
 1 Copyright © 2010 by ASME 

Proceedings of ASME 2010 International Design Engineering Technical Conferences & 
Computers and Information in Engineering Conference 

IDETC/CIE 2010 
August 15 – 18, 2010, Montreal, Quebec, Canada 

DETC2010/28790 

MULTISCALE VARIABILITY AND UNCERTAINTY QUANTIFICATION BASED ON A 
GENERALIZED MULTISCALE MARKOV MODEL 

 
Yan Wang 

Woodruff School of Mechanical Engineering 
Georgia Institute of Technology 

Atlanta, GA 30332 
 

ABSTRACT 
Variability is inherent randomness in systems, whereas 

uncertainty is due to lack of knowledge. In this paper, a 
generalized multiscale Markov (GMM) model is proposed to 
quantify variability and uncertainty simultaneously in 
multiscale system analysis. The GMM model is based on a new 
imprecise probability theory that has the form of generalized 
interval, which is a Kaucher or modal extension of classical set-
based intervals to represent uncertainties. The properties of the 
new definitions of independence and Bayesian inference are 
studied. Based on a new Bayes’ rule with generalized intervals, 
three cross-scale validation approaches that incorporate 
variability and uncertainty propagation between scales are also 
developed. 

1.  INTRODUCTION 
Multiscale systems are systems consisting of hierarchical 

structures with different sizes and exhibit patterns of behaviors 
as the diagnostics of interactions among subsystems at lower 
levels recursively. Human cells, atmospheric turbulence, 
ecosystems, product-materials hierarchies, global supply chain, 
etc. are such examples. In modeling and analyzing multiscale 
systems, the effects of variability and uncertainty should be 
studied. Variability and uncertainty are artifacts that exist 
universally. Variability is the inherent randomness due to 
fluctuation and perturbation. In literature, variability is also 
referred to as stochastic uncertainty, simulation uncertainty, 
aleatory uncertainty, and irreducible uncertainty. This 
component is irreducible even by additional measurements. 
Uncertainty is due to lack of perfect knowledge or enough 
information about the system. Uncertainty is also known as 
epistemic uncertainty, reducible uncertainty, and model form 
uncertainty. Since uncertainty is caused by the lack of 
information about a system, it can be reduced by increasing our 
knowledge to fill the information gap.  

There are many arguments (e.g., [1,2,3]) that support the 

separation between uncertainty and variability. Uncertainties 
have different sources, including lack of data or missing data; 
conflicting information if there are multiple sources of 
information causing inconsistency; conflicting beliefs of 
domain experts when data are not available and the analyst has 
to build models based on experts’ judgements and opinions; 
lack of introspection of systems under studied; measurement 
errors and numerical errors; and lack of evidence about the 
dependency among factors and variables; etc. 

Most of the existing stochastic models only focus on one 
length scale. For multiscale systems, variability and uncertainty 
usually propagate between scales and are inter-dependent. For 
instance, distributions of defects in alloy crystals determine the 
reliability of structures. Physical properties of materials are 
manifestations of atomic-level electron densities and 
distributions. We need multiscale stochastic models to 
incorporate uncertainties and capture cross-scale correlation. 

Probability theory provides a common ground to quantify 
both variability and uncertainty and so far is the most popular 
approach. As a result, in some literature, epistemic probability 
and aleatory probability are named. Traditionally probabilistic 
properties are quantified by precise values of probability 
measures and their parameters (e.g. means and higher-order 
moments). However, the precise probability theory has 
limitations to represent uncertainty. The most significant one is 
that it does not differentiate the total ignorance from other 
probability distributions. The total ignorance means that there 
is absolutely no information about the system or subject under 
study. Based on the principle of maximum entropy, uniform 
distributions are usually assumed when the precise probability 
theory is applied in this case. The problem arises because 
introducing any form of distribution itself has introduced extra 
knowledge in. “Knowing unknown” is not the total ignorance. 
Another limitation of precise probability to quantify uncertainty 
is to represent indeterminacy and inconsistency. When no data 
is available and people have limited ability to determine their 
own subjective probabilities, or subjective probabilities from 
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different people are inconsistent, precise probabilities do not 
capture a range of opinions or estimations adequately without 
assuming some consensus of precise values on the distribution 
of opinions. “Agreeing disagreed” is not the best way to 
capture inconsistency.  

Here, we propose to use imprecise probabilities to 
represent uncertainty and variability. Instead of a precise value 
of the probability ( )P E p=  associated with an event E , a pair 
of lower and upper probabilities ( ) [ , ]P E p p=  are used to 
include a set of probabilities and quantify the uncertainty. 
Imprecise probability differentiates uncertainty from variability 
both qualitatively and quantitatively, which is the alternative to 
the traditional sensitivity analysis in probabilistic reasoning to 
model imprecision. The range of the interval [ , ]p p  captures the 
uncertainty component and indeterminacy. [0,1]P =  

accurately represents the total ignorance. When p p= , the 
degenerated interval probability becomes a precise one without 
uncertainty. In a general sense, imprecise probability is a 
generalization of precise probability. 

We say a modeling or simulation mechanism is reliable if 
the estimation from analysis or simulation is both complete and 
sound with respect to uncertainties. A complete range 
estimation of possible values includes all possible occurrences. 
A sound range estimation does not include impossible 
occurrences. The purpose of using imprecise probability in 
system analysis is to improve the robustness of prediction and 
support more informed decision. The robustness can be 
generally measured by the chance or probability that a range 
estimation of uncertainty includes all possible occurrences. An 
efficient and verifiable way to establish the confidence of 
completeness and soundness in modeling and simulation 
(M&S) is important. To make informed and robust decisions, 
we usually need to know the worst-case and best-case scenarios 
among a range of other possible outcomes. The existing 
sampling-based simulation mechanism such as second-order 
Monte Carlo and sensitivity analysis cannot provide such 
information efficiently. The existing uncertainty quantification 
methods are not general enough to model the total uncertainty. 
There is a need of generic mathematical framework to study the 
total uncertainty in multiscale complex systems. Therefore, in 
this paper we propose a generalized multiscale Markov (GMM) 
model to model the total uncertainty and support reliable 
simulation. 

In the remainder of the paper, we first give a brief 
overview of relevant work in multiscale simulation, variability 
and uncertainty quantification, imprecise probability, and 
generalized interval in Section 2. In Section 3, the new 
imprecise probability theory based on the generalized intervals 
is described. In Section 4, the generalized multiscale Markov 
Model is proposed. Three new cross-scale validation 
approaches are developed and demonstrated in Section 5.  

2. BACKGROUND 

2.1 Stochastic Models to Simulate with Variabilities 
Various stochastic models to accommodate variabilities 

have been developed in different scales. At the traditional 
macro- or bulk-scale of engineering, stochastic or probabilistic 
finite element analysis with random fields has been extensively 
studied. The basic idea is to incorporate variabilities of 
geometries, material properties, and loads in finite element 
analysis. The research issues include how to estimate variance 
of performance (e.g., displacement, strain, and stress) given the 
variabilities of inputs [4]; how to perform variance estimations 
with linear and higher-order approximations [5]; how to 
improve the computational efficiency in spectral 
approximations by the Karhunen-Loève (K-L) decomposition 
[6] and its generalizations and extensions [7,8,9]; how to find 
optimal solutions under the constraint of reliability [10]; and 
others. 

At the meso-scale, dislocation dynamics is a popular tool 
to simulate plastic deformation of crystalline structures, where 
Newtonian-like equations are used to describe the motion of 
crystal defects within the stress fields. Extended from 
deterministic models, stochasticity was recently introduced in 
dislocation dynamics simulations to incorporate the fluctuation 
effects of internal stress [11] and spatial distributions [12,13] 
caused by long-range dislocation interaction, and thermal 
dissipation [14] during plastic flow. The stochastic DD problem 
then is formulated and solved as Langevin-type evolution 
equations. 

The models reviewed above only consider stochasticity 
within one scale. Assumptions are made such that variabilities 
among different lengths scales are separable. That is, the 
randomness at macro-scale is independent from that of micro-
scale. This “homogenization” approach does not always model 
the real world. For example, the effective variance of moduli 
obtained by averaging over small domains of composite 
materials does not agree with the one obtained by a sufficiently 
large representative volume element. Furthermore, damage and 
fracture are highly sensitive to very local defects [15]. 
Decoupling variational information between length scales will 
compromise the accuracy of predictions. 
2.2 Multiscale Simulation under Uncertainty 

Plenty of research has been done on deterministic 
multiscale simulation. Relatively, few research is focused on 
stochastic information integration. Recently, Choi et al. [16] 
represented variabilities as multiscale Gaussian models on a 
pyramid graph structure. Multiscale information assimilation 
was achieved by a so-called walk-sum analysis for both long-
range and local dependencies. As an extension of Arlequin 
coupling framework, Chamoin et al. [17] proposed a stochastic 
coupling approach based on homogenization of material 
properties between length scales for Monte Carlo simulation. 
Ganapathysubramanian and Zabaras [18] developed an 
upscaling approach to derive coarse-scale probability 
distributions from fine-scale distributions based on sampling in 
low-dimensional space. Arnst and Ghanem [19] took another 
upscaling approach to approximate fine-scale probability 
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distributions by the K-L decomposition. Chen and co-workers 
[20,21] also developed an upscaling approach based on the K-L 
decomposition and integrated it with stochastic finite-element 
analysis. 

The above methods are intended to solve the issue of 
multiscale variability information exchange. Domain specific 
assumptions of probability distributions were made so that 
analysis is computationally tractable. More importantly, 
uncertainty and variability were not differentiated in these 
methods. Consequently, the effects of lack of information 
verses fluctuation are indistinguishable. Given the very 
different nature of variability and uncertainty, independent 
quantification of the two will be very useful to understand the 
analysis results and make appropriate decisions accordingly.  

In summary, most of the existing stochastic models except 
for a few only focus on one length scale. There are no 
multiscale stochastic models that consider uncertainties 
explicitly. Completeness and soundness need to be verified 
rigorously in uncertainty quantification. The proposed GMM 
model allows us to quantify cross-scale dependency and 
information loss during exchanges between scales.  
2.3 Hidden Markov Models 

The proposed GMM model is a generalization of hidden 
Markov models (HMM) to consider hierarchical complex 
systems and uncertainties related to models and parameters. 
The HMM [22,23] is an extension of regular Markov chain, 
where the state variables are not directly observable. Instead, 
all statistical inference about the Markov chain itself has to be 
done in terms of observable variables. HMM has been applied 
in many fields that are based on the analysis of discrete-valued 
time series, such as speech recognition, genetic profile and 
classification. Notice that a special case of hidden Markov 
models is the Gaussian linear state-space model, where state 
series are linearly dependent on history, subject to process 
white noises. And observations are also linearly dependent on 
states, subject to measurement noises. The linear state-space 
model is also known as the Kalman filter. It is has been widely 
used in many fields in science and engineering. However, it 
considers only linear relationships. HMM is more general.  

There has been some research to extend HMM to 
hierarchical systems. For instance, the multiresolution hidden 
Markov model was used to recursively represent natural 
language utterance, in which each state is a hidden Markov 
model itself that has a sequence of state transitions [24]. Tree-
structured hierarchical Markov models were employed in 
pattern recognition and classification of images [25,26]. 
Various improvement and extensions have been proposed since 
then. Again, uncertainty information is not explicitly captured 
in these Markov models. From the perspective of uncertainty 
quantification, imprecise probability we propose is a 
generalization of traditional precise probability. 
2.4 Imprecise Probability 

Our proposed approach uses imprecise probabilities to 
quantify variability and uncertainty simultaneously. Many 
representations of imprecise probabilities have been developed. 

For example, the Dempster-Shafer evidence theory [27,28] 
characterizes evidence with discrete probability masses 
associated with a power set of values, where Belief-Plausibility 
pairs are used to measure uncertainties. The behavioral 
imprecise probability theory [1] models uncertainties with the 
lower prevision (supremum acceptable buying price) and the 
upper prevision (infimum acceptable selling price) with 
behavioral interpretations. The possibility theory [29] 
represents uncertainties with Necessity-Possibility pairs. A 
random set [30] is a multi-valued mapping from the probability 
space to the value space. Probability bound analysis [31] 
captures uncertain information with pairs of lower and upper 
distribution functions. F-probability [32] incorporates intervals 
into probability values which maintain the Kolmogorov 
properties. Fuzzy probability [33] considers probability 
distributions with fuzzy parameters. A cloud [34] is a 
combination of fuzzy sets, intervals, and probability 
distributions.  

One common problem of the above set-based imprecise 
probability theories is that the calculation is cumbersome. 
Linear and nonlinear optimization methods are dependent upon 
to search lower and upper bounds during reasoning. Different 
from them, we recently proposed an imprecise probability with 
a generalized interval form [35,36], where the probabilistic 
calculus structure is greatly simplified based on the algebraic 
properties of the Kaucher arithmetic [37] for generalized 
intervals.  
2.5 Interval Arithmetic and Generalized Interval 

In the interval arithmetic [38], it is guaranteed that the 
output intervals calculated from the arithmetic include all 
possible combinations of real values within the respective input 
intervals. That is, if [ , ]x x  and [ , ]y y  are two real intervals (i.e., 

, , ,x x y y ∈ R ) and let { }, , ,/∈ + − ×D , then we have 
[ , ], [ , ], [ , ] [ , ],x x x y y y z x x y y x y z∀ ∈ ∀ ∈ ∃ ∈ =D D . For 

example, [1, 3] [2, 4] [3,7]+ =  guarantees that 
[1, 3], [2, 4], [3,7],x y z x y z∀ ∈ ∀ ∈ ∃ ∈ + = . Similarly, 

[3,7] [1, 3] [0,6]− =  guarantees that 
[3,7], [1, 3], [0,6],x y z x y z∀ ∈ ∀ ∈ ∃ ∈ − = . This is an 

important property that ensures the completeness of range 
estimations. When input variables are not independent, the 
output results will over-estimate the actual ranges. This only 
affects the soundness of estimations, not completeness. Some 
special techniques also have been developed to avoid over-
estimations based on monotonicity properties of functions. 

Generalized interval [39,40] is an extension of the above 
set-based classical interval with better algebraic and semantic 
properties based on the Kaucher arithmetic [37]. A generalized 
interval ( ): [ , ] ,x x x x= ∈x R  is not constrained by ≤x x  any 

more. Therefore,  [4,2]  is also a valid interval and called 
improper, while the traditional interval is called proper.  Based 
on the Theorems of Interpretability [39], generalized interval 
provides more semantic power to help verify completeness and 
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soundness of range estimations by logic interpretations.  
The four examples in Table 1 illustrate the interpretations 

for operator “+”, where the range estimation [ , ] [4,7]z z =  in 
the 1st row is complete and the estimation [ , ] [7, 4]z z =  in the 
4th row is sound. /,,×−  have the similar semantic properties. 
More information of generalized interval can be found in 
[41,42,43]. 

In the proposed model, uncertainty propagation will be 
based on both the interval arithmetic and the Kaucher 
arithmetic. This allows us to interpret interval results so that the 
completeness and soundness can be verified rigorously. 
Compared to the semi-group formed by the classical set-based 
intervals, generalized intervals form a group. Therefore, 
arithmetic operations of generalized intervals are simpler. The 
set of generalized intervals is denoted by 

[ ]{ }= ∈, | ,KR Rx x x x . The set of proper intervals is 

[ ]{ }= ≤, |IR x x x x , and the set of improper interval is 

[ ]{ }= ≥, |IR x x x x . The relationship between proper and 
improper intervals is established with the operator dual as  
 dual , : ,x x x x⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (2.1) 

The less than or equal to partial order relationship between two 
generalized intervals is defined as 
 [ ], ,x x y y x y x y⎡ ⎤≤ ⇔ ≤ ∧ ≤⎣ ⎦  (2.2) 

With the Kaucher arithmetic, generalized intervals form a 
lattice structure similar to real arithmetic, which is not available 
in the classical interval arithmetic. This property significantly 
simplifies the computational requirement. For instance, in 
classical interval arithmetic, [0.2, 0.3] [0.2, 0.4] [0.4, 0.7]+ = . 
However, [0.4, 0.7] [0.2, 0.3] [0.1, 0.5] [0.2, 0.4]− = ≠ . 
Furthermore, [ ] [ ] [ ]0.1, 0.2 0.1, 0.2 0.1, 0.1 0− = − ≠ . In the 
Kaucher arithmetic, if a dual is associated with “–”, then 
[0.4, 0.7] dual[0.2, 0.3] [0.4, 0.7] [0.3, 0.2] [0.2, 0.4]− = − = . 
[ ] [ ]0.1, 0.2 dual 0.1, 0.2 0− = .  “×” and “÷” are similar.  

3. IMPRECISE PROBABILITY WITH THE 
GENERALIZED INTERVAL FORM 

3.1 Basics 
Definition 1. Given a sample space Ω  and a σ -algebra A  of 
random events over Ω , the generalized interval probability 
∈p KR  is defined as [ ] [ ]: 0,1 0,1→ ×p A  which obeys the 

axioms of Kolmogorov: (1) ( ) [ ]1,1Ω =p ; (2) 
[ ] ( ) [ ] ( )0,0 1,1E E≤ ≤ ∀ ∈p A ; and (3) for any countable 

mutually disjoint events ( )i jE E i j∩ = ∅ ≠ , 

( ) ( )
11

nn

i iii
E E

==
= ∑p p∪ . Here “≤” is defined as in Eq.(2.2).  

 
Definition 2. The probability of union is defined as 
( ) ( ) ( ): dual A S

S A
A S−

⊆
= −∑p p  for A ⊆ Ω . 

 
The most important property of the generalized interval 

probability is the logic coherence constraint (LCC): For a 
mutually disjoint event partition 

1

n

ii
E

=
= Ω∪ , 

( )
1

1
n

ii
E

=
=∑ p .  The LCC ensures that the imprecise 

probabilities are logically coherent with precise probabilities. 
For instance, given that ( ) 0.2, 0.3down ⎡ ⎤= ⎣ ⎦p , 

( ) 0.3, 0.5idle ⎡ ⎤= ⎣ ⎦p , ( ) 0.5, 0.2busy ⎡ ⎤= ⎣ ⎦p  for a system’s 

working status, we can interpret it as  

 ( ) ( ) ( )
( )

1 2 3

1 2 3

[0.2, 0.3] [0.3, 0.5] [0.2, 0.5]

1

p p p

p p p

∀ ∈ ∀ ∈ ∃ ∈

+ + =
  

Accordingly, we differentiate non-focal events (“busy” in 
this example) from focal events (“down”, “idle”). An event E  
is focal if the associated semantics for ( )Ep  is universal. 

Otherwise, it is a non-focal if the semantics is existential. While 
the uncertainties associated with focal events are critical to the 
analyst, those associated non-focal events are not. 

 

Table 1: Illustrations of the semantic extension of generalized interval 

Algebraic Relation: 
[ , ] [ , ] [ , ]x x y y z z+ =  

Corresponding Logic Interpretation Quantifier 

of [ , ]z z  

Range Estimation 

of [ , ]z z  
[2, 3] [2, 4] [4,7]+ =  ( ) ( ) ( ) ( )[2, 3] [2, 4] [4,7]x y z x y z∀ ∈ ∀ ∈ ∃ ∈ + =  ∃  [4,7] is complete 

[2,3]+ =[4,2] [6,5]  ( ) ( ) ( ) ( )[2, 3] [5,6] [2, 4]x z y x y z∀ ∈ ∀ ∈ ∃ ∈ + =  ∀  [5,6] is sound 

[2, 4] [5,6]+ =[3,2]  ( ) ( ) ( ) ( )[2, 4] [2, 3] [5,6]y x z x y z∀ ∈ ∃ ∈ ∃ ∈ + =  ∃  [5,6] is complete 

+ =[3,2] [4,2] [7,4]  ( ) ( ) ( ) ( )[4,7] [2, 3] [2, 4]z x y x y z∀ ∈ ∃ ∈ ∃ ∈ + =  ∀  [4,7] is sound 
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3.2 Conditional Probability and Conditional 
Independence 

The concepts of conditional probability and independence 
are essential for the classical probability theory. With them, we 
can decompose a complex problem into simpler and 
manageable components. Similarly, they are critical for 
imprecise probabilities. However, there is no agreement on how 
to define them yet.  

Different from all other forms of imprecise probabilities, 
which are based on convex probability sets, our conditional 
probability is defined directly from the marginal ones. 

 
Definition 3. The conditional probability ( )|E Cp  for all 

,E C ∈A  is defined as  

 ( ) ( )
( )

( )
( )

( )
( )

| : ,
dual

E C p E C p E C
E C

C p C p C

⎡ ⎤∩ ∩ ∩
⎢ ⎥= =
⎢ ⎥⎣ ⎦

p
p

p
 (2.3) 

when ( ) 0C >p . 

Thanks to the nice algebraic properties of generalized 
intervals, this definition can greatly simplify computation in 
applications. In traditional imprecise probabilities, linear and 
nonlinear programming procedures are heavily dependent upon 
to compute convex hulls of probability sets. In our definition, 
only algebraic computation is necessary.  

 
Definition 4. For , ,A B C ∈A , A  is said to be conditionally 
independent with B  on C  if and only if  
 ( ) ( ) ( )| | |A B C A C B C∩ =p p p  (2.4) 

Definition 5. For ,A B ∈A , A  is said to be independent with 
B  if and only if  
 ( ) ( ) ( )A B A B∩ =p p p  (2.5) 

 
The independence in Definition 5 is a special case of 

conditional independence in Definition 4, where C  is the 
complete sample space Ω . The conditional independence in 
Eq.(2.4) can also have a second form, as shown in Theorem 
3.1. 

 
Theorem 3.1. ( ) ( ) ( )| | |A B C A C B C∩ =p p p  ⇔  

( ) ( )| |A B C A C∩ =p p . 

 
In addition to computational simplification, our approach 

also allows for logic interpretation. Eq.(2.4) is interpreted as  

 ( )( ) ( )( ) ( )( )
( )

1 2 3

1 2 3

' | ' | ' |p A C p B C p A B C

p p p

∀ ∈ ∀ ∈ ∃ ∈ ∩

=

p p p
 

This is very useful to verify the completeness and soundness of 
interval bound estimations. 

The most intuitive meaning of “independence” is that an 

independence relationship satisfies several graphoid properties. 
Three obvious grahoid properties of our new definition of 
independence are listed as follows, where “⊥ ” denotes 
independence. 
 
Corollary 3.2 (Symmetry) For , ,X Y Z ∈A , 

| |X Y Z Y X Z⊥ ⇒ ⊥ . 
 
Corollary 3.3 (Redundancy). For ,X Y ∈A , |X Y X⊥ .  
 
Corollary 3.4 (Contraction). For , , ,X Y Z W ∈A , 

( ) ( )( ) ( )| & | |X Y Z X W Y Z X W Y Z⊥ ⊥ ∩ ⇒ ⊥ ∩ .  

4. GENERALIZED MULTISCALE MARKOV MODEL 
We propose a new and generic probabilistic model to 

account for multiscale variability and uncertainty information 
in hierarchical systems. The proposed generalized multiscale 
Markov (GMM) model essentially captures spatial and 
temporal dependency. As illustrated in Figure 1, the spatial 
domains in three length scales xΩ , yΩ , and zΩ  

( x y z⊂ ⊂Ω Ω Ω ) are subdivided into cells. The state of each 

cell is represented as a random variable, denoted as ix , jy , kz  

respectively at three scales. The state value of a cell is 
dependent on those values of neighboring cells. Neighboring 
cells are connected in the graphic model, whereas non-
neighboring ones are not.  

 The spatial dependency is represented as a conditional 
probability. For instance, 

( ),1 1 ,2 2 ,| , , ,i i i i l lx a x b x b x b= = = =p …  is the probability that 

the state variable ix  has value of a  given that its l  

neighboring cells have the respective state values of ( )1, lb b… . 

In the example of Figure 1, ix  has 4l =  neighbors. Notice that 
neighbors do not necessarily mean that they are spatially close. 
If long-range correlations exist, two neighboring cells could 
spatially far apart but statistically correlated.   

Between different scales, there are also dependency 
relationships. The scale dependency is also represented as a 
conditional probability. For instance, in Figure 1, the state of 
cell jy  at Scale Y is dependent on the state values of 

corresponding subdomain xΩ , i.e. ( )1 9| , , , ,j iy x x xp … … . 

In general, the true state values of cells may or may not be 
directly observable. Theoretically, all observed values in 
experiments contain the effects of uncertainties and 
variabilities. Therefore, the observed states are just another set 
of random variables that are dependent on true state values. 
Here, the observation dependency is included in the GMM 
model. Without loss of generality, we assume that each of the 
cells in different scales has its corresponding observable state. 
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For instance, in Figure 1, the true states of the cells on the left-
hand side are hidden, and the corresponding observations are 
on the right-hand side. The probability of observing iX b=  

given that ix a=  is ( )|i iX b x a= =p . Similarly, we have 

( )|j jY yp  and ( )|k kZ zp  at other length scales. If there are 

states that are not observable, the number of observation 
dependency relationships is reduced.   

The most important and unique generalization of the 
proposed GMM model is that imprecise probabilities based on 
generalized intervals are used in the model. With imprecise 
probabilities, both variability and uncertainty can be explicitly 
incorporated and analyzed. With generalized intervals, 
inference and reasoning can be significantly simplified. 
Therefore, the proposed model improves computational 
efficiency while gaining more information from simulation or 
analysis results. Notice that the model illustrated in Figure 1 
shows spatial-dependency only. To capture time-dependency, 
state transitions can also be achieved. That is, a GMM model 
with one-dimensional neighborhood relationships will 
represent the state transition history within one cell in Figure 1. 

We call our GMM model “generalized” because of three 
levels of generalizations. First, our multiscale Markov model is 
a generalization of commonly used Markov chains and hidden 
Markov models. Second, our Markov model with imprecise 
probabilities is a generalization of traditional models with 
precise probabilities. Third, our new form of imprecise 
probability based on generalized intervals is also a 
generalization of imprecise probabilities. 

With the incorporation of imprecise probabilities with the 
generalized interval form, a concise form of interval 
probabilities similar to the traditional precise probability can be 
achieved. The most important properties are localities. These 
include the locality of observation and the locality of scale. 

4.1 Locality of Observation 
Theorem 4.1 For two disjoint subdomains iA  and jA  at Scale 

X, if the hidden states 
ii

x ∈A  and 
jj

x ∈A  are independent and the 

corresponding observations are also independent, then 

 ( ) ( ) ( ), | , | |
i j i j i i j ji j i j

X X x x X x X x∈ ∈ ∈ ∈=p p pA A A A A A A A  

Theorem 4.1 provides the algebraic convenience to 
decompose a complex system into smaller subsystems. 
Independent experimental measurements can be performed 
without losing the grand picture of variabilities and 
uncertainties of the whole system. For instance, in analyzing 
the reliability of automobile cooling system, if the radiator and 
thermostat are independent, then the uncertainties associated 
with the probabilities of failures for two subassemblies can be 
estimated by experiments separately without affecting the total 
uncertainty of the system. The uncertainty associated with the 
reliability of the complete cooling system can be easily 
calculated by the individual ones from subassemblies. 

4.2 Locality of Scale 
Theorem 4.2 If iA , jB , kC  are subdomains at Scales X, Y, Z 
respectively with i j k⊂ ⊂A B C , 

 ( ) ( )| , |
i j k i j
x y z x y=p pA B C A B  

Theorem 4.2 allows us to simplify multiscale variability 
and uncertainty analysis. The propagation of uncertain 
information between scales is only limited to two that are 
closely related. For instance, the imprecision of crystal 
orientations only affects the anisotropic property estimates of 
one grain. However, those associated with polycrystalline 
solids of further larger scale will not be affected. 

The simplicity of the above locality properties is due to the 
definition of conditional probability in Eq.(2.3) as well as the 
group properties of the generalized interval. 
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Figure 1: The proposed generalized multiscale Markov model for hierarchical systems to capture spatial and scale dependency 
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5. CROSS-SCALE VALIDATION 
When small-scale (or large-scale) experiments are not 

possible, or the measurements are not feasible or reliable at one 
particular scale, we may conduct experiments at a larger (or 
smaller) scale to measure system properties to validate models 
or assumptions. For instance, in functional nano-materials 
design, instead of direct measuring molecule-level properties 
which is usually expensive or even impossible, the 
measurement of aggregated properties at macro-scale can be 
easier and much more accurate.  In contrast, it is impossible to 
measure global temperature change. We only depend on 
regional ocean water temperature changes to predict the global 
picture. Cross-scale validation thus is an important tool in 
studying multiscale systems. 

 
Definition 5. The Bayes’ rule with generalized intervals 
(GIBR) is defined as  

 ( ) ( ) ( )
( ) ( )1

|
|

dual | dual

i i

i n

j jj

A E E
E A

A E E
=

=
∑

p p
p

p p
 (3.1) 

where ( )1, ,iE i n= …  are mutually disjoint event partitions of 

Ω  and ( )1
1

n

jj
E

=
=∑ p .  

Based on the GIBR, the problem of cross-scale validation 
under variability and uncertainty can be formulated in several 
ways, such as single-point observation, multi-point 
observation, and multi-point multiscale observation. 

5.1 Single-Point Observation 
The simplest cross-scale validation is through the single-

point observation. This approach allows that the uncertainty 
estimation at one scale is used to validate the model prediction 
at a different scale. Suppose the states of one or more variables 

1
, ,

l
x x"  at Scale X are not directly observable. Instead, the 
system can be observed via one variable Y  at Scale Y 
corresponding to the unobservable y  at Scale Y. Then the 
estimation is calculated as follows. 

 
Theorem 5.1. Given ( )1

| , ,
L

y x xp …  for variables 
1
, ,

L
x x"  at 

Scale X and y  at Scale Y, ( )|Y yp  for observable Y  

corresponding to y , and the prior estimate ( )1
, ,

L
x xp … , the 

posterior imprecise probability ( )1
, , |

L
x x Yp …  is obtained as 

( )
( ) ( ) ( )
( ) ( ) ( )

1

1 1

1 1 1

, , |

, , | | , ,

dual | | , , , ,

L

L L

L L L

x x Y

x x Y y y x x dy

Y y y x x x x dydx dx
= ∫

∫ ∫∫

p

p p p

p p p

…
… …

" … … "

 

5.2 An Illustrative Example of Cross-Scale 
Validation with Single-Point Observation 

To illustrate the cross-scale validation with single-point 
observation, if we design an electrochemical biosensor from 
composites of carbon nanotubes (CNTs) and polymer and 
would like to know whether the electrical conductivity of the 
nanotube itself meets the design specification, experimental 
studies are needed. Instead of directly measuring the resistance 
of individual CNTs with diameters of about 10 nm, we can 
measure those from nanotube composites with the sizes of 1 
μm or more, which is much easier and more accurate. The 
electrical conductivity of nanotubes is sensitively dependent on 
the geometry of tubes, particularly diameter and helicity. 
Because of variations of geometries and defects during the 
fabrication process, the measured quantities are stochastic in 
nature. At the same time, uncertainties are associated with 
measurements because of errors.  

First, with the probability ( )|Y yp , the distribution of 

multiple measurements of Y  reflects the true but unknown 
value y  which can be estimated from prior experiences. The 

impreciseness of ( )|Y yp  is due to measurement errors. 

Second, there is a relationship between the large scale 
conductivity y  of the composite (including both polymer and 
carbon nanotubes) and the small scale resistivity of  x  for 
individual CNTs. Therefore, the distribution ( )|y xp  

corresponding to different possible values of y  and x  
characterizes the probabilistic relationship between the large 
and small scale conductivities. The distribution ( )|y xp  can be 

estimated with available data, or by expert’s experiences and 
judgements. Lack of precise data and information is the major 
source of uncertainty. Furthermore, we may or may not have 
prior estimates of  ( )xp . If there is no data available, the 

complete ignorance of ( ) [0,1]x a= =p  for any values of a  

can be applied. Then, based on the GIBR in Definition 5, we 
can update the information or the belief of the small scale 
conductivity distribution based on the new observation of the 
large scale conductivity Y e=  from an experiment by 

 

( )
( ) ( ) ( )

( )
( ) ( )

= =
⎡ ⎤= = = = =⎣ ⎦=

⎡ ⎤= =
⎢ ⎥
× = = =⎢ ⎥⎣ ⎦

∑

∑ ∑

|

| |

dual |

dual | dual

j jj

j

i j
j i i

x a Y e

x a Y e y c y c x a

Y e y c

y c x a x a

p

p p p

p

p p

 

This information update process can continue iteratively with 
more measurements Y ’s until ( )|x Yp ’s converge to a 

satisfactory distribution with reduced uncertainty. That is, the 
widths of imprecise probabilities are reduced towards the 
precise ones. 
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Table 2 lists two sets of samples that measure the 
resistance of individual CNTs published in literature. Notice 
that the first paper as shown in the left column reported 
measurement errors or uncertainties with the ± ranges. The 
second paper did not record ranges. However, the first and fifth 
samples are right-censored and recorded with “≥” sign. The 
imprecise and incomplete information is the source of 
uncertainties. It is obvious that these two sets of data are 
inconsistence, which also shows the importance of imprecise 
probability in such applications. 

We build probability distributions from the data in the first 
column of Table 2. The empirical cumulative distribution 
function (CDF) for each of the lower, middle, and upper 
observations are shown in Figure 2. They are solid lines in the 
colors of green, red, and blue respectively. If a parametric 
distribution is required, we can also fit the data by the 
Lognormal distributions, plotted as dotted curves, for three sets 
of data in terms of maximum likelihood. The estimated 
parameters for three distributions are:  

• lower bound: 3.4251, 0.920699l lμ σ= =  
• middle: 3.52202, 0.920571μ σ= =  
• upper bound: 3.6083, 0.922064u uμ σ= =  
There are several ways to select the values of parameters 

for interval probabilities, particularly for multi-parameter 
distributions [44,45]. To simplify the illustration, we choose a 
simple way with the interval [ ] [ ], 3.4251,3.6083l uμ μ =  and 
real-valued 0.920571σ = . Therefore, instead of using one 
single precise distribution to describe the distribution of the 
unit-length resistance of individual CNTs, we use the interval 
probability density function (PDF) 

 
( )μ μ

σ

π σ

⎡ ⎤−⎣ ⎦−

=

2

2

ln ,

21
( )

2

l ux

x e
x

f  (3.2) 

Given the limited number of data, it is risky to use the 
empirical distributions or the fitted interval parametric models 
directly to represent the possible variations. A more cautious 
way is to build the lower and upper distributions based on the 
Kolmogorov-Smirnov confidence limit [31]. The 95% 
confidence lower and upper limits from the middle observation 
(red line) are shown as the blue and green dashed lines 
respectively in Figure 2. They are calculated by 

( )( )αρ ±
,

min 1,max 0,
n

D  where 
α ,nD  depends on the sample 

size n and confidence level α. Here, n = 6, α = 0.025, and 
D0.025,6 = 0.51926. This confidence band ensures that the 
probability of the unknown distribution function being within 
the band is at least 95%.  

With the p-box formed by the Kolmogorov-Smirnov 
confidence limits and the Dempster-Shafer’s structure of basic 
probability assignment (BPA) : 2 [0,1]m →A , we can 
determine the lower and upper probabilities of the resistivity. 
Specifically, the p-box is viewed as a stack of rectangles. The 
width of each rectangle is the focal element that defines the 

interval range of a BPA, whereas the height of the rectangle is 
the value of the BPA. The BPAs are: 
 ( )ρ≤ < = − =

0.025,6
0 46.0 3 / 6 0.1474m D , 

( )ρ≤ < =0 48.9 1/ 6m ,  

( )ρ≤ < =0 117 1/ 6m , 

( ) ( )ρ≤ < ∞ = − − =
0.025,6 0.025,6

0 1 0.0385m D D ,  

( )ρ≤ < ∞ =7.8 1/ 6m ,  

( )ρ≤ < ∞ =19.5 1/ 6m , 

 ( )ρ≤ < ∞ = − − =
0.025,6

37.6 1 2 / 6 0.1474m D .  

 Based on the Dempster-Shafer’s belief function 
 ( ) ( )⊆

= ∑ : i ii A A
p A m A  

and plausibility function 
 ( ) ( )∩ ≠∅

= ∑ : i ii A A
p A m A  

we can find the lower and upper probabilities. For instance, the 
lower and upper probabilities that the individual CNT 
resistivity is less than 50 Ω·m are 

( ) ( ) ( )ρ ρ ρ< = ≤ < + ≤ < =50 0 46.0 0 48.9 0.3140p m m  

and ( )ρ < =50 1p  respectively.  

Table 2: Resistivity measurements of individual carbon nanotubes  

Resistivity (Ω·m)  [46]  
ρ δ±  ― 6 samples 

Resistivity (Ω·m) [47] 
ρ  ― 8 samples 

19.5±2.0 
  7.8±1.0 
46.0±1.8 
37.6±1.0 
48.9±4.3 
 117±19 

≥ 80 
0.012 
0.0075 
580 
≥ 0.4 
0.00051 
0.098 
0.020 

 
Figure 2: Empirical CDFs and the fitted distributions of data from Ref. 

[46] 
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Compared to individual CNT measurement, the 
measurement for CNT polymer composite is much easier to 
achieve. More than 200 publications have reported on the 
electrical property of CNT polymer composite. Bauhofer and 
Kovacs [48] recently summarized those experimental results, as 
shown in Figure 3. From the data in Ref. [48], the conductivity 
of composite with CNT concentration 1.0 wt% is compiled and 
listed in Table 3. The empirical CDF is plotted in Figure 4 as 
the red line. In addition, the 95% Kolmogorov-Smirnov 
confidence limits (dash lines) are calculated as lower and upper 
probability bounds. Here, D0.025,17 = 0.31796.  

Similar to the above, the lower and upper probabilities can 
be determined based on the belief and plausibility functions. 
For instance, the lower and upper probabilities that the 
conductivity of CNT composites with 1.0 wt% is less than 0.1 
are ( )σ < =0.1 0.1526p  and ( )σ < =0.1 0.6121p .  

To simplify notation, we denote 

( ) ( )ρ ⎡ ⎤= < = ⎣ ⎦50 0.3140,1xp p . Then 

( ) ( ) ( )ρ ⎡ ⎤= ≥ = − = ⎣ ⎦50 1 dual 0.6860,0Cx xp p p . Assume 

that ( ) ( )σ ⎡ ⎤= < = ⎣ ⎦| 0.1 0.1526, 0.6121y xp p , which is the 

probability of the CNT composite conductivity is less than 0.1  
Ω−1·m−1 if the individual CNT resistivity is less than 50 Ω·m. 
For instance, if the CNTs are all supplied by one vendor with 
good quality control, the resistivity of CNTs is known to be in a 
range. ( ) ( ) ⎡ ⎤= − = ⎣ ⎦| 1 dual | 0.8474,0.3879Cy x y xp p . No 

assumption is made about the probability of composite 
conductivity if the individual CNT resistivity is greater than 50 
Ω·m. That is, ( ) ⎡ ⎤= ⎣ ⎦| 0,1Cy xp , and it represents the total 

ignorance. 
As a result, ( ) ( ) ⎡ ⎤= − = ⎣ ⎦| 1 dual | 1,0C C Cy x y xp p . 

Further, we assume the measurement is fairly reliable with 

( ) ⎡ ⎤= ⎣ ⎦| 0.8,0.9Y yp  and ( ) ⎡ ⎤= ⎣ ⎦| 0.8,0.9C CY yp . Thus 

( ) ⎡ ⎤= ⎣ ⎦| 0.2,0.1CY yp  and ( ) ⎡ ⎤= ⎣ ⎦| 0.2,0.1CY yp . Now, if an 

additional experimental observation of Y  that σ < 0.1  is 
obtained, then based on Theorem 5.1 we can assert that 

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

=
⎡ ⎤+⎣ ⎦

⎡ ⎤
⎢ ⎥
+⎢ ⎥
⎢ ⎥
+⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

|

| | | |

| |

| |
dual

| |

| |
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Figure 3: Conductivity measurements of CNT composites [48] 

Table 3: Conductivity measurements of CNT polymer composites 
with CNT concentration of 1.0wt% 

Maximum 
conductivity  
σ (Ω−1·m−1) 

Number of 
Samples 

Maximum 
conductivity  
σ (Ω−1·m−1) 

Number of 
Samples 

1.0×10−4 
1.0×10−3 
5.0×10−3 
2.0×10−2 
1.0×10−1 
2.0×10−1 
3.0×10−1 

1 
1 
1 
2 
3 
1 
1 

4.0×10−1 
2.0 
5.0 
1.0×101 
5.0×101 
1.0×102 

1 
1 
1 
2 
1 
1 

 

 
Figure 4: Empirical CDF of composites conductivity with 1.0 wt% of 

CNT from Ref. [48] 
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This posterior probability shows that the uncertainty level of 
individual CNT property is reduced to − =1 0.4002 0.5998  
from the prior estimate of − =1 0.3140 0.6860 .  

Notice that interval probabilities allow us to calculate 
posterior probabilities even no data are available. When the 
total ignorance of [0,1]=p  is applied, there is no risk of 
assuming certain prior probabilities, which is usually required 
in the traditional precise probability. Therefore, the calculated 
imprecise posterior probabilities are much more robust than the 
ones from the traditional Bayesian analysis with precise 
probabilities. In addition, the calculation of interval posterior 
probabilities based on our definition of imprecise probability 
has a much simpler form than other forms of imprecise 
probabilities, where linear or nonlinear optimization processes 
are required. This shows the significant advantage of our 
imprecise probability with the generalized interval form. 
Simple algebraic calculation is only required in computing 
probability intervals.  

In summary, the example in this section demonstrates that 
the observation or measurement at one scale can be used to 
quantify and assess the variability and uncertainty of a relevant 
quantity at a different scale. This process can be useful to 
validate models or hypotheses that are concerned with 
quantities that are difficult or costly to measure. Instead, 
measurements at a different scale can still be applied to validate 
if intrinsic relations or dependencies between quantities of two 
scales exist. 

5.3 Multi-Point Observation 
Compared to the single-point observation approach, a more 

efficient approach to reduce the uncertainty associated with the 
estimate ( )1

, ,
l

x xp …  is the multi-point observation. If there 

are multiple points of observation 
1
, ,

m
Y Y… , Then the 

estimates of 
1
, ,

l
x x…  can be more accurate.  

 
Theorem 5.2. Given ( )1 1

, , | , ,
M L

y y x xp … …  for variables 

1
, ,

L
x x"  at Scale X and 

1
, ,

M
y y…  at Scale Y, 

( )1 1
, , | , ,

M M
Y Y y yp … …  for observable 

m
Y ’s corresponding to 

m
y ’s ( 1, ,m M= … ), and the prior estimate ( )1

, ,
L

x xp … , the 

posterior imprecise probability ( )1 1
, , | , ,

L M
x x Y Yp … …  is 

obtained as 
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5.4 An Illustrative Example of Cross-Scale 
Validation with Multi-Point Observation 

We still use the CNT composite example in Section 5.2 to 
illustrate. The conductivity of the composite material is 
correlated with the concentration of CNT or the ratio of 
weights between CNT and polymer. The general trend observed 
in Figure 3 is that more CNT leads to the higher conductivity. 
Therefore, if the conductivities of two composites with 
different CNT concentrations, e.g. 1.0 wt% and 2.0 wt%, are 
measured as 

1 1
Y d=  and 

2 2
Y d=  respectively. The estimate 

( )xp  can be updated by 
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The information update process can continue with multiple 
measurements of 

1
Y  and 

2
Y .  

From the data in Ref. [48], the conductivity of composite 
with CNT concentration 2.0 wt% is compiled and listed in 
Table 4. The CDFs are plotted in Figure 5. The lower and upper 
probabilities that σ < 0.1  are ( )σ < =0.1 0.5412p  and 

( )σ < =0.1 1p .  

With ( ) ⎡ ⎤= ⎣ ⎦0.3140,1xp , ( ) ⎡ ⎤= ⎣ ⎦1
| 0.1526, 0.6121y xp , 

( ) ⎡ ⎤= ⎣ ⎦2
| 0.5412,1y xp , ( ) ⎡ ⎤= ⎣ ⎦1

| 0,1Cy xp , 

( ) ⎡ ⎤= ⎣ ⎦2
| 0,1Cy xp , ( ) ⎡ ⎤= ⎣ ⎦| 0.8,0.9

i i
Y yp , and 
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( ) ⎡ ⎤= ⎣ ⎦| 0.8,0.9C C
i i
Y yp  for = 1,2i , we can find  
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Table 4: Conductivity measurements of CNT polymer composites 
with CNT concentration of 2.0wt% 

Maximum 
conductivity  
σ (Ω−1·m−1) 

Number of 
Samples 

Maximum 
conductivity  
σ (Ω−1·m−1) 

Number of 
Samples 

3.0×10−6 
1.0×10−4 
1.0×10−3 
1.0×10−2 
3.0×10−2 

1 
1 
1 
2 
1 

4.0×10−2 
5.0×10−2 
1.0×10−1 
1.0 

1 
2 
2 
1 

 
 

 
Figure 5: Empirical CDF of composites conductivity with 2.0 wt% of 

CNT from Ref. [48] 

Compared to the single-point observation in Section 5.2, 
the uncertainty level is reduced faster, since more information 
of observation is used to assess the small scale quantity. Multi-
point observation is an enhancement of the single-point 
observation and provides more information. Therefore, the 
uncertainty reduction and convergence to the satisfactory 
distribution should also be faster.  

5.5 Multi-Point Multiscale Observation 
As a further extension of the multi-point observation 

approach, the experimental measures can be conducted at two 
or more scales to validate the prediction of a model at a scale 
that is not observable. The observations from multiple scales 
and multiple sources can provide much more information about 
a system than single-scale observations. The information fusion 
of the multiscale observations can significantly reduce the 
uncertainty levels. As a result, multi-point multiscale 
observation is ideal to study variability and uncertainty of 
multiscale systems. The multiscale information fusion process 
can be conducted based on the following theorem. 

 
Theorem 5.3. Given ( )1 1

, , | , ,
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m
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6. SUMMARY 
In this paper, a generalized multiscale Markov model is 

proposed to represent variability and uncertainty 
simultaneously in analyzing multiscale systems. The model 
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captures uncertainty propagation across different length scales 
to support complex system analysis.  

The proposed model is based on a new theory of imprecise 
probability that has the new form of generalized interval, where 
proper and improper intervals capture uncertainties. With an 
algebraic structure similar to the precise probability, the new 
definition of imprecise probability significantly simplifies the 
inference and reasoning compared to other forms of imprecise 
probabilities. The precise probability becomes just a special 
case of the proposed one, where the widths of probabilities are 
reduced to zeros. Three graphoid properties of independence 
based on the new form of imprecise probability are studied, as 
independence is essential to Markov models. The proposed 
multiscale Markov model allows us to compute the propagation 
of stochastic and uncertain information across length scales 
efficiently. This is enabled by a new definition of Bayes’ rule 
with the generalized imprecise probability. Three cross-scale 
validation approaches are formulated so that information fusion 
can be achieved.  

The proposed model and inference mechanisms are generic 
in nature. The proposed model supports the design and analysis 
of any multiscale system when variability and uncertainty are 
considered. The simplicity of the reasoning based on the 
proposed model shows the advantages and potentials for wider 
applications in science and engineering, compared to other 
forms of imprecise probabilities.  The future extension includes 
the study of simulation approaches based on the proposed 
model and their applications to various multiscale system 
design problems. Further investigation on the fundamental 
properties of the new imprecise probability is also needed. 

APPENDICES 
A. Proof of Theorem 3.1 
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B. Proof of Corollary 3.2 
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C. Proof of Corollary 3.3 
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D. Proof of Corollary 3.4 
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E. Proof of Theorem 4.1 
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□ 
F. Proof of Theorem 4.2 

Proof. By the definitions of conditional probability and 
independence, we have 
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G. Proof of Theorem 5.1 
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H. Proof of Theorem 5.2 
Proof.  

( )
( )

( )

1 1

1 1

1

, , | , ,

, , , , ,

dual , ,

L M

M L

M

x x Y Y

Y Y x x

Y Y
=

p

p

p

… …
… …

…

 



 13 Copyright © 2010 by ASME 

( )
( )

( )
( )
( )

( )
( )
( )

1 1 1 1

1 1 1 1 1

1 1

1 1 1

1

1 1

1 1

1

, , , , , , , ,

dual , , , , , , , ,

, , | , ,

, , | , ,

, ,

, , | , ,

dual , , | , ,

, ,

M M L M

M M L M L

M M

M L M

L

M M

M L

L

Y Y y y x x dy dy

Y Y y y x x dy dy dx dx

Y Y y y

y y x x dy dy

x x

Y Y y y

y y x x

x x

=

⎡ ⎤
⎢ ⎥
×⎢ ⎥
⎢ ⎥×⎢ ⎥⎣ ⎦=

⎡ ⎤
⎢
×⎢
⎢×⎢⎣ ⎦

∫ ∫
∫ ∫

∫ ∫

p

p

p

p

p

p

p

p

" … … … "

" … … … " "

… …
" … … "

…

… …
" … …

…
1 1M L
dy dy dx dx
⎥
⎥
⎥
⎥

∫ ∫ " "

because of Theorems 3.1. If 
1
, ,

M
y y…  and their measurements 

1
, ,

M
Y Y…  are mutually independent, from Theorem 4.1, the 
above can be simplified further to 

 

( )

( ) ( )
( )

( )
( )

( )

1 1

1
1 1

11

1

1 1 11

1

, , | , ,

|
, ,

| , ,

|

dual | , ,

, ,

L M

M

m mm
ML M

m Lm

M

m mm
M

m L M Lm

L

x x Y Y

Y y
x x dy dy

y x x

Y y

y x x dy dy dx dx

x x

=

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥×⎣ ⎦=

⎡ ⎤
⎢ ⎥
⎢ ⎥×
⎢ ⎥
×⎢ ⎥
⎣ ⎦

∏∫ ∫ ∏
∏
∏∫ ∫

p

p
p

p

p

p

p

… …

… " "
…

" … " "
…

 

□ 

 
I. Proof of Theorem 5.3 
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