on the surrogate models to provide the guidance of 

future search on the PES. The surrogate model is also updated 

with more DFT simulation results. The algorithm is 

demonstrated by the examples of Rastrigin and Schwefel 

functions with a multitude of minima and saddle points. 

1. INTRODUCTION 
Creating new materials and new processes by design based 

on a problem-solving paradigm will be a major mission for 

product and manufacturing engineers in the future. 

Computational tools are one of the key components to realize 

such paradigm. Understanding material properties as well as the 

detailed physical and chemical processes during synthesis and 

fabrication at the atomistic scales is essential for rational design 

of materials and manufacturing. For instance, designing 

functional materials that are used to store information or energy 

requires a good understanding the phase transition processes. 

Enhancing the strength of super alloys needs the knowledge of 

how defects are initiated and propagated in polycrystalline 

structures. Improving the scalability of nanomanufacturing 

requires the fundamental knowledge of physical processes or 

chemical reactions during the synthesis and fabrication. 

Atomistic simulation can be very helpful for the predictions of 

the above phase transition or transformation processes.  

The general process of simulating a phase transition 

process is as follows. First, a potential energy surface (PES), 

which represents the potential of a group of atoms as a function 

of internal coordinates, is generated. It characterizes the energy 

levels for various possible configurations of the material 

system. PES can be regarded as a hyper surface in a high-

dimensional configuration space, where the minima correspond 

to the stable or metastable states. Second, a minimum energy 

path (MEP) [1, 2], which is the lowest energy path for re-

organization of the atoms from one stable configuration to 

another, is located. The maximum potential energy along the 

MEP is the saddle point which determines the activation 

energy. The activation energy is the ‘barrier’ that the material 

system needs to overcome to complete the transition. The MEP 

can be interpreted as the steepest descent path on the PES from 

saddle point(s) connecting the initial and final stable 

configurations, also respectively known as the reactant and the 

product, with local minimum energy level on the PES. Third, 

the activation energy is obtained by finding the saddle point 

along the MEP and the transition rate is calculated using the 

transition state theory [3]. Finally, rare event simulation 

mechanisms such as kinetic Monte Caro (kMC) method [4] are 

applied to simulate the phase transition process. Transition rate 

is one of the most important inputs for kMC simulation. The 

challenge of accurately predicting a phase transition is the 

knowledge of the true value of transition rate, which is 

determined by the energy barrier that exists between the initial 

and final stable configurations. That is, some activation energy 



 2 Copyright © 2015 by ASME 

is required to enable the transition from the initial structure to 

the final one. Mathematically it is the saddle point on the PES 

with the global minimum energy barrier that determines the 

transition rate.  

A number of methods [5-8] that search for saddle points on 

a PES have been developed. However, they require a large 

number of costly functional evaluations, which is usually 

conducted by first-principles such as using the density 

functional theory (DFT). The computational cost limits the 

application of those methods to large systems. In this paper, we 

propose a surrogate modeling approach to reduce the number of 

DFT simulation runs. The surrogate model or metamodel 

allows us to identify the potential locations of minima and 

saddle points. This approach will significantly reduce the 

simulation time as the functional evaluations of the surrogate 

model requires much less computational time than the one 

using DFT calculation.  

A number of methods [9, 10] have been developed to 

generate surrogate models with high accuracy based on limited 

sample points. The most popular ones are polynomial 

regression [11], support vector regression [12], moving least 

squares regression [13, 14], radial basis functions interpolation 

[15], neutral networks [16], Kriging method [17], etc. Among 

these methods, Kriging, originally developed in the field of 

geostatistics, gained extensive attentions in recent years. 

Kriging constructs interpolation models using the concept of 

stochastic Gaussian processes and predicts the values of 

interpolated functions. In general, Kriging models include two 

parts: regression model or mean structure which approximates 

the interpolation model globally and a Gaussian process model 

with zero means which represents the local deviation. Kriging 

models have sufficient flexibility to represent different kinds of 

functions. In addition, the introduction of stochastic processes 

enables us to model uncertainty and bias. These two properties 

make the Kriging method a good candidate for us to construct 

surrogate models for saddle point search subject to model-form 

uncertainty in DFT simulation. Our goal is to develop an 

efficient and robust approach to search saddle points on PES’s. 

In this paper, a new search algorithm based on Kriging is 

developed to search local minima and saddle points on a PES. 

The algorithm uses the information collected in the previous 

search to construct a surrogate model, which is then used to 

provide the guidance of future search. After a predefined 

number of DFT simulations, a surrogate model of the PES is 

constructed using Kriging interpolation. Then the search 

process is conducted on the surrogate model until some defined 

criteria are satisfied. The search result based on the surrogate 

model will be used to predict the new locations for functional 

evaluations of the DFT. The search process on the PES 

resumes. After collecting more data points with DFT 

simulations, the surrogate model is refined and updated by 

including those new data points. The search process switches to 

the surrogate model again. This ‘real-surrogate-real’ model 

process continues till some stopping criteria are satisfied. This 

approach can significantly save computational time by reducing 

the required DFT simulation runs. 

In the remainder of the paper, Section 2 gives a brief 

background of the existing transition path and saddle point 

search methods. Section 3 gives an overview of kriging. 

Section 4 introduces the concurrent search algorithm developed 

earlier, which the new algorithm is developed based upon. 

Section 5 demonstrates the algorithm using the Rastrigin and 

Schwefel functions which are benchmarks for global 

optimization, and Section 6 summarizes the paper. 

2. BACKGROUND 
2.1 Saddle Point Search Methods 

Here, only a brief summary of existing saddle point and 

transition path search methods is given. Refs. [5-8] provide a 

detailed review. The existing saddle point search methods can 

generally be categorized into two groups: single-ended methods 

and double-ended methods. Single-ended methods start with 

one configuration to search the saddle point on a PES without 

locating the corresponding MEP. Double-ended methods are to 

locate the saddle point and corresponding MEP between two 

starting states. The major group of single-ended methods is 

eigenvector-following methods [18] that follow the eigenvector 

of Hessian matrix with local quadratic approximations of the 

PES.  

The most popular double-ended methods are chain-of-

states methods including nudged elastic methods (NEB) [19], 

string methods [20], and other methods [21]. Chain-of-states 

methods rely on a collection of images that represent 

intermediate states of the atomic structure as it transforms from 

initial to final configurations along the transition path. These 

discrete states are chained to each other after the search 

converges, and the transition path and saddle point are 

obtained.  

 

2.2 Kriging Methods 
Kriging was originally developed in geostatistics by a 

South African mining engineer, Krige [22]. This method is 

further developed by Matheron [23, 24]. In 1989, Sacks et al. 

[17] first brought the application of Kriging method to the 

design and analysis of computer experiments. Currin et al. [25], 

and Welch et al. [26] further expand the application of Kriging 

in computer simulation. Morris et al. [27] extend the method to 

include the first derivative information in model construction. 

Since then, the Kriging method becomes popular in 

constructing surrogate models for deterministic but 

computationally expensive simulations and design optimization 

[28-31].  

Kriging predicts functional values from a limited number 

of existing ones by modeling the unknown function as a 

Gaussian process. The response function ( )xY  with n-

dimensional input x is composed by a polynomial model and a 

Gaussian process model with zero mean as [17] 

 ( ) ( ) ( ) x f x β x
Ty  (1) 

in which  
1( ) [ ( ), , ( )]f x x x

T

pf f is a vector of p basis 

polynomial functions, 
1[ , , ] β T

p
are the corresponding 



 3 Copyright © 2015 by ASME 

unknown regression coefficients, and 2( ) ~ GP(0, ) x R

represents the Gaussian process with zero mean and covariance   

 
2cov( ( ), ( )) ( )   x x Ri j  (2) 

in which 2 is the process variance and ( )R is the mm 

correlation matrix for m data points with   as the process 

correlation parameter. For instance, for Gaussian correlation 

function, the element ij is defined as 

 ( ) ( ) ( ) 2

1
( , , ) exp( ( ) )  


  x x

n k k k

i j i jk
R x x  (3) 

for n dimensional space with parameter 
(1) ( )( , , )     n

 . 

For an unknown position x, the vector of correlation is 

1( ) [ ( , , ), , ( , , )]  r x x x x x
T

mR R .  

Given m data points with inputs 
1* ( , , )x x xm

, the 

corresponding output vector 
1[ , , ]Y

T

my y , and an mp 

matrix of polynomial values 
1[ ( *), , ( *)]F f x f x

T

m
,   is 

determined by the maximum likelihood estimation (MLE), 

which is to maximize the likelihood function L  defined as 

 

2

ln ln | |
ln

2

 
 

Rn
L  (4) 

in which 
2

1( ) ( )   Y Fβ R Y Fβ
T

 is the estimator of the 

process variance and 
1 1 1( )  β F R F F R Y

T T
 is the generalized 

least square estimator of coefficients. Parameter   is 

determined by solving the MLE problem. After   is 

determined, the regression coefficient matrix β  can be 

calculated and then followed by the variance 2 .  The 

estimation of functional value at the unknown position x is 
1ˆ ˆˆ( ) ( ) ( ) ( )  x f x β r x R Y Fβ

T Ty . 

The kriging methods can be categorized into two types: the 

ordinary kriging methods (OKG) and the universal Kriging 

methods (UKG) based on the order of polynomials used in the 

mean structure. The OKG assumes a zero or constant mean 

structure on the entire domain. The UKG constructs the mean 

structure using first or second-order polynomials. One 

extension for the UKG is the blind Kriging method [32] and 

dynamic Kriging method [33], both of which assume that the 

mean structure is unknown. In the blind Kriging method, the 

unknown mean model is identified using a Bayesian variable 

selection technique based on experimental data, while the 

dynamic Kriging method uses a genetic algorithm to select the 

optimal basis function locally.  

Besides the application in deterministic simulation models, 

the kriging method also has been extended to approximate 

random or stochastic simulation models [34-36]. More detailed 

review of the Kriging methods and its application can be found 

in [37-40]. 

3. AN OVERVIEW OF CONCURRENT SEARCH 
ALGORITHM 
Previously we developed a concurrent search algorithm 

[41] for searching multiple local minima and saddle points 

along one transition path without the prior knowledge of initial 

and final stable configurations on a PES simultaneously. The 

algorithm uses a Bézier curve to represent a transition path. 

Each control point represents one intermediate state (i.e. atomic 

configuration) along the transition path. For each polygon 

formed by the control points, two end control points are relaxed 

to locate two local minima. One intermediate control point 

climbs up to locate the saddle point between those two local 

minima. A constrained degree elevation and reduction scheme 

was developed to maintain an even distribution of control 

points. A curve subdivision scheme was developed to break one 

curve into two curve sections successively to locate multiple 

transition paths. The searching algorithm consists of three 

stages: 1) a single transition pathway search, 2) multiple 

transition pathway search, and 3) climbing process to locate the 

saddle position.  

At the first stage, the algorithm locates two local minima 

by minimizing two end control points using the conjugate 

gradient method. The intermediate control points are relaxed 

along their corresponding conjugate directions with positive 

eigenvalues of the Hessian matrix for the PES.  

At the second stage, the algorithm locates all local minima 

between two stable configurations obtained from the first stage. 

To locate all local minima along the path, a curve subdivision 

scheme is developed to check whether one curve crosses an 

extra energy basin with a local minimum between two stable 

states (i.e. end points of the curve produced from the first 

stage). If one curve is breakable, the algorithm breaks the curve 

into two curve sections representing two stages of transition at 

one break point. The break point is minimized using the 

conjugate gradient method to locate the extra local minimum, 

while the shape of the two newly created curves are refined 

following the same procedure as in the first stage. This process 

continues till each curve crosses only two adjacent energy 

basins.  

At the third stage, the control point with the maximum 

energy within each of those transition paths climbs up to locate 

the actual saddle points. Similar to the first stage, a set of 

conjugate directions are constructed for each intermediate 

control point. The control point with the maximum energy 

along each transition path is first maximized along the direction 

with a negative eigenvalue. Then the control point is relaxed 

along all other conjugate directions. All the other intermediate 

control points are only relaxed in all the conjugate directions 

except the one with negative eigenvalues. Here, the algorithm 

was not implemented to execute in parallel. However, the 

optimization processes of the curve section are independent and 

can be easily implemented as parallel algorithms.  

In this paper, a new search algorithm using the kriging 

method for surrogate model construction is developed, as an 

extension of the concurrent search algorithm. 
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4. SADDLE POINT SEARCH ALGORITHM USING 
KRIGING METHOD 
In this section, how the Kriging method is used to 

construct the metamodel and integrated with the concurrent 

search algorithm is described. The goal is to improve the 

efficiency and robustness of the searching algorithm. Different 

from the classical Kriging methods, which select the point with 

maximum square error as the next sampling point to improve 

the accuracy of the surrogate model, here a new sampling 

scheme is developed to serve the purpose of locating local 

minima and saddle points.  

Similar to the original concurrent search algorithm, the 

general process of the algorithm includes three stages. The 

major difference is that the single transition pathway search is 

integrated with the Kriging method. The climbing process 

which aims to locate saddle points also incorporate Kriging. 

The overall flowchart of using the Kriging method for saddle 

point search algorithm is shown in Figure 1. 

 

 

 
 

4.1 New Local Sampling Scheme for the Searching 
Algorithm 
The major function of the surrogate model is to help decide 

the next sampling point in the searching process. In classical 

Kriging methods, the next sampling point is chosen as the one 

with the maximum square error. Since our primary goal is not 

to reduce the prediction error as fast as possible, a new 

sampling scheme is developed for searching local minima, 

which uses the criterion of choosing a sampling point with the 

minimum functional value around end control points.  

For interpolation methods such as Kriging, the density of 

sample points within a region determines the accuracy of the 

model prediction for that region. Thus sampling needs to occur 

in the regions where local minima and saddle points are most 

likely located. The algorithm first updates the positions of 

control points using the real model with underlying physics, 

which however is computationally expensive. After collecting a 

predefined number of sample points which should be at least 

larger than the required number of design sites to construct the 

Kriging model, the algorithm then constructs a surrogate model 

using those sample points. Then the searching process is 

switched to the surrogate model. Since the surrogate model 

involves approximation error, there is no need to actually find 

the local minima or saddle points on the surrogate surface. 

After one iteration of search which includes moving both the 

end control points along each conjugate gradient direction and 

the intermediate control points along their corresponding 

conjugate directions, the algorithm switches the functional 

evaluation back to the real model. Then the searching process 

continues with sampling more points that are closer to the 

region of interest. This ‘real-surrogate-real’ iteration continues 

till the searching process converges.  

To further improve the efficiency of the searching process, 

the new local sampling scheme is developed for the region of 

local minima which are located by the two end control points in 

our algorithm. On the surrogate model, for those two end 

control points, the algorithm does not use the conjugate 

gradient minimization method to determine their new positions. 

Instead, a jumping scheme is used to avoid the long local 

searching process on the surrogate model. For each end control 

point, the algorithm draws samples uniformly within its local 

region. The sample point with the smallest functional value is 

selected as the next sampling point for the end control point. 

The size of the sample area is decided as follows. First, the 

center of the sample area is set to be the current location of the 

end control point. Second, the area is a hypercube with the side 

length calculated as  

 

 2 min( , ) pre neighbora c d d  (5) 

 

in which (0,1]c  is a constant; 
pred  is the distance between 

the positions of the end point in current and previous iteration, 

i.e. 
( ) ( 1)|| || x x
i i

pred  where i is the index for the iteration; 

and neighbord  is the distance between the end point and its 

neighboring control point, i.e. 
( ) ( )|| || x x
i i

pre end neighbord . The 

definition of the hypercube length assures that the new end 

control point will not jump to the position which is far away 

from the closest local minimum. In addition, it prevents the 

formation of possible loops at the end of the curve. The 

following two subsections present how the proposed sampling 

scheme and Kriging are integrated into a single transition 

pathway search and climbing process.  

 

Figure 1: FLOWCHART FOR CONCURRENT SEARCH 
ALGORITHM WITH KRIGING METHOD 

Initial guess for a single transition path  

A single transition pathway search 

algorithm with Kriging method is applied 

to each curve section to locate local 

minima and push the curve to MEP 

Climbing process with Kriging method to 

further refine the saddle point position 

Breakable? 

Stop 

Break the curve into two 

curve sections using curve 

division scheme  

Yes 

No 
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4.2 Single Transition Pathway Search with Kriging 
Model 
In the concurrent search algorithm, the local minimum is 

identified using the conjugate gradient method and the path is 

refined by moving the intermediate control points along 

conjugate direction, both of which require a large number of 

functional evaluations for the physical model. To reduce the 

number of functional evaluations, the new algorithm developed 

in this paper keeps track of all information about the searching 

history (i.e. the functional values and gradients at the control 

points in all previous iterations) and incorporate it into the 

surrogate construction and searching process by the Kriging 

method. The algorithm embodies the search history into the 

construction and refinement of the surrogate model. The 

memory is then used to help decide the future search.  

The general process for the single transition pathway 

search algorithm with Kriging is as follows. First, the algorithm 

updates the positions of the end points based on the real model 

using the conjugate gradient method and the positions of 

intermediate control points by moving them along conjugate 

directions until a predefined number of functional evaluations 

is reached. During this searching process, the functional 

evaluations in the line search along conjugate directions are 

conducted based on the real model until the number of 

evaluations reaches a threshold level. When more functional 

evaluations are required in the line search, the surrogate model 

is used instead so that the associated computational cost can be 

reduced. Second, a surrogate model is constructed or updated 

using all available sample points and functional values. The 

whole searching process on the surrogate model is based on the 

evaluation of the surrogate. Third, when the searching process 

switches from the real model to the surrogate model, the 

positions of the end control points are updated with the sample 

points with the minimum functional values within the 

corresponding sample areas on the surrogate model. The 

intermediate control points move along the conjugate directions 

with all the functional evaluations conducted on the surrogate 

model. Fourth, after one searching iteration on the surrogate 

model, the searching process switches back to the real model 

except that the second portion of the functional evaluations 

during each line search are still performed on the surrogate 

model. The overall flowchart of single transition pathway 

searching with the Kriging method is shown in Figure 2. 

 

4.3 Line Search with Kriging Model 
Line search is one of the critical components for the 

searching algorithm as it involves in all stages of the searching 

process. During the searching of local minima and MEP, line 

search is used to determine the minimum or maximum along 

each conjugate direction. Hence, the line search is widely used 

to search the optimum in a particular direction. For large 

systems with many degrees of freedom, a large number of line 

searches are required since a line search is applied to each 

conjugate direction. Therefore introducing Kriging will 

significantly improve the efficiency of the algorithm with 

reduced numbers of functional evaluations during line searches. 

 During the line search, the second portion of functional 

evaluations are conducted on the surrogate model. The general 

process for the line search is as follows. First, the algorithm 

conducts a couple of trial searches to determine an appropriate 

step length, which is based on the real model. Second, after the 

step length is determined, the algorithm refines the position of 

the control point along the direction using the determined step 

length. In this step, functional evaluations are also conducted 

on the real model. Third, the algorithm refines the surrogate 

model based on the results from the first and second steps and 

then continues updating the position of the point with 

functional evaluations being conducted on the surrogate model 

until the predefined stop criteria are satisfied. 

 

 
 

Figure 2: FLOWCHART FOR SINGLE TRANSITION 
PATHWAY SEARCH ALGORITHM WITH KRIGING 

METHOD 

One curve or two curve sections with at least one end 
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control points  
Yes 
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function value 

Conjugate gradient search 

on real model except that 
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steps on each line search 
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gradient direction are on 

surrogate model 
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control 
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Search on real model except 

the second portion of mini-
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4.4 Climbing Process with Kriging Model 
During the climbing stage in the concurrent searching 

algorithm, the control point with the maximum energy for each 

path climbs up to the saddle position, while all the other 

intermediate control points are minimized along their 

corresponding conjugate directions with positive eigenvalue. 

Integrated with Kriging, the new climbing process is as follows. 

First, the algorithm lets the control point with the maximum 

energy climb up along a conjugate direction and minimize all of 

the intermediate control points along their corresponding 

conjugate directions with positive eigenvalues. During the 

process, the construction of the conjugate directions is 

conducted on the real model except that some functional 

evaluations during the line search are conducted using the 

surrogate model. Second, after the number of iterations reaches 

a threshold, the algorithm refines the surrogate model and the 

whole searching process is conducted on the refined surrogate 

model. 

5. DEMONSTRATION 
Here the well-known LEPS potential [42], Rastrigin 

function, and Schwefel function are used to demonstrate the 

new algorithm. We use these simple functions to help visualize 

the searching process and results. The Rastrigin and Schwefel 

functions are among the most used benchmark functions for 

global optimization, as defined in Table 1. The implementation 

is done using MATLAB and the Kriging model is constructed 

with DACE toolbox [43]. In this experiment, the basis 

polynomial function is set to be the second order and the 

correlation function is Gaussian correlation function.  

The experiments are designed to test the accuracy and 

efficiency of the algorithm. The general process for the 

demonstration is as follows. First, we test the accuracy of the 

algorithm by setting a set of initial positions and test the 

capability of locating the local minima and saddle points. 

Second, we test the efficiency of the algorithm by comparing 

the average number of functional evaluations required to locate 

one transition path between the new searching algorithm with 

Kriging and the original concurrent searching algorithm. Since 

the most time-consuming portion of the saddle point searching 

algorithm is the functional evaluations on the real model, we 

use the total average number of functional evaluations as the 

metric to compare the efficiency in the examples. 

 

5.1 Test Result for LEPS Potential 
The LEPS potential model describes a reaction involving 

three atoms A, B, and C whose motions are restricted along a 

straight line. This function is a benchmark function for saddle 

point search algorithms. Here, we use two different initial 

positions to test how well the new algorithm works. Figure 3(a) 

shows the located local minima and corresponding saddle 

points by using concurrent searching algorithm, while Figure 

3(b) shows the results by the integrated Kriging searching 

algorithm. By comparing the results in Figure 3(a) and (b), it 

clearly shows that the new algorithm maintains a good accuracy 

of locating the local minima and the saddle point. The final path 

identified by the algorithm is very similar to the ones identified 

by the concurrent search algorithm. Table 2 shows that the total 

number of functional evaluations for the new algorithm is much 

lower than the one for the concurrent search algorithm.  

 

5.2 Test Result for Rastrigin Function 
We choose a PES defined by Rastrigin function with 

multiple local minima and saddle points to demonstrate the 

capability of locating multiple saddle points. The Rastrigin 

function is a non-convex function which is frequently used to 

test global optimization algorithms. The function has a global 

minimum at (0, ,0)x  and local minima are uniformly 

distributed as shown by the contour plot in Figure 4. We test the 

new algorithm using four sets of initial positions. The results in 

Figure 4 show that the algorithm accurately locates local 

minima and saddle points. The identified final paths are also 

consistent with the ones identified by the concurrent search 

algorithm.  

The total numbers of functional evaluations for the four 

initial positions are shown in Table 3. To minimize the 

influence of the initial positions on the complex functional 

landscape, four different initial positions are applied and the 

total average number of functional evaluations per final path 

(N/path) is shown in Table 3. The result in Table 3 shows that in 

average the number of functional evaluations required to locate 

one final path for the new algorithm with integrated Kriging is 

less than half of the one for the concurrent search algorithm. 

The algorithm works very well for the Rastrigin function.  

 

5.3 Test Result for Schwefel Function 
A third example to test the algorithm is Schwefel function 

which has a relatively non-uniform PES as shown in Figure 5. 

We follow the same procedure as for the Rastrigin function. 

The results are shown in Figure 5 and Table 4. The total 

average number of functional evaluations for the new algorithm 

is 326 which is lower than the one (461) for the concurrent 

search algorithm.  
Table 1: TEST FUNCTIONS 

Function Definition 

LEPS 

potential 

2 2 2

2 2 2

1/2

( , )

[
1 1 1 (1 ) (1 ) (1 )

]
(1 )(1 ) (1 )(1 ) (1 )(1 )

LEPS

AB BC

AB BC AC AB AB AB

AB BC BC AC AB AC

V r r

Q Q Q J J J

a b c a a a

J J J J J J

a b b c a c

     
     

  
     

 

where  

0 02 ( ) ( )3
( )

2 2

r r r rd
Q r e e

     
  

 
 

 0 02 ( ) ( )
( ) 6

4

r r r rd
J r e e

    
   

Rastrigin 
2

1

( ) 10 [ 10cos(2 )]


  x
n

i i

i

f n x x  

Schwefel 
1

( ) 418.9829 sin


 x
n

i i

i

f n x x  
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    Table 2: TEST RESULTS FOR LEPS POTENTIAL  

Algorithm Pos_1 Pos_2 Total N/path 

Con Nf 2104 6264 8368 4184 

Np 1 1 2 

Krig Nf 643 941 1584 792 

Np 1 1 2 

Note: “Con” represents the concurrent search algorithm; “Krig” 

indicates the new search algorithm integrated with Kriging; “Pos_*” 

means the initial position * which are shown in Figure 3; Nf is the 

number of function evaluation at each initial position; Np is the 

number of identified final paths; N/path is the average number of 

functional evaluations to locate one final path.     

 

 

    Table 3: TEST RESULTS FOR FUNCTION RASTRIGIN 

Algorithm Pos_1 Pos_2 Pos_3 Pos_4 Total N/path 

Con Nf 4289 4186 2120 3452 14047 502 

Np 8 8 6 6 28 

Krig Nf 1594 1841 1437 795 5667 218 

Np 8 7 7 4 26 

 

 
    Table 4: TEST RESULTS FOR FUNCTION SCHWEFEL 

Algorithm Pos_1 Pos_2 Pos_3 Pos_4 Total N/path 

Con Nf 3037 3799 2742 2875 12453 461 

Np 7 7 6 7 27 

Krig Nf 2380 1937 1785 4028 10130 326 

Np 7 8 8 8 31 

 

 

 

6. DISCUSSIONS AND FUTURE WORK 
In this paper, a saddle point search algorithm using Kriging 

metamodels is developed to improve the efficiency of the 

searching algorithm. Different from existing saddle point search 

methods, this method keeps search history in memory. It uses 

the information collected from previous iterations to guide the 

search in the next iteration.  Kriging models are constructed and 

updated based on the sample points collected in previous 

iterations. The cost of the evaluation of metamodels is much 

less and negligible compared to physics-based simulation such 

as DFT, which can significantly reduce the number of 

functional evaluations while the accuracy of the searching 

algorithm is maintained. The algorithm starts with searching 

local minima and saddle points with the evaluation on the real 

model. After collecting enough samples, a surrogate model is 

constructed. Then the searching process is switched to the 

surrogate model. After the prediction of the locations of new 

samplings, the algorithm switches the searching process back to 

the real model.  

The results show that the algorithm works well with the 

simple examples such as LEPS potential, Rastrigin, and 

Schwefel functions. In the future work, we will apply the 

algorithm to large material systems with higher dimensions.  In 

addition, in the current algorithm, the jump process is the most 

time consuming portion of searching procedure on the 

surrogate model. We will investigate the possible ways to 

improve the efficiency further, although the evaluation of 

surrogate models is much more efficient than the evaluation of 

physical models with simulation. 

In this paper, we only demonstrate the efficiency of the 

new search algorithm. The future efforts will also include the 

improvement of robustness of searching algorithm given that 

the physical models also contain model errors. In other words, 

the true value of physical quantity such as potential energy is 

unknown. The physics-based simulation is just an estimation of 

the true one. However, uncertainty introduced because of the 

numerical treatment in the modeling and simulation process. 

We will include the stochastic error prediction in the future 

surrogate model construction and thus the sampling strategy 

will be adjusted accordingly. 
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Figure 3: TEST RESULTS FOR LEPS POTENTIAL (A) CONCURRENT SEARCHING ALGORITHM (B) 
INTEGRATED KRIGING SEARCH ALGORITHM  

(a) (b) 

Figure 4: TEST RESULTS FOR RASTRIGIN FUNCTION (A) CONCURRENT SEARCHING ALGORITHM (B) 
INTEGRATED KRIGING SEARCH ALGORITHM  
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Figure 5: TEST RESULTS FOR SCHWEFEL FUNCTION (A) CONCURRENT SEARCHING ALGORITHM (B) 
INTEGRATED KRIGING SEARCH ALGORITHM  


