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ABSTRACT 
A phase transition is a geometric and topological 
transformation process of materials from one phase to another, 
each of which has a unique and homogeneous physical 
property. Providing an initial guess of transition path for further 
physical simulation studies is highly desirable in materials 
design. In this paper, we present a metamorphosis scheme for 
periodic surface (PS) models by interpolation in the PS 
parameter space. The proposed approach creates multiple 
potential transition paths for further selection based on three 
smoothness criteria.  The goal is to search for a smooth 
transformation in phase transition analysis. 

1.  INTRODUCTION 
Computer-aided nano-design (CAND) is an extension of 
computer based engineering design traditionally at bulk scales 
to nano scales. The general target of modeling and simulation 
in nanomaterial design is to search stable and realizable 
structures and conformations with the minimal total system 
energy. Geometry optimization is the central theme in most of 
the nanoscale simulations. For the widely used local search 
algorithms, simulation results are sensitively dependent on the 
initial conformation. Modeling methods, which allow for the 
efficient construction of initial geometries that are reasonably 
close to global optimal solutions, are important to improve both 
convergence rate and accuracy of prediction. Thus, enabling 
efficient structural description and editing is one of the key 
research issues in CAND. In the previous research [1, 2], an 
implicit surface modeling approach known as periodic surface 
(PS) model is proposed. Periodic surfaces are either loci or 
foci. Loci surfaces are fictional continuous surfaces that pass 
through discrete particles in 3D space, whereas foci surfaces 
can be looked as isosurfaces of potential or density in which 
discrete particles are enclosed. The PS model allows for 
parametric construction from atomic scale to meso scale. 
Reconstruction of loci surfaces from crystals [3 ], surface 
degree operations to support fine-grained modeling [4, 5], and 
feature-based approach for crystal construction [6, 7] were also 

studied.  
In this paper, we propose a surface morphing or metamorphosis 
approach for PS models. This geometry transformation is very 
useful to simulate and visualize phase transition processes in 
studying functional materials. A phase transition is a geometric 
and topological transformation process of materials from one 
phase to another, each of which has a unique and homogeneous 
physical property [8, 9]. Transformation of PS models can help 
to visualize structure changes and provide initial estimations of 
transition paths. For example, Figure 1(a) shows a BaSi2 
structure in its cubic phase and the corresponding foci surface 
model, which encloses Ba atoms. It has properties of semi-
conductor. Figure 1 (b) shows a layered phase of BaSi2, which 
has properties of metal. The interest of phase transition analysis 
is to search the global optimal transition path between the two 
phases with the minimal potential energy change. Structure 
transformation based on geometric analysis such as the one in 
Figure 2 can provide an initial guess of transition path for 
further physical simulation studies. In this paper, the type of 
phase transition which we are interested in is the movement of 
many atoms that results in a continuous change between two 
different crystal structures.  The examples of such type of 
phase transition can be diffusionless transformations and 
martensitic transformation. Any other types of phase transition 
such as a melting transformation or a freezing transformation 
are not in the scope of this paper.  We reasonably assume that 
the transition between two phases is processed in a region 
where all the physical conditions in that region are uniformly 
distributed. Hence, we ignore the influence of physical 
treatments such as temperatures and pressures, and only focus 
on the metamorphosis of geometry itself. 
A surface morphing approach for PS models is proposed in this 
paper. Three smoothness criteria are proposed to quantify 
structure changes for pathway selection. The main contribution 
of this paper is the unique surface morphing method of our PS 
model based on interpolation in the PS parameter space. Our 
method can provide multiple potential transition paths for 
choices with different criteria. 



 2 Copyright © 2009 by ASME 

 
(a) BaSi2 structures in cubic phase (b) BaSi2 structures in layer 
phase 
Figure 1. BaSi2 and corresponding foci surfaces 

 
Figure 2. Foci surface transition from BaSi2 cubic phase to 
layer phase 
 
In the remainder of the paper, Section 2 gives a brief overview 
of related work in surface morphing with implicit and 
volumetric representations. Section 3 reviews the basis of the 
periodic surface model and its matrix form. Section 4 describes 
two surface morphing schemes, which are direct linear 
interpolation and interpolation in the PS parameters space. 
Section 5 proposes three smoothness criteria for choosing 
surface morphing paths. 

2. 3D METAMORPHOSIS OF IMPLICIT SURFACES 
Research effects in metamorphosis initially focused on two 
dimensional images. For image morphing, there have been 
extensive investigations [10, 11, 12]. A direct extension from 
2D metamorphism to 3D was proposed by Mittal [13].  The 
3D objects were represented by multiple 2D images and 2D 
morphing techniques were used to morph between their 2D 
representations. The 3D intermediate objects were thus 
reconstructed from the resulting 2D images. In 3D 
metamorphosis, Lazarus and Verroust [14] summarized and 
categorized all the algorithms in transformation between two 
shapes into two major approaches, volume based approaches 
and boundary based approaches.  
The volume based approaches focus on interpolations between 
two shapes in voxel representation. Pasko and Savchenko [15] 
defined a metamorphosis between two general implicit surfaces 
by direct linear interpolation of the corresponding volumetric 
values. The method was entirely automatic but lacked the 
control over the transformation. Wyvill [ 16 ] presented a 
skeleton based approach to allow users to select pairs of 
corresponding skeletons. The transformation comprised several 
interpolations in associated potential fields or soft objects of 
paired skeletons. Kaul and Rossignac [ 17 ] developed an 
interpolation algorithm based on Minkowski sums of two sets 
of volumetric data. The method was further extended for 
transformation between a set of convex polyhedra using Bézier 
interpolation and Minkowski sums [18]. Galin and Akkouche 

[19] proposed an algorithm for soft objects built from skeletons 
of convex shapes, which was a mixed approach between 
skeleton and Minkowski sums.  The paired skeletons were 
interpolated with Minkowski sums, and soft objects were 
blended by interpolations. Then the final interpolated shapes 
were the Minkowski sums between the interpolated soft objects 
and skeletons. Barbier et al. [20] extended Galin’s work by 
removing the limitation to convex polygonal elements of 
arbitrary dimension. The new approach presented a vast variety 
of shapes including curves, surfaces, and volumes such as 
boxed or cone-spheres that may be used as skeletal elements.  
Hughes [21] proposed an approach with interpolation of two 
shapes in the Fourier domain. The approach interpolates the 
low frequencies of the initial and end shapes while the high 
frequencies of the end shape are incrementally added in. The 
advantage of this approach is to avoid the shape distortion 
caused by direct interpolation of high frequency components. A 
similar approach was proposed by He et al. [22], but it was 
based on 3D wavelets. The initial volumetric data was 
decomposed with multiple levels of resolution, and the 
intermediate surfaces were reconstructed after interpolation of 
low frequencies. The spatial information within each frequency 
band of wavelets enabled a smooth transition.  
To enable local controls, Lerios et al. [23] proposed a feature-
based volume metamorphosis which allowed user to specify 
features in one shape corresponding to the other. These paired 
features can be transformed from one to the other during the 
morphing process. Cohen-Or and Levin [ 24 ] proposed a 
morphing algorithm based on three-dimensional distance field. 
The initial and end shapes were first deformed by some point-
to-point warping functions which were designed to enforce 
topological correspondence and geometrical properties. The 
technique interpolates the distance values of each voxel and 
reconstructs the intermediate surfaces out of the intermediate 
distance field.  
Turk and O’Brien [25] developed a metamorphosis scheme to 
transform between two shapes by creating a variational implicit 
function in a higher dimension after artificially introducing one 
extra dimension. Thus, the parallel slices based on the extra 
dimension represented the transformation sequence. Turk and 
O’Brien [26] further proposed another metamorphosis based on 
implicit surfaces creations. In this method, a set of constraints 
which were from scattered data of a surface created an implicit 
function. The transformation between two shapes was defined 
by the implicit surfaces built from the mixed constraints of the 
two shapes.  
Various interpolation approaches have been developed. Fausett 
et al. [27] demonstrated a technique to transform between 
several 3D shapes of different topology by bi-linear 
interpolation in a higher dimensional space. Fang et al. [28] 
presented a continuous field based morphing algorithm. In this 
algorithm, a complex surface was construed by several 
polyhedral skeletons. Basic continuous field for each skeleton 
was created using variational interpolation. The intermediate 
surfaces between two shapes were approximated by the iso-
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surface of the global field which is fused by the blended basic 
fields of the two shapes. Treece et al. [29] developed an 
algorithm to improve the transformation between two shapes 
by ensuring that no part of each surface remains disconnected 
during the morph. The morph was guided by correspondence of 
sphere representations of the two shapes, which was mapped 
from their distance field volume representations. Optimization-
based approaches were also taken. Cong et al. [30] developed 
an approach for shape metamorphism under the constraints of 
initial and end surface functions. With the p-Laplacian 
equation, a series of regularized terms based on the gradient of 
the implicit function was generalized. The approach solves the 
time dependant implicit function which minimizes the 
supremum of the gradient during the morph. Bao et al. [31] 
presented a morphing process between two homeomorphic 
point-set surfaces by optimizing an energy function. 
Among boundary based approaches, Sun et al. [32] proposed to 
interpolate polyhedral models using intrinsic shape parameters, 
such as dihedral angles and edge lengths. Lazarus and Verroust 
[33] developed a metamorphosis for cylinder-like objects by 
constructing polyhedral meshes using parameterization for two 
shapes. The parameters include 3D axes for discretization, 
vertices, edges and faces. The shape transformation was 
defined by the interpolation of the parameterization. Chen and 
Parent [34] introduced a user interactive algorithm to extract 
parameters form two 3D objects represented by planar 
contours. Weighted averaging of these parameters defined the 
shape transformation. Kanai et al. [35] presented an algorithm 
for 3D geometric metamorphosis between two objects based on 
harmonic map. 2D embeddings were created by harmonic map 
for the two 3D shapes with adjacent relations preserved. In-
between shapes were created by merging of the two 2D 
embeddings. 
Different from the above, the metamorphosis approach 
developed in this paper is based on the interpolation in the PS 
parameter space. This provides certain levels of control for our 
PS models. In addition, two smoothness criteria and one 
heuristic morphing method are proposed for pathway selection. 

3. PERIODIC SURFACE  
A periodic surface is generally defined as 

 ( )
1 1

( ) cos 2 ( ) 0
L M

T
lm l m

l m

ψ μ πκ
= =

= ⋅ =∑∑r p r  (3.1) 

where lκ  is the scale parameter, [ , , , ]T
m m m m ma b c θ=p  is a 

basis vector, which represents a basis plane in the 3-space 3E , 
[ , , , ]Tx y z w=r  is the location vector with homogeneous 

coordinates, and lmμ is the periodic moment. We usually 
assume 1w =  if not explicitly specified. It means the 
dimensions x, y and z are in the same scale. The degree of 

( )ψ r  in Eq.(3.1) is defined as the number of unique periodic 

basis vectors in set { }mp , ( ) { }deg ( ) : mψ =r p . The scale of 

( )ψ r  is defined as the number of unique scale parameters in 

set { }lκ , ( ) { }sca ( ) : lψ κ=r . We usually assume the scale 
parameters are natural numbers ( N∈

l
κ ). Each basis vector 

can be regarded as a set of parallel 2D subspaces in 3E , which 
plays an important role in interactive manipulation of PS 
models. 
The PS model described in Eq.(3.1) can also be represented by 
a PS parameter matrix as shown in Figure 3. The PS parameter 
matrix contains four sub-matrices (κ , μ ,  Tp  and 0). Each 
element lmμ  in μ  along with the l-th element lκ  in κ  and 
the m-th row T

mp  in Tp  defines a cosine function 

( )cos 2 ( )T
lm l mμ πκ ⋅p r . Periodic surfaces are thus modeled by 

the sum of these LM cosine functions. Switching the first L 
columns or the last M rows of the PS parameter matrix does not 
change the periodic surface. There are totally ! !L M  possible 
combinations of columns and rows in the sub-matrix μ , and 

! !L M  different PS parameter matrices represent the same 
periodic surface. This property is important when we apply 
interpolation in the PS parameter space, as discussed later in 
Section 4.2. 
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Figure 3. PS parameter matrix 
 
PS model is employed for surface creation because periodic 
structures are ubiquitous in natural materials. Crystal structures 
are one of the good examples that certain combinations of 
atoms are appeared periodically in the 3D space. Due to its 
periodic property, a closed-form equation is able to represent a 
periodic surface. Hence, it is an efficient tool for periodic 
structure modeling. 

4. MORPHING SCHEMES  
In this section, two morphing schemes are discussed. They are 
direct linear interpolation of volumetric data and interpolation 
in the PS parameter space. In the first method, volumetric data 
is generated by interpolating between those of the initial and 
the end surfaces. The intermediate surfaces are the isosurfaces 
based on the interpolated volumetric data. In the second 
method, linear interpolation is applied between the parameters 
of the initial and the end surfaces. Hence, the intermediate 
surfaces are created by closed-form PS models. 
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4.1 Volumetric Interpolation 
Linear interpolation is widely used in geometric morphing 
process. It can be applied in the morphing of periodic surfaces.  
For the initial surface 1( ) 0ψ =r  and the end surface 

2 ( ) 0ψ =r , volumetric interpolation between these two surfaces 
can be defined as 1 2(1 ) ( ) ( ) 0λ ψ λψ− + =r r , where [0,1]λ ∈ .  
As an example, Figure 4 illustrates the effect of the 
interpolation between the P surface and I-WP surface. The PS 
parameter matrices for P surface and I-WP surfaces are shown 
as follows. 

P surface parameter matrix: 

1 0 0 0 0
1 1 0 0 1
1 0 1 0 1
1 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

I-WP surface parameter matrix: 

 

1 0 0 0 0
1 2 0 0 1
1 0 2 0 1
1 0 0 2 1
1 1 1 0 1
1 1 1 0 1
1 0 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 0 1 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

    
λ = 0.05 λ = 0.10 λ = 0.15 λ = 0.20 λ = 0.25 

    
λ = 0.30 λ = 0.35 λ = 0.40 λ = 0.45 λ = 0.50 

    
λ = 0.55 λ = 0.60 λ = 0.65 λ = 0.70 λ = 0.75 

    
λ = 0.80 λ = 0.85 λ = 0.90 λ = 0.95 λ = 1.00  

Figure 4. Linear interpolation between P surface and I-WP 
surface 

The method of linear interpolation of volumetric data in the 
three dimensional space is straight forward. However, only one 
transition path is possible by applying this method if the initial 
and the end surfaces are known. There is no control over the 
transformation process because the transition path can not be 
locally modified. Creating correspondences between certain 
local regions is not possible. In addition, the surface 
transformation may not be continuous. For instance, in the 
example of Figure 4, the topology changes dramatically from 

0.15λ =  to 0.20λ = . The six holes clearly as features vanish 
simultaneously in the intermediate surface. Similarly, the 
features of holes reappear in the intermediate surface when 

0.45λ = . The figure also shows that the transition path is 
hardly uniform because the topology changes more in the first 
half of the path than in the second half. To investigate more 
possible transition paths, the method of interpolation in the 
parameter space of PS modes is proposed in Section 4.2. 

4.2 Interpolation in the parameter space of PS 
models 

An alternative morphing scheme is to interpolate in the PS 
parameter space between the initial and the end surfaces. More 
specifically, for two surfaces 
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the interpolated surface is 

( )
1 1

( ) cos 2 ( ) 0
L M

T
lm l m

l m
ψ μ πκ

= =
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In the PS parameter matrix form, let 
'
' '

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

κ 0
A

μ p
 for 1( )ψ r  

and 
''
'' ''

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

κ 0
B

μ p
 for 2 ( )ψ r . The interpolation is also 

defined as (1 )λ λ− +A B , where [0,1]λ ∈ . In other words, 
the interpolation is a process to linearly transform from one 
matrix to another, as illustrated in Figure 5. 
Here, the PS parameter matrices of the initial and the end 
surfaces are to be extended to the same size before 
interpolation if they are in different sizes. Figure 6 illustrates 
the matrix extension. In Figure 6(a), if 1 2L L<  and 1 2M M< , 
the columns for the scale parameters 'sκ  can be extended 
from L1 to L2, and the rows for the basis vectors can be 
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extended from M1 to M2 for surface 1( )ψ r  by setting 
' 0lmμ = , ' ''l lκ κ=  and ' ''m m=p p  for 1 2[ 1, ]l L L∈ +  or 

1 2[ 1, ]m M M∈ + . In Figure 6(b), if 1 2L L<  and 1 2M M> , the 
columns for scale parameters of surface 1( )ψ r  can be 
extended from L1 to L2 by setting ' 0lmμ =  and ' ''l lκ κ=  for 

1 2[ 1, ]l L L∈ + . At the same time, the rows for basis vectors of 
surface 2 ( )ψ r  can be extended from M2 to M1 by setting 

'' 0lmμ =  and  '' 'm m=p p  for 2 1[ 1, ]m M M∈ + . 
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Figure 5. Matrix transformation 
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Figure 6. Matrix extension 
 
As mentioned in Section 3, switching rows or columns 
respectively within the last M rows or the first L columns of the 
PS parameter matrix does not change the periodic surface. 
However, it makes the interpolated periodic surfaces different 
when the method of interpolation in the PS parameter space is 
applied, as seen in Eq.(4.3). Thus, for two surfaces 1( )ψ r  in 
Eq.(4.1) and 2 ( )ψ r  in Eq.(4.2), there are possibly  

( ) ( )1 2 1 2

1 2 1 2

max , !max , !
! !

L L M M
L L M M− −

 

different transition paths between the initial and end surfaces 
defined in Eq.(4.3). The objective is to select the “smoothest” 
transition path among all these potential candidates. Thus, 
quantitative criteria for smoothness are needed. In the next 
section, two smoothness criteria are proposed. 

5. SMOOTHNESS CRITERIA  
In this section, we propose two smoothness criteria, minimal 
space field change and minimal surface energy change, which 
will be described in Sec. 5.1 and Sec. 5.2, respectively. The 
first criterion is based on the potential energy point of view, 
which assumes the total change of space energy will be 

minimal during the morphing process. On the other hand, the 
second criterion is based on the surface energy point of view. It 
assumes the optimal transition paths will make the total change 
of surface energy minimal. In addition, a heuristic method of 
surface morphing is proposed in Sec. 5.3. 

5.1 Minimal Space Field Change 
In this criterion, it is assumed that the optimal transition path is 
the one with the minimal change of space field accumulatively 
during the morphing process. Since the volumetric values 
associated with PS models represent the potential energy in the 
three-dimensional space, the criterion of minimal space field 
change is to measure the total change of potential energy 
caused by the morphing process. Hence the transition path with 
the minimal total volumetric value change is considered to be 
the smoothest one. More accurately, in the domain 

0 5 0 5 0 5 0 5 0 5 0 5 1= − ≤ ≤ − ≤ ≤ − ≤ ≤[ . . , . . , . . , ]x y zD , the 
space field change (SFC) between two periodic surfaces 

( )aψ r  and ( )bψ r  is defined as 

( ) ( )( )2

D

SFC b a dψ ψ−∫∫∫ r r r . Suppose 0 ( )ψ r  is the initial 

surface, ( )nψ r  is the end surface and ( )kψ r ’s (k = 1, 2, …, 
n–1) are the n–1 intermediate surfaces, the total SFC (TSFC) is 
calculated by 

 ( ) ( )( )2

1
1

TSFC
n

t t
t D

dψ ψ −
=

= −∑∫∫∫ r r r  (5.1) 

Thus, the objective of this criterion is to minimize the TSFC. 
In order to find the transition path with the minimal TSFC, we 
need to search and evaluate all possible candidates. The 
following example shows the morphing process from the P 
surface to I-WP surface using this criterion. Table 1 shows the 
corresponding PS parameter matrices of the P surface and I-WP 
surface after the matrix extension. 
In this example, 1 2 1L L= = , M1 = 3 and M2 = 9, as shown in 
Table 1. The degree of the P surface is extended to the same as 
that of the I-WP surface by setting ' ''m m=P P  and 1' 0mμ = , 
for 4,5,...,9m = . The total number of the transition paths is 

( ) ( )max 1,1 !max 3,9 !
504

1 1 ! 3 9 !
=

− −
. For each of the n–1 intermediate 

frames (n=20) in the transition path, we calculate the sum 
square of volumetric value changes. A resolution of 
100×100×100 in the discretized space is used. The TSFC is 
found according to Eq.(5.1) using step size 0.05. The optimal 
transition path is the one with the minimal TSFC. The best pair 
of PS parameter matrices based on this criterion is listed in 
Table 1. Figure 1 shows the optimal transformation sequence. 
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Table 1. The PS parameter matrices of P and I-WP surface for 
minimal space field change criterion 

P surface I-WP surface 
1 0 0 0 0
1 1 0 0 1
1 0 1 0 1
1 0 0 1 1
0 1 1 0 1
0 0 2 0 1
0 0 1 1 1
0 0 1 1 1
0 2 0 0 1
0 0 0 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 0 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 0 1 1
1 1 1 0 1
1 0 2 0 1
1 0 1 1 1
1 0 1 1 1
1 2 0 0 1
1 0 0 2 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

    
λ = 0.05 λ = 0.10 λ = 0.15 λ = 0.20 λ = 0.25 

    
λ = 0.30 λ = 0.35 λ = 0.40 λ = 0.45 λ = 0.50 

    
λ = 0.55 λ = 0.60 λ = 0.65 λ = 0.70 λ = 0.75 

    
λ = 0.80 λ = 0.85 λ = 0.90 λ = 0.95 λ = 1.00  

Figure 7. The optimal transition path based on minimal TSFC 
criterion 

5.2 Minimal Surface Energy Change 
Curvature in geometry is generally known as the amount by 
which a geometric object deviates from being flat. In 
differential geometry, surface energy can be defined as 

( )2
1 2

1
4

E k k dA= +∫  where k1 and k2 are the two principle 

curvatures. In this criterion, we consider the Gaussian curvature 
of a periodic surface as an indicator of surface energy. 
Goldman [36] developed the curvature formulas for implicit 
surfaces. Therefore, for a periodic surface in Eq. (3.1), the 
Gaussian curvature can be calculated by 

 4

( )
0

TH

K

ψ ψ
ψ

ψ

∇
∇

= −
∇

 (5.2) 

where ψ∇  is gradient and ( )H ψ  is Hessian matrix. 
It is assumed that the optimal transition path will make the 
accumulated change of surface energy minimal during the 
morphing. We map a periodic surface from its volumetric space 
into its surface energy space using Eq.(5.2) in the domain 

0 5 0 5 0 5 0 5 0 5 0 5 1= − ≤ ≤ − ≤ ≤ − ≤ ≤[ . . , . . , . . , ]x y zD . The 
surface energy change (SEC) between two periodic surfaces 

( )aψ r  and ( )bψ r  is defined as 

( ) ( )( )2

D

SEC b aK K d−∫∫∫ r r r . Suppose that 0 ( )ψ r  is the 

initial periodic surface, ( )nψ r  is the end periodic surface and 
( )kψ r ’s (k = 1, 2, …, n–1) are the n–1 intermediate periodic 

surfaces. The total SEC (TSEC) is calculated by the Eq. (5.3). 
Thus, the objective of this criterion is to minimize the TSEC.  
In order to find the one with the minimal TSEC, we need to 
search and evaluate all the possible transition paths. 

 ( ) ( )( )2

1
1

TSEC
n

t t
t D

K K d−
=

= −∑∫∫∫ r r r  (5.3) 

Figure 8 shows the optimal morphing sequence from P surface 
to I-WP surface. In this example, a resolution of 50×50×50 in 
the discretized space is used. Step size is chosen as 0.20 so that 
the TSEC is based on the accumulated surface energy change 
of five surfaces or five steps. Table 2 lists the best pair of PS 
parameter matrices based on this criterion. 

 
λ = 0.05 λ = 0.10 λ = 0.15 λ = 0.20 λ = 0.25 

 
λ = 0.30 λ = 0.35 λ = 0.40 λ = 0.45 λ = 0.50 

 
λ = 0.55 λ = 0.60 λ = 0.65 λ = 0.70 λ = 0.75 

 
λ = 0.80 λ = 0.85 λ = 0.90 λ = 0.95 λ = 1.00  

Figure 8. The optimal transition path based on minimal TSEC 
criterion 
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Table 2 The PS parameter matrices of P and I-WP surface for 
minimal surface energy change criterion 

P surface I-WP surface 
1 0 0 0 0
1 1 0 0 1
1 0 1 0 1
1 0 0 1 1
0 1 1 0 1
0 1 1 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 0 0 0 0
1 0 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 0 1
1 2 0 0 1
1 0 2 0 1
1 0 0 2 1
1 1 0 1 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

5.3 Heuristic Morphing Criteria 
The calculation of either minimal total change of space field or 
minimal total change of surface energy is a time consuming 
process, because the volumetric data or Gaussian curvature of 
all interpolated intermediate surfaces needs to be calculated in a 
volumetric domain for all possible transition paths. In this 
section, we propose a heuristic morphing criterion in the case 
of 1 2 1L L= =  and 1 1' '' 1κ κ= =  in Eq. (4.1) and Eq. (4.2) 
for an easy-to-compute solution. In fact, the conditions of 

1L =  and 1κ =  in Eq. (3.1) can always be met if we 
multiply all the scale parameters κ ’s with their corresponding 

Tp ’s to create new basis vectors. The purpose of this criterion 
is to reduce the time complexity to determine an acceptable 
smooth transition path by avoiding evaluations of all the 
intermediate surfaces. There are three assumptions behind the 
heuristic morphing criterion. First, since periodic moments 

' sμ  are the magnitude of cosine functions, they are 
considered to be scale related parameters.  Second, since basis 
vectors 'sP  define the frequency and phase of cosine 
functions, they are considered to be shape related parameters.  
Finally, it is assumed that the morphing process is smooth if the 
changes of basis vectors are as little as possible. For two 
surfaces 1( )ψ r  and 2 ( )ψ r in Eqs. (4.1) and (4.2) with 

1 2 1L L= =  and 1 1' '' 1κ κ= = , let 
'
' '

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

κ 0
A

μ p
 for 1( )ψ r  

and 
''
'' ''

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

κ 0
B

μ p
 for 2 ( )ψ r . Both A and B are ( 1) 5M + ×  

matrices, where M = max(M1,M2). We generalize the heuristic 
morphing criterion as follows. 

Step 1. For all the possible 
1 2

!
!

M
M M−

 transition paths, find 

the one with minimal 
1

' ''
M

m m
m=

−∑ p p . 

Step 2. If more than one transition paths are found in step 1, 

further choose the one with minimal 
1

1

''
M

m
m=
∑ p  if M1 < M2 or 

minimal 
2

1

'
M

m
m=
∑ p  if M1 > M2. 

Step 3. If more than one transition paths are found in step2, 
arbitrarily choose any one of them. 
For the example to find a transition path from the P surface to 
I-WP surface, we apply this heuristic criterion. In step 1, 48 
transition paths among the total of 504 possible transition paths 
are found. In step 2, 15 transition paths are further selected as 
candidates. Finally in step 3, we arbitrarily choose one 
transition path, as shown in Table 3. Figure 9 shows the 
heuristic transition path with the step size of 0.05. 
 
Table 3 The PS parameter matrices of P and I-WP surface for 
heuristic morphing criterion 
P surface I-WP surface 

1 0 0 0 0
1 1 0 0 1
1 0 1 0 1
1 0 0 1 1
0 0 0 2 1
0 0 2 0 1
0 0 1 1 1
0 1 1 0 1
0 1 0 1 1
0 2 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 0 0 0 0
1 1 0 1 1
1 1 1 0 1
1 0 1 1 1
1 0 0 2 1
1 0 2 0 1
1 0 1 1 1
1 1 1 0 1
1 1 0 1 1
1 2 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
λ = 0.05 λ = 0.10 λ = 0.15 λ = 0.20 λ = 0.25 

 
λ = 0.30 λ = 0.35 λ = 0.40 λ = 0.45 λ = 0.50 

 
λ = 0.55 λ = 0.60 λ = 0.65 λ = 0.70 λ = 0.75 

 
λ = 0.80 λ = 0.85 λ = 0.90 λ = 0.95 λ = 1.00  

Figure 9. Heuristic morphing process from P surface to I-WP 
surface 



 8 Copyright © 2009 by ASME 

5.4 Result discussions 
We presented three quantitative smoothness criterions in this 
section and examples are given. Here, we only focus on 
metamorphosis of geometric aspect of a shape. Any physical 
conditions such as temperature which are possible to cause 
deviations between the actual transition path and the calculated 
optimal path are ignored in this stage. Since the type of phase 
transition that we are interested in is the movement of many 
atoms which results in changes between two crystal structures, 
it is reasonable to assume that all physical conditions like 
temperatures and pressures are uniform throughout the regions 
under consideration. 
In the minimal space field change criteria, the best transition 
path is the one with the least change of field in the 3D space. 
Observing the shape transformation in Figure 7, we find the 
isosurfaces with isovalue zero in the transition path are 
reasonable to expect the minimal space field change 
subjectively. The minimal surface energy change criteria is to 
find the transition path which causes the least change of surface 
Gaussian curvature, an indicator of the degree of bend of a 
shape. According to the result shown in Figure 8, the shape 
transformation appears to be less change in surface bend than 
those in Figure 7 and Figure 9. The heuristic morphing criteria 
does not have physical interpretation, but it is faster in 
calculation than the other two because it is no need to calculate 
volumetric data for each possible transition path. The result 
shown in Figure 9 shows the shape transformation is 
reasonably smooth. 
One of the advantages of these smoothness criteria is to provide 
a quantitative way so that the best transition path can be 
determined objectively. In addition, the method returns 
different outputs for different criteria. A proper selected 
criterion is needed only for selecting a transition path rather 
than another phase transition scheme. However, the major 
concern of the minimal space field change and surface energy 
change criteria is calculation efficiency because all possible 
alternative transitions must be evaluated before the optimal 
path can be concluded.  A heuristic criterion is proposed for 
quick and acceptable solution, which may not be the optimum. 

6. SUMMARY AND FUTURE WORK 
The article presents a metamorphosis method between two PS 
models, using interpolation in the PS model parameters space. 
The parameter matrix representation of periodic surfaces is 
used so that the shape transformation is generated by matrix 
transformations. The metamorphosis of periodic surfaces 
creates multiple transition paths between two shapes. For 
further selections, different smoothness criteria are used to 
control the morphing process. Two smoothness criteria, the 
minimal space field change and the minimal space energy 
change, are proposed in this paper. To reduce calculation time, 
a heuristic criterion is also presented. The in-between shapes 
generated by the proposed method and smoothness criteria are 
natural and satisfactory. 

One of the future extensions is to set up corresponding control 
points of the two periodic surfaces over the transformation. It 
may yield more smooth, hence more natural, transition path 
throughout the metamorphosis.  Another potential extension is 
to add a fixed number of particles as a constraint during the 
morphing process. The consideration of the constraint will 
make it more realistic to material design. 
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