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ABSTRACT 

The challenge of accurately predicting a phase transition 

in computer-aided nano-design is estimating the true value of 

transition rate, which is determined by the saddle point with the 

minimum energy barrier between stable states on the potential 

energy surface (PES). In this paper, a new algorithm for 

searching the minimum energy path (MEP) is presented. Unlike 

existing pathway search methods, the new algorithm is able to 

locate both the saddle points and local minima simultaneously. 

Therefore no prior knowledge of the precise positions for the 

reactant and product on the PES is required. In addition, the 

algorithm is able to search multiple transition paths on the PES 

simultaneously. In this method, a Bézier curve is used to 

represent each transition path. Starting from a single Bézier 

curve, multiple curves with ends connected can be generated 

during the search process. For each Bézier curve, the reactant 

and product states are located by minimizing the two end 

control points of the curve, while the transition pathway is 

refined by moving the intermediate control points of the curve 

in the conjugate directions. A curve subdivision scheme is 

developed so that multiple transition paths can be located. The 

algorithm is demonstrated by examples.1 

1. INTRODUCTION 
An important problem in computer-aided nano-design is to 

simulate phase transition processes, which is one of the most 

important design issues for functional materials. From the 

material’s microstructure point of view, a phase transition is a 

geometric and topological transformation process of materials 

from one phase to another, each of which has a unique and 

homogeneous physical property. Simulation that allows 

engineers to predict the transition process efficiently and 
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accurately under desirable conditions is critical in designing 

phase change materials.  

The general process to simulate the phase transition 

process is as follows. First, a potential energy surface (PES), 

which represents the potentials of a group of atoms as a 

function of internal coordinates, is generated. It characterizes 

the energy levels for various possible configurations of the 

materials system. PES can be regarded as a hyper surface in a 

high-dimensional configuration space. It has values of 

minimum and maximum energy values, where the minima 

correspond to the stable or metastable states. Then a minimum 

energy path (MEP) [1, 2], which is the lowest energy path for 

re-organization of the atoms from one stable configuration to 

another, is located. The maximum energy potential along the 

MEP is the saddle point which determines the activation energy 

barrier. The MEP can be interpreted as the steepest descent path 

on the PES from saddle point(s) connecting the reactant and the 

product, also respectively known as the initial and final stable 

configurations with local minimum energy level on the PES. 

Finally the activation energy is obtained by finding the saddle 

point energy along the MEP and the transition rate is calculated 

using the transition state theory [3]. The challenge of accurately 

predicting a phase transition is the knowledge of the true value 

of transition rate, which is determined by the energy barrier that 

exists between the initial and final stable configurations. That 

is, some activation energy is required to enable the transition 

from the initial structure to the final one. Mathematically it is 

the saddle point on the PES with the global minimum energy 

barrier that determines the transition rate.  

A number of methods [4, 5] already exist to search the 

transition path and saddle points on a PES.  All of the current 

methods need the prior knowledge of either the reactant or 

product, or both, in order to search a MEP.  And they can search 

only one MEP or saddle point at a time with one initial guess of 

the transition path. In this paper we develop an algorithm which 

can locate both the minimum energy positions and MEP 
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simultaneously on a PES. Therefore the precise knowledge of 

the stable configuration is not required in advance to the MEP 

search. In addition, the algorithm is able to search multiple 

local minimums and transition paths on the PES 

simultaneously, which can provide a more comprehensive view 

of the energy landscape than searching individual ones.  

In our algorithm the Bézier curve is used to represent the 

transition path. A Bézier curve is a parametric curve defined by 

control points which can be used to manipulate the shape of the 

curve.  During the searching process, reactant and product 

states are located by minimizing the two end control points of 

the Bézier curve, while the shape of the transition path is 

refined by moving the intermediate control points of the curve 

in the conjugate directions. In each iteration, the two end points 

will be minimized respectively by using the conjugate gradient 

method. Each end point will be minimized along a set of n (for 

n dimensional functions) successive conjugate directions with 

the starting minimization direction defined as the negative 

gradient at the starting point. For each intermediate control 

point, several minimization steps are applied along its 

associated conjugate directions with positive eigenvalues.  By 

doing so, the Bézier curve will gradually converge to MEP.  

Since there could be more than one saddle point with extra 

local minimums between two stable states, one curve could be 

broken into two curves to represent two stages of transition. In 

this paper, we propose a scheme to check whether there is more 

than one saddle point with an extra local minimum between the 

two stable states or not. If there is, we break this curve into two 

curves. The two newly created curves are regarded as the initial 

guess of the transition path for the two stages of transitions. 

Then those two curves are optimized by the same procedure as 

we did to the original initial guess of the path. The algorithm 

will continue this check-and-break process until each of the 

curves crosses only two adjacent basins of local minimums. 

In the remainder of the paper, Section 2 gives a 

background introduction of current transition path and saddle 

point search methods. Section 3 presents the method of 

searching local minimums and saddle point for a single 

transition path. Section 4 extends the single transition pathway 

search method to search multiple paths on the PES. Section 5 

demonstrates the algorithm using two examples, and section 6 

summarizes the paper. 

2. BACKGROUND 

2.1 Transition Pathway Search 
Transition pathway search methods are classified either as 

chain-of-states methods, including nudged elastic band (NEB) 

and string methods, or as one of the other methods. Chain-of-

states methods rely on a collection of images that represent 

intermediate states of the atomic structure as it transforms from 

initial to final configurations along the transition path. These 

discrete states are chained to each other after the search 

converges, and the transition path and saddle point are 

obtained. The most common one among these methods is the 

NEB [2], which relies on a series of images connected by 

springs. To increase the resolution at the region of interest 

(ROI) and the accuracy of saddle point energy estimates, the 

NEB method omits the perpendicular component of the spring 

force, as well as the parallel component of the true force due to 

the gradient of the potential energy. In some cases, this method 

produces paths with unwanted kinks, or may not have any 

images that are directly on the saddle point. The improved 

tangent NEB [6] and doubly nudged elastic band [7] methods 

reduce the appearance of kinks by generating a better estimate 

of the tangent direction of the path and re-introducing a 

perpendicular spring force component, respectively. The free-

end NEB method [8] only requires knowledge of either the 

initial or final state, rather than both, and the climbing image 

NEB [9] allows the image with the highest energy to climb in 

order to locate the saddle point. Eigenvector following 

optimization can be applied to the result of NEB to locate 

actual saddle points, and the resolution of ROI can be increased 

by using adaptive spring constants [10].  

String methods [11, 12] represent the transition path 

continuously as Splines that evolve and converge to the MEP. 

As opposed to NEB, the number of points used in the String 

method can be modified dynamically. The Growing String 

method [13] takes advantage of this by starting with points at 

the reactant and product, and then adding points which meet at 

the saddle point. The quadratic String method [14] is a variation 

that uses a multi-objective optimization approach. 

Methods that are not classified as chain-of-states include 

the accelerated Langevin dynamics method [15] and the 

conjugate peak refinement method [16], which finds saddle 

points and the MEP by searching the maximum of one direction 

and the minima of all other conjugate directions iteratively. The 

Hamilton-Jacobi method [17] relies on the solution of a 

Hamilton-Jacobi type equation to generate the MEP.  

2.2 Saddle Point Search 
Instead of searching the complete MEP, saddle point search 

methods only locate the saddle point on the MEP. They are 

categorized into local and global search methods. One of the 

original local methods is the automated surface walking 

algorithm [18, 19]. It is based on eigenvectors of the Hessian 

matrix with local quadratic approximations of the PES. The 

more recent ridge method [20] and dimer method [21] use a 

pair of images to search for the saddle point. Reduced Gradient 

Following [22] and Reduced Potential Energy Surface Model 

[23] methods use intersections of zero-gradient curves and 

surfaces, with saddle point search occurring within the 

subspace of these curves or surfaces. Finally, the Synchronous 

Transit method [24] estimates the transition state and refines 

the saddle point estimate through conjugate gradient 

optimization. 

Local search methods may locate the saddle point which 

does not have the maximum energy on the MEP if there are 

multiple saddle points. Global search methods have the 

advantage that the saddle point with the maximum energy is 

located if the search converges. The Dewar-Healy-Stewart 

method [25] searches for the saddle point by iteratively 
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reducing the distance between reactant and product images. The 

Activation-Relaxation technique [26] can travel between many 

saddle points using a two-step process; an image first jumps 

from a local minimum to a saddle point, and then back down to 

another minimum. The Step and Slide method [27] uses an 

image from the initial and final state. Energy levels of each are 

increased gradually, and the distance between them is 

minimized while remaining on the same isoenergy surface. The 

interval Newton’s method [28] is capable of finding all 

stationary points by solving the equation of vanishing gradient. 

The proposed algorithm in this paper is to locate multiple 

local minimums as well as their corresponding transition paths. 

The initial guess of the path in this algorithm is represented by 

a fourth order Bézier curve. The algorithm includes three 

stages. The first stage involves the optimization of a single 

transition path, during which two local minimums and one 

transition path that is close to the MEP is located. The second 

stage is searching multiple transition paths starting from one 

single transition path obtained from the first stage. One curve is 

divided into two curves representing two stages of transition, 

which will be optimized in the same way as in the first stage. 

This stage will output several transition paths that approximate 

the true MEPs with those end points located at local minimums. 

Then at the third stage, we let the control point with the 

maximum energy within each of those transition paths climb up 

in order to locate the actual saddle points. 

  

3. A SINGLE TRANSITION PATHWAY SEARCH 
For the initial guess of a transition path which is 

represented by a single Bézier curve, the searching process for 

the stable configurations and the MEP is carried out in a 

sequential manner within a given iteration. A total of five 

control points are used for the initial curve. The more control 

points the curve has, the more accurate the search results will 

be, but with higher computational costs. The general process 

for a single transition pathway search is as follows. First, the 

two end control points of the curve are minimized by using the 

conjugate gradient method. Then, a set of conjugate directions 

for each intermediate control point is determined based on the 

new positions of the two end control points. Several 

minimization steps are applied to each intermediate control 

points along their associated conjugate directions. After several 

iterations, the two end control points of the curve will gradually 

converge to the minimum energy positions and the curve will 

approach to the MEP. Table 1 lists the pseudo-code of the 

algorithm for a single transition pathway search. The details are 

described in the following subsections. 

3.1 Searching the Stable Configuration 
As shown in Tab. 1, the local minimums are located by 

minimizing the two end control points of the curve iteratively.  

By definition the minimum energy location 
*

x  on the PES 

satisfies 

 

 

Table 1: PSEUDO-CODE OF THE ALGORITHM FOR A SINGLE 

TRANSITION PATH SEARCH WITH FIVE CONTROL POINTS 

 
INPUT: Initial guess of a curve with control points of 

0 1 2 3 4, , , , .p p p p p  

OUTPUT: A curve with two end points located at two local 

minimums and the curve itself approaches to the MEP. 

TOL=threshold for the percentage of change in potential energy value; 
(#)

*( )V p =potential energy value at points 
(#)

*p ; 

( )

0

i
D ,

( )

4

i
D =search direction for

0p and
4p respectively; 

( )

0

i ,
( )

4

i =step size for minimizing 
0p and

4p respectively;  

WHILE The end control points did not converge to the minimums 

 

  IF  
( ) ( 1) ( 1)

0 0 0( ( ) ( )) / ( )i i iV V V TOL  p p p and 

( ) ( 1) ( 1)

4 4 4( ( ) ( )) / ( )i i iV V V TOL  p p p  

     
( ) ( 1) ( ) ( )

0 0 0 0

i i i i p p D ; 
( ) ( 1) ( ) ( )

4 4 4 4

i i i i p p D ; 

     Minimize 
( ) ( ) ( )

1 2 3, ,i i i
p p p in their associated conjugate directions 

(see Section 3.2). 

     IF There is zigzag along the curve 

        Do degree elevation or reduction locally (see Section 3.3 and 

3.4). 

     END IF 

   ELSEIF  
( ) ( 1) ( 1)

0 0 0( ( ) ( )) / ( )i i iV V V TOL  p p p  and 

( ) ( 1) ( 1)

4 4 4( ( ) ( )) / ( )i i iV V V TOL  p p p  

 
( ) ( 1) ( ) ( )

4 4 4 4

i i i i p p D ; 

      Minimize 
( ) ( ) ( )

1 2 3, ,i i i
p p p in their associated conjugate directions. 

     IF There is zigzag along the curve 

        Do degree elevation or reduction locally. 

     END IF 

   ELSEIF 
( ) ( 1) ( 1)

0 0 0( ( ) ( )) / ( )i i iV V V TOL  p p p  and 

( ) ( 1) ( 1)

4 4 4( ( ) ( )) / ( )i i iV V V TOL  p p p  

    
( ) ( 1) ( ) ( )

0 0 0 0

i i i i p p D ; 

     Minimize 
( ) ( ) ( )

1 2 3, ,i i i
p p p in their associated conjugate directions.  

     IF There is zigzag along the curve 

        Do degree elevation or reduction locally. 

     END IF 

  END IF 

ELSE The end control points converged to the minimums 

END WHILE  
IF Two end points converge to the same local minimum 

Re-input the initial guess of the curve. 

END IF 

 

 

 
 *

1[ , , ] 0T

nV  x g g  (0) 

 

where 
*( )V x is the potential energy function with respect to the  

position 
*

x  in an n-dimensional configuration space. The 

iterative location update during the minimization is given by 
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( ) ( 1) ( ) ( )i i i i x x d  (0) 

 

where ( )i is the step length and ( )i
d is the search direction for 

the thi  iteration. The minimization process for the end points is 

carried out using the conjugate gradient method [29]. The 

conjugate searching  direction ( )i
d in the thi iteration is defined 

as a linear combination of 
( )ig and ( 1)i

d [29], 

 

 

( )

2
( )( )

( ) ( 1)

2
( 1)

for 1

for 2

i

ii

i i

i

i

i



 



 
  


g

gd
g d

g

 (1) 

 

The step size ( )i is determined by using the inexact line 

search along the corresponding conjugate directions. Namely, 

along each conjugate direction, several mini steps are applied to 

the end points in order to locate the minimums along that 

direction. The minimum position in one conjugate gradient 

direction is the starting point for the following conjugate search 

direction. In Table 1, in an n -dimensional search space, the 

search direction
( )i

D  in thi iteration can be represented as 

 

 
( ) ( ) ( ) ( ) ( ) ( )

1 1

i i i i i i

n n    D d d  (1) 

 

For a quadratic potential function with n -dimensional 

inputs, the local minimum can be determined in at most n steps.  

For a non-quadratic function, local quadratic approximation is 

involved during the minimization process. For a non-quadratic 

function with n-dimensional inputs, it requires more than n 

steps to locate a minimum. For those functions, the conjugate 

search directions determined by Eqn. (1) will gradually lose 

conjugacy when searching process continues, which could lead 

to divergence. In our algorithm, we recalculate the conjugate 

directions from one iteration to another, namely after n steps of 

conjugate search in order to avoid the divergence. 

3.2 Search the MEP 
Mathematically, for an n-dimensional PES, the Hessian 

matrix H  at a first-order saddle point has one negative 

eigenvalue and 1n   positive ones. The eigenvectors is  form a 

conjugate basis (i.e. 0,T

i j i j  s Hs ) with respect to the 

Hessian matrix. For a set of conjugate directions is ’s in the 

vicinity of a first-order saddle point, there is one direction 0s

along which the potential energy has a local maximum. For 

each of the other 1n   directions, the potential energy has a 

local minimum. The method presented here constructs a set of 

conjugate directions by making use of Eqn. (2) developed by 

Beal [30] which starts with a given arbitrary direction 0s . The 

rest conjugate directions are defined as 

 

 

1 1 0

1 1 0

0 1 0

1 1 0 1 1

1 1 0

0 1 0

( )

( )

( )
, 1

( )

T

T

T T

i i i

i i iT T

i i

i  

 


  




    



g g g
s g s

s g g

g g g g g
s g s s

s g g g g

 (2)  

 

In this algorithm, for each intermediate control points, a set 

of corresponding conjugate directions are constructed by setting 

0s
 
as the tangent direction approximated by the backward finite 

difference for the first half of the intermediate control points 

and by the forward finite difference for the second half 

respectively. For example, for the thk control point kp ,  

 

 

1

0

1

if
2

if
2

k k

k k

N
k

N
k





  
   

  
 

       

p p

s

p p

 (3) 

 

where N is the total number of control points and     rounds 

up to an integer. In order to calculate 1s in Eqn. (2), we first 

need to determine 0g and 1g . Here for the 
thk control point 

kp , 

0g  is defined as the gradient at the middle point of the line 

segment connecting 
kp  and its neighbor, namely, 

 

 

1

0

1

( ) if
2 2

( ) if
2 2

k k

k k

N
V k

N
V k





  
   
  

 
       

p p

g
p p

 (4) 

 

1g
 
is defined as the gradient at the position with maximum 

energy maxp along the direction 0s . Several steps of line 

maximization are applied to the point kp  along 0s in order to 

locate maxp . Then several steps of line minimization along the 

conjugate direction 1s  are applied to kp . The rest of the 

conjugate basis set are then built recursively using Eqn.(2). 

Simultaneously, each time when a new conjugate direction is 

determined, several steps of line minimization along this 

direction are applied to the associated new positions of kp .  

3.3  Constrained Degree Elevation and Reduction 
After the evolution of the intermediate control points along 

the conjugate directions, those points may become too close to 

each other. As a result, the control points only capture part of 

the information along the transition path. The resolution around 

the saddle region may be too low. This could lead to an 

underestimation of the energy barrier. Similar to the re-

parameterization process in the string method [31], a 

redistribution process of the control points after each evolution 
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step is introduced in order to ensure that these intermediate 

control points are relatively well distributed. The degree 

elevation and reduction scheme for the Bézier curve are 

employed to redistribute the intermediate control points in our 

algorithm. 

Degree elevation increases the flexibility of a curve by 

introducing more degrees of freedom for control. By adding an 

extra control point to the definition of a Bézier curve, its degree 

is raised by one. The advantage of using the degree elevation 

technique is that we can increase the degree of a Bézier curve 

without changing its shape. The degree elevation of an thn order 

Bézier curve produces an ( 1)thn order curve with a new set of  

vertices kq  defined by [32] 

 

 
1

1

, 0

1 , 1,...,
1 1

, 1

k k

k k k

k k

k

k k
k n

n n

k n





 

  

     
  

   

q p

q p p

q p

 (4) 

     

where kp ’s are the original vertices of the thn  order Bézier 

curve.  The Bézier curve can be elevated more than one degree 

by applying Eqn. (4) multiple times. In our algorithm, the curve 

is elevated only once within each iteration in order to make 

control points well distributed.  

The purpose of degree elevation in our algorithm is to 

redistribute the intermediate control points. In other words, we 

are concerned more about how well the procedure makes the 

control points distributed than about how small the error 

between the elevated curve and the original curve may have, as 

long as the introduced error is within a tolerance range. Based 

on those two considerations, a constraint is added to the 

original degree elevation scheme in order to better serve our 

purpose. When two control points become too close to each 

other after the degree elevation by Eqn. (4), we manually set 

the new control point to be the arithmetic average of the two 

adjacent control points in the original curve. In other words, for 

each newly created control points of the elevated curve, we 

calculate the Euclidean distance between this point and the 

middle point of its corresponding adjacent points of the original 

curve. For the 
thk control points kq

of the elevated curve, if it 

satisfies the condition  

 

 1

1
2

k k

k k kc




  

p p
q p p  (4) 

 

where (0 1)c c   is a predefined constant, then kq
is set as the 

middle point of the straight line 1k kp p . Since it is too 

computationally expensive to keep elevating the curve 

recursively, degree reduction is introduced to keep a balance 

with degree elevation and maintain a reasonable computational 

cost.   

Degree reduction approximates an thn  order Bézier curve 

with an ( )thm m n  order curve. Different from degree 

elevation, no exact degree reduction is possible in practice. So 

approximation is inevitable. Here we treat the degree reduction 

as an inverse process of the degree elevation. Eqn. (4) shows 

that the control points of an elevated Bézier curve can be 

exactly determined by the control points of the original curve 

through linear interpolation of the two adjacent points. For the 

degree reduction, we need to solve the over-determined system 

in Eqn. (4) for the unknowns  
0

n

k k
p as a linear combination of

 
1

0

n

k k




q .  

We developed a reduction scheme similar to Eck’s [33] but 

with a modified forward and backward procedure. In order to 

determine the new control points for the reduced curve, we 

make use of the information of three adjacent points instead of 

one as in Eck’s scheme from the original curve. The three-step 

procedure is described as follows. In the forward step, three 

sets of points are calculated by using 

 

 
  ,1 1

1
1

1

I I

k k kn k
n k

  
 

p q p  (5) 

 

 
  ,2 1

1
1

1

I

k k kn k
n k

  
 

p q q  (6) 

and 

   ,3 2 1

1
1

1

I

k k kn k
n k

   
 

p q q  (6) 

 

 

where 1, , 1k n  . Then an average of them  

 

 

,1 ,2 ,3

3

I I I

k k kI

k

 


p p p
p  (7) 

 

forms a new set of points  
1

1

n
I

k k




p . Similarly, in the backward 

step, a new set of points  
1

1

n
II

k k




p can be obtained by using 

Eqns. (8), (9) , (9) and (10). 

 

     1,1

1
1 1II II

k k kn n k
k

     p q p  (8) 

 

     1,2 1

1
1 1II

k k kn n k
k

     p q q  (9) 

 

     1,3 2 1

1
1 1II

k k kn n k
k

      p q q  (9) 
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 1,1 1,2 1,3

1
3

II II II

k k kII

k

  



 


p p p
p  (10) 

Finally, the control points  
0

n

k k
p of the reduced curve are 

calculated as a linear combination of the points in  
1

1

n
I

k k




p  and 

 
1

1

n
II

k k




p   as 

 

 

0

(1 ) 1, , 1

k k

I II

k k k k k

k k

k

k n

k n

 

 


    
  

p q

p p p

p q

 (10) 

 

where k is the weights for II

kp .  

The degree reduction problem is then converted to the one 

of determining the weights of the corresponding control points. 

In Eck’s method, k ’s are determined by minimizing the least 

square distance between the original curve and the reduced one, 

which is too costly for our purpose. Since the degree reduction 

in our algorithm is to redistribute the control points instead of 

transforming geometric information of curves which requires 

the error between the reduced curve and the original one should 

be as small as possible. In order to reduce the computational 

cost, here the weights k are defined as  

 

 ( 1, , 1)k

k
k n

n
     (11) 

 

In addition, Eck’s method may introduce loops, which should 

be avoided in our searching algorithm. 

3.4 Local Degree Elevation and Reduction 
The degree elevation and reduction of a Bézier curve 

changes the shape of the curve globally, which will gradually 

smooth out the curve. Consequently, this prevents the curve 

from converging to a curved MEP. The remedy for this issue is 

to introduce a local degree elevation and reduction scheme. 

Within each iteration, we check whether there is zigzag along 

the curve. For example, for the 
thk control point kp

( 1,..., 1k n  ), if it satisfies the condition  

 

    1 1

1 1

arccos k k k k

k k k k

p p p p

p p p p
 

 

 
  
 
 

 (11) 

 

where (0 )    is a predefined constant, then it indicates 

that there is a zigzag at the control point kp . If there is no 

zigzag along the curve, degree elevation or reduction is not 

needed; otherwise, degree elevation or reduction is done 

locally. If the zigzag only exists within the first half of control 

points, degree elevation or reduction is only performed to the 

first half of control points. Similarly, it is performed only to the 

second half of control points if the zigzag only exists within the 

second half. If the zigzag exists in both, we do degree elevation 

or reduction globally.     

4. MULTIPLE TRANSITION PATHWAY SEARCH 
Here, how to search multiple transition paths on the PES is 

presented. Our algorithm starts with the initial guess of a single 

transition path. Once the local minimums are found as 

described in Section 3.1, this single path will be divided into 

two curves if an extra basin is located along the path. Both 

subdivided curves will then be treated individually and the 

algorithm will be applied to them. This subdivision process 

continues recursively until there is only one possible saddle 

point between any pair of local minimums. As a result, multiple 

local minimums and transition paths can be found within a 

target search area. Therefore, the initial guess of this single path 

should be set up such that the search area of interest can be 

covered. 

During the multiple transition path search stage, a curve with 

two end control points located at the two local minimums 

obtained from the single transition path search will be 

examined by using the curve subdivision scheme. It determines 

whether the curve crosses an extra basin with another local 

minimum.  If yes, the curve is divided into two new curves at 

the intermediate control point that is located in the extra basin. 

Since the number of control points for those two newly created 

curves may be less than five, the degree elevation is applied to 

the two curves recursively until the number of control points 

for each curve reaches five. Those two elevated curves now 

represent the initial guesses for the two new transition paths. 

The elevated curves are optimized using the procedure listed in 

Table 1. After their respective local minimums are identified, 

the curve subdivision scheme is applied to them again. The 

check-and-break procedure continues until all of the curves are 

unbreakable with their end control points located at local 

minimums. By now, those curves are still the approximations of 

the individual MEPs. In order to find the actual energy barrier 

for each curve, the algorithm selects the control point with the 

maximum energy and makes it climb up to locate the saddle 

point. During the climbing process, a set of conjugate directions 

corresponding to the identified control point with the maximum 

energy are constructed. Different from the procedure in the 

single transition path search, the point with the maximum 

energy will be first maximized along 0s direction, and then 

minimized along other directions is ’s ( 1i ). The same 

procedure in the single transition path search, i.e. minimization 

along directions with positive eigenvalues, is applied to the rest 

of intermediate control points during the climbing process. This 

further makes the curve converge to the MEP. Table 2 lists the 

pseudo-code of the algorithm for multiple transition path 

search. 

The major step during the multiple transition path search is 

to determine some criteria of whether a curve is breakable and 

which intermediate control point we should select to break the 
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curve. Here the subdivision scheme for the fourth-order (with 

five control points) and fifth-order (with six control points) 

curves are used to demonstrate. If we use a curve with a degree 

lower than four, the limited number of control points may miss 

the detailed curvature information of the actual path on the 

PES. As a result, some of the local minimums will be missed. 

The subdivision scheme can be similarly extended to higher-

order curves. 

 

 
Table 2: PSEUDO-CODE OF THE ALGORITHM FOR MULTIPLE 

TRANSITION PATH SEARCH 

 

INPUT: A curve ( ) x  with two end control points located at two local 

minimums.
  

OUTPUT: Multiple curves with their end points connected together 

locating at multiple local minimums. Besides, each curve has one point 

locating at the saddle point position.  

iN =number of newly produced curve for 
thi  iteration (

0N  is set to be 

1). 

0i   

WHILE There exists newly produced curves in 
thi  iteration  

1i i  ; 

iN =0; 

FOR 
11,2..., ij N   

     IF ( )j x  is breakable (using the scheme in Section 4.1) 

Break the curve ( )j x  into two curves 
1( )j x  and 

2( )j x . 

2i iN N  ; 

     END IF 

    IF The number of control points for 
1( )j x or 

2( )j x  is less than 

five 

Do degree elevation to the curve 
1( )j x  or 

2( )j x . 

    END IF 

   Optimize 
1( )j x and 

2( )j x  after degree elevation to get two 

optimized curve ( )k x and
1( )k  x  ( 1ik N  ). 

END FOR 

END WHILE 

FOR 1,2...,j  (total number of non-breakable curves produced 

during the WHILE loop ) 

Select the maxi-energy control point of ( )j x to climb up in order to 

locate the saddle point. 

END FOR 

 

 

4.1 Scheme for Selecting Breakpoint 
In this section, the curve subdivision scheme to determine 

whether a curve can be divided and which control point to be 

selected as the breakpoint. This curve subdivision scheme is 

based on an assumption that the control points are relatively 

evenly distributed in a sequential manner. In other words, the 

curve itself has no loop or large curvature. We make use of the 

information of the gradient and potential energy value at each 

of the intermediate control points as well as their relative 

positions. Figure. 1 shows a Bézier control polygon on the PES 

with two end control points located at the minimums of two 

separate basins of local minimums. 0 1 2 3, , ,p p p p and 4p are 

control points. 1( )V p , 2( )V p , and 3( )V p  illustrate 

the negative gradient directions at the position 1 2, ,p p  and 3p

respectively. 1 2, ,  and 3 are the angles between the negative 

gradients and the control polygon. By examining the three 

angles as well as the potential energy values at those 

intermediate control points, it is able to determine whether the 

curve crosses a third basin of local minimums. There are a total 

of eight combinations with the angle distributions. The process 

of this scheme includes three steps. The first step is to check the 

combination of 1 and 3 . If no conclusion can be reached, a 

second step is to check 2 . If we still cannot decide by the 

second step, the energy values at the intermediate points will be 

considered as the third step. The details about the scheme to 

determine a breakpoint for a fourth-order curve is described in 

the remainder of this section. 

 

 

p0

p1

p2

p3 p4

θ1

Δ

- V(p1) Δ

- V(p2)

Δ

- V(p3)
θ2

θ3

 
 

Figure. 1: ILLUSTRATION FOR MULTIPLE PATHWAY SEARCH 

(FIVE CONTROL POINTS)  

 

 

Table 3 summarizes the curve subdivision scheme for a 

fourth order curve. “Y” indicates that the curve is breakable, 

and “U” means that it is unable to determine whether the curve 

is breakable or not only based on the combination of the angles. 

In those cases, potential energy value at all of the intermediate 

control points should be considered. 

The first step of the process is to check the angles 1  and 3 . If 

both 1  and 3  are larger than 2 (i.e. Case 2 and Case 3 in 

Table 3), not only 0p  and 1p  are in different basins of local 

minimums but also 3p  and 4p , which indicates that the curve 

crosses at least a third basin of local minimum. Any of the three 

intermediate control points could be a breakpoint. In our 

algorithm, we choose 2p as the breakpoint.  If either 1  or 3  is 

less than 2 (i.e. Case 1, 4, 5, 6, 7, and 8 in Table 3), it is not 

guaranteed that the curve would go through a third basin of 

local minimum by checking 1  and 3  only. For example, 

when 1  is larger than 2  and 3  is less than 2 , there are 

two sets of possible positions for the control points, i.e. Case 1 

and 4. Since 3  is less than 2 , 3p  and 4p could be located in 

the same basin. If 2p  is located in a different basin from 3p , 
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the curve crosses the third basin. Otherwise, 1p , 2p , 3p , and 

4p could be in the same basin and the curve crosses only two 

adjacent basins.  Therefore, we are unable to decide whether the 

curve is breakable or not with the only information that 1  is 

larger than 2
 
and 3  is less than 2 . More information is 

required.  

 

 
Table 3: CURVE SUBDIVISION SCHEME (FIVE CONTROL 

POINTS) 

 

C
a
se N

o
 

Greater (>) or 

smaller (<) than 

2  

B
reak

ab
le? 

C
a
se N

o
 

Greater (>) or 

smaller (<) 

than 2  

B
reak

ab
le? 

1  
2  

3  
1  

2  
3  

1 > < < Y 5 < < > U 

2 > < > Y 6 < < < U 

3 > > > Y 7 < > < U 

4 > > < U 8 < > > Y 

 
Table 4: CURVE SUBDIVISION SCHEME (SIX CONTROL 

POINTS) 

 

p1 p2 p3
p5

p0
θ1 θ2 θ3-g1 -g2 -g3 θ4-g4

p4

 
C

a
se N

o
 

Greater (>) or smaller 

(<) than 2  

B
reak

ab
le? 

C
a
se N

o
 

Greater (>) or smaller 

(<) than 2  

B
reak

ab
le? 1  

2  
3  

4  
1  

2  
3  

4  

1 > < < > Y 9 < > < > Y 

2 > < > > Y 10 < > > > Y 

3 > > > > Y 11 < < < > Y 

4 > > < > Y 12 < < > > U 

5 > < < < Y 13 < < < < U 

6 > < > < Y 14 < < > < U 

7 > > > < Y 15 < > > < Y 

8 > > < < U 16 < > < < U 

 

 

As a second step, we take 2p into consideration by 

checking 2 . Here we use Cases 1 and 4 to illustrate. When 2  

is less than 2  (Case 1), it indicates that 2p  cannot be located 

in the same basin as 3p  and 4p . Also as discussed in the first 

step, 0p  and 1p are located in two different basins as in Case 1. 

Thus the curve should cross at least a third basin. Either 1p  or 

2p  could be a breakpoint. Here, we select 2p  to break. When 

2  is larger than 2 (Case 4) , the negative gradients at the 

position 1p , 2p , and 3p  are in the similar directions. 1p , 2p , 

3p , and 4p  could be in the same basin which means that the 

curve crosses only two adjacent basins of local minimums. 

Thus we need further information to determine if the curve is 

breakable.  

In the third step, the potential energy values at
 1p

,
 2p

,
 and 

3p  are considered. If the potential energy values at positions 

1p , 2p , and 3p  have the monotonic relationship 

1 2 3( ) ( ) ( )V V V p p p , 1p
, 2p , and 3p

 
are considered as in 

the same basin, although there is still a slight chance that they 

are not. The curve is defined as unbreakable under this  

condition; otherwise, we break up the curve at the point 1p . 

The above three-step procedure for Cases 1 and 4 can be 

extended to Cases 5, 6, 7, and 8.  For Cases 5 and 8, 1  is less 

than 2  and 3  is larger than 2 . When 2  is larger than

2 (Case 8), the curve is breakable at the points 2p  and 3p . 

Here we select 2p  as the break point. When 2  is less than 

2  (Case 8), and 3 2 1( ) ( ) ( )V V V p p p , the curve is 

unbreakable; otherwise, we break it at 3p . When both 1 and 

3  are less than 2  (Cases 6 and 7), the additional 

information of 2  does not help to determine. Hence we use 

the potential energy value directly. When a curve crosses two 

adjacent basins and the control points are relatively evenly 

distributed, the energy level at the middle point should be the 

largest. Based on this fact, when 2 1( ) ( )V Vp p  and 

2 3( ) ( )V Vp p , the curve is defined as unbreakable in the 

algorithm; otherwise, at the break point is chosen as 2p .  

 The above procedure for breaking a fourth order curve can 

be extended to higher order curves. As an example, Table 4 

summarizes the curve subdivision scheme for a fifth order 

curve.  

5. DEMONSTRATION 
Here the Rastrigin and Schwefel function defined in Tab. 5 

are used to demonstrate the algorithm developed in this paper. 

The Rasrigin function is a non-convex function which is 

frequently used to test the optimization algorithm. The function 

has a global minimum at (0, ,0)x  and uniformly 

distributed local minimums as shown by a contour plot in Fig. 

2. As discussed in Section 4, the initial guess for the transition 

path should be a curve with control points which are relatively 

evenly distributed. Here, we choose a curve ( ) x  with five 

control points located at (−2.81, 0.50), (−1.43, 2.90), (0.23, 

−2.47), (1.57, 2.67), and (2.91, −0.11), as indicated in Fig. 3 as 

‘Initial path of position 1’. First, the optimization procedure 

listed in Tab. 1 is applied to ( ) x , which produces a curve

'( ) x with two end control points located at two local 

minimums. Then the multi-transition pathway search algorithm 

listed in Tab. 2 is applied to '( ) x . A total of eleven local 

minimums and ten saddle points are located by this algorithm. 



 9 Copyright © 2013 by ASME 

The result of a second set of initial positions, (−2.81, −1.50), 

(−1.43, −1.50), (0.23, −1.50), (1.57, −1.50), and (2.91, −1.50), 

is also shown in Fig. 2. For the second set of initial positions, a 

total of nine local minimums and eight saddle points are 

located. It is seen the curve subdivision scheme performs well 

and successfully locates all saddle points and local minimums 

along the paths. 

A second example to test our algorithm is the Schwefel 

function which has a relatively non-uniform potential energy 

surface, as shown in Fig. 3. The first set of initial positions are 

(−100.3, 25), (−40.5, 40), (17.8, −10), (69.8, 70.6), and (130.2, 

98.7). A total of six local minimums and five corresponding 

saddle points are located. The second set of initial positions are 

(−100.3, −70), (−40.5, −70), (17.8, −70), (69.8, −70), and 

(130.2, −70). A total of five local minimums and four 

corresponding saddle points are located.  

 
 

Table 5: TEST FUNCTION 

 

Function Definition 

Rastrigin 
2

1

( ) 10 [ 10cos(2 )]
n

i i

i

f n x x


  x  

Schwefel 
1

( ) 418.9829 sin
n

i i

i

f n x x


 x  

 

 

6. CONCLUSION 
In this paper, we proposed a concurrent transition path 

search algorithm to search for multiple local minimums as well 

as saddle points simultaneously. Different from existing 

transition path search and saddle point search methods, no prior 

knowledge of the reactant and product is required for our 

algorithm. In addition, the algorithm can search multiple 

transition paths starting from one initial curve, which provides 

a better view of the PES than the methods that only search one 

transition path.  

The search algorithm includes three stages. The first stage 

involves the optimization of a single transition path, during 

which two local minimums and one transition path that is close 

to the MEP will be located. The conjugate gradient method is 

employed to minimize the two end control points. The 

intermediate control points are evolved along their associated 

conjugate directions. A modified degree elevation and reduction 

scheme is used to redistribute the control points. The second 

stage is searching multiple transition paths starting from one 

single transition path obtained from the first stage. One curve is 

divided into two curves if a third minimum along the path is 

possible. A curve subdivision scheme is developed. 

Recursively, the check-break-optimize procedure is applied to 

each of the new curve. This stage will output several transition 

paths that approximate the true MEPs with those end points 

located at local minimums. Then at the third stage, the control 

point with the maximum energy within each of those transition 

paths climbs up in order to locate the actual saddle points. 

 

 

 
 

Figure. 2: TEST RESULT FOR RASTRIGIN FUNCTION WITH TWO SETS 

OF INITIAL POSITIONS. INITIAL POSITION_1 ARE LOCATED AT (-2.81, 

0.50), (-1.43, 2.90), (0.23, -2.47), (1.57, 2.67), AND (2.91, -0.11). INITIAL 

POSITION_2 ARE LOCATED AT (-2.81, -1.50), (-1.43, -1.50), (0.23, -1.50), 

(1.57, -1.50), AND (2.91, -1.50).  

 

 

 
 
Figure. 3: TEST RESULT FOR SCHWEFEL FUNCTION WITH TWO SETS 

OF INITIAL POSITIONS. INITIAL POSITION_1 ARE LOCATED AT (-

100.3, 25), (-40.5, 40), (17.8, -10), (69.8, 70.6), AND (130.2, 98.7). INITIAL 

POSITION_2 ARE LOCATED AT (-100.3, -70), (-40.5, -70), (17.8, -70), (69.8, 

-70), AND (130.2, -70).  

 

 

Local minimum 

Local maximum 
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It should be noted that the proposed curve subdivision 

scheme for selecting the breakpoint is not perfect. It could treat 

some breakable curves as unbreakable ones. For example, for a 

curve with five control points, when 1 2  , 3 2   and

1 2 3( ) ( ) ( )V V V p p p , we define the curve as unbreakable. It 

is true if the curve only passes through two adjacent basins of 

local minimum. But if the curve covers a long range with 

several extra local minimums, there is still a small chance that 

the control points are positioned in the manner which satisfies 

the unbreakable conditions. The scheme will treat both of the 

two curves as unbreakable curve. A remedy for missing 

breakable curves is adding an extra step to double check each 

unbreakable curve for one more time. If a curve is identified as 

unbreakable curve for the first time, the control points of the 

curve will be redistributed by using degree elevation or degree 

reduction. Then this elevated or reduced curve will be checked 

again to see whether it is breakable. This extra step will 

increase the accuracy of subdivision but also with extra 

computational cost.  

ACKNOWLEDGMENTS 
This work is supported in part by the NSF grant CMMI-

1001040. 

REFERENCES 
[1] Quapp, W., and Heidrich, D., 1984, "Analysis of the 

concept of minimum energy path on the potential energy 

surface of chemically reacting systems," Theoretical Chemistry 

Accounts: Theory, Computation, and Modeling (Theoretica 

Chimica Acta), 66(3), pp. 245-260. 

[2] Jonsson, H., Mills, G., and Jacobsen, K., 1998, "Classical 

and Quantum Dynamics in Condensed Phase Simulations," 

World Scientific, Hackensack, NJ, pp. 385-404. 

[3] Laidler, K. J., and King, M. C., 1983, "Development of 

transition-state theory," The Journal of Physical Chemistry, 

87(15), pp. 2657-2664. 

[4] Alhat, D., Lasrado, V., and Wang, Y., "A Review of Recent 

Phase Transition Simulation Methods: Saddle Point Search," 

ASME. 

[5] Lasrado, V., Alhat, D., and Wang, Y., "A Review of Recent 

Phase Transition Simulation Methods: Transition Path Search," 

ASME. 

[6] Henkelman, G., and Jónsson, H., 2000, "Improved tangent 

estimate in the nudged elastic band method for finding 

minimum energy paths and saddle points," The Journal of 

chemical physics, 113(22), pp. 9978-9985. 

[7] Trygubenko, S. A., and Wales, D. J., 2004, "A doubly 

nudged elastic band method for finding transition states," The 

Journal of chemical physics, 120(5), pp. 2082-2094. 

[8] Zhu, T., Li, J., Samanta, A., Kim, H. G., and Suresh, S., 

2007, "Interfacial plasticity governs strain rate sensitivity and 

ductility in nanostructured metals," Proceedings of the National 

Academy of Sciences, 104(9), pp. 3031-3036. 

[9] Henkelman, G., Uberuaga, B. P., and Jónsson, H., 2000, "A 

climbing image nudged elastic band method for finding saddle 

points and minimum energy paths," The Journal of chemical 

physics, 113(22), pp. 9901-9904. 

[10] Galván, I. F., and Field, M. J., 2008, "Improving the 

efficiency of the NEB reaction path finding algorithm," Journal 

of Computational Chemistry, 29(1), pp. 139-143. 

[11] E, W., Ren, W., and Vanden-Eijnden, E., 2002, "String 

method for the study of rare events," Physical Review B, 66(5), 

pp. 052301(052301-052304). 

[12] Ren, W., 2003, "Higher order string method for finding 

minimum energy paths," Communications in Mathematical 

Sciences, 1(2), pp. 377-384. 

[13] Peters, B., Heyden, A., Bell, A. T., and Chakraborty, A., 

2004, "A growing string method for determining transition 

states: Comparison to the nudged elastic band and string 

methods," The Journal of chemical physics, 120, pp. 7877-

7886. 

[14] Burger, S. K., and Yang, W., 2006, "Quadratic string 

method for determining the minimum-energy path based on 

multiobjective optimization," The Journal of chemical physics, 

124, pp. 054109(054101)- 054109(054112). 

[15] Chen, L., Ying, S., and Ala-Nissila, T., 2002, "Finding 

transition paths and rate coefficients through accelerated 

Langevin dynamics," Physical Review E, 65(4), pp. 

042101(042101-042104). 

[16] Fischer, S., and Karplus, M., 1992, "Conjugate peak 

refinement: an algorithm for finding reaction paths and accurate 

transition states in systems with many degrees of freedom," 

Chemical physics letters, 194(3), pp. 252-261. 

[17] Dey, B. K., and Ayers, P. W., 2006, "A Hamilton–Jacobi 

type equation for computing minimum potential energy paths," 

Molecular Physics, 104(4), pp. 541-558. 

[18] Simons, J., Joergensen, P., Taylor, H., and Ozment, J., 

1983, "Walking on Potential Energy Surfaces," The Journal of 

Physical Chemistry, 87(15), pp. 2745-2753. 

[19] Banerjee, A., Adams, N., Simons, J., and Shepard, R., 

1985, "Search for Stationary Points on Surfaces," The Journal 

of Physical Chemistry, 89(1), pp. 52-57. 

[20] Ionova, I. V., and Carter, E. A., 1993, "Ridge method for 

finding saddle points on potential energy surfaces," The Journal 

of chemical physics, 98, p. 6377. 

[21] Henkelman, G., and Jónsson, H., 1999, "A dimer method 

for finding saddle points on high dimensional potential surfaces 

using only first derivatives," The Journal of chemical physics, 

111(15), pp. 7010-7022. 

[22] Quapp, W., Hirsch, M., Imig, O., and Heidrich, D., 1998, 

"Searching for saddle points of potential energy surfaces by 

following a reduced gradient," Journal of Computational 

Chemistry, 19(9), pp. 1087-1100. 

[23] Anglada, J. M., Besalú, E., Bofill, J. M., and Crehuet, R., 

2001, "On the quadratic reaction path evaluated in a reduced 

potential energy surface model and the problem to locate 

transition states*," Journal of Computational Chemistry, 22(4), 

pp. 387-406. 

[24] Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., 

and Andzelm, J., 2003, "A generalized synchronous transit 



 11 Copyright © 2013 by ASME 

method for transition state location," Computational materials 

science, 28(2), pp. 250-258. 

[25] Dewar, M. J. S., Healy, E. F., and Stewart, J. J. P., 1984, 

"Location of transition states in reaction mechanisms," J. 

Chem. Soc., Faraday Trans. 2, 80(3), pp. 227-233. 

[26] Mousseau, N., and Barkema, G., 1998, "Traveling through 

potential energy landscapes of disordered materials: The 

activation-relaxation technique," Physical Review E, 57(2), p. 

2419. 

[27] Miron, R. A., and Fichthorn, K. A., 2001, "The Step and 

Slide method for finding saddle points on multidimensional 

potential surfaces," The Journal of chemical physics, 115, p. 

8742. 

[28] Lin, Y., and Stadtherr, M. A., 2004, "Locating stationary 

points of sorbate-zeolite potential energy surfaces using interval 

analysis," The Journal of chemical physics, 121, p. 10159. 

[29] Fletcher, R., and Reeves, C., 1964, "Function minimization 

by conjugate gradients," The computer journal, 7(2), pp. 149-

154. 

[30] Beale, E. M. L., 1972, Numerical methods for non-linear 

optimization Academic Press, London. 

[31] E, W., Ren, W., and Vanden-Eijnden, E., 2007, "Simplified 

and improved string method for computing the minimum 

energy paths in barrier-crossing events," Journal of Chemical 

Physics, 126(16), pp. 164103(164101) -164103(164108). 

[32] Farin, G. E., 1993, Curves and Surfaces for Computer-

Aided Geometric Design, Academic Press, Boston. 

[33] Eck, M., 1995, "Least squares degree reduction of Bézier 

curves," Computer-Aided Design, 27(11), pp. 845-851. 

 

 


