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ABSTRACT 
A review of saddle point search methods on a potential 

energy surface is presented in this paper. Finding saddle points 
on a complex potential energy surface is the major challenge in 
modeling and simulating the kinetics of first-order phase 
transitions. Once the saddle points have been identified and the 
activation energy for the transition is known, one can apply the 
kinetic Monte Carlo method to simulate the transition process. 
We consider some factors while reviewing the methods, such as 
whether the solution is global, the knowledge of the Hessian 
during the search, the capability to locate multiple saddle points 
and higher order saddle points, the kind of approximations used 
for potential energy surface, if any; and the convergence of the 
methods.  

1.  INTRODUCTION 
Phase transition process of materials is a very important 

part of our daily lives and makes us and our society functional. 
Functional materials for rechargeable batteries in portable 
electronics or binary optical or magnetic information storage 
devices are all based on transition properties. From a broader 
perspective, atomic diffusion inside solid materials and 
metabolic processes occurring within our body are also 
examples of phase transitions. The structures and physical 
properties of materials between two phases are distinct. 
Compared to continuous or second-order phase transitions, 
discontinuous or first-order phase transitions are observed more 
often. Each phase represents a state of the system with a local 
minimum of total energy. As illustrated in Fig.1, an activation 
energy barrier usually exists between the two transforming 
phases, which is denoted as Ea in the figure. For a phase 

transition to occur, one must supply this energy Ea to the 
reactants so that they can jump over the energy hump and 
convert to the products. In this sense, first-order phase 
transition process is similar to reaction. One may write the 
transition algebraically as 

Reactant + Ea    Product + ΔH  
where ΔH  is the latent heat; thermodynamically known as 
enthalpy of reaction. In second-order phase transition, there is 
no latent heat involved. Per the Arrhenius theory, the kinetics 
of the transition is proportional to exp( / )− aE kT , where Ea is 
the activation energy, k is the Boltzmann constant and T is the 
temperature. The calculated value of Ea from the atomic or 
molecular scale can be used as the parameter for a larger scale 
phase transition simulation such as kinetic Monte Carlo (KMC) 
simulation [11]. 

 
Fig.1. Energy diagram showing first-order phase transition 
pathway for single step spontaneous process. Ea is the 
activation energy barrier. HΔ  is the heat of reaction. 
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Therefore the most important step involved in the 
formulation of phase transition simulation is the knowledge of 
the activation energy barrier involved in the transition. The 
accuracy of its value determines the accuracy of simulation. 
The activation energy can be found by exploring the potential 
energy hyperspace of the reactants and the products and 
thereby locate the minimum energy path (MEP) or saddle 
points. 

Traditionally, the rate of transition is found based on the 
harmonic transition state theory with quadratic approximation 
or variational transition state theory (VTST) [2, 3]. Compared 
to vibrations and other thermal behaviors, phase transitions are 
rare events. Traditional molecular dynamics (MD) simulation is 
not efficient. As much as 1012 seconds may be required for 
sampling pathways to dissociation of an acid with the 
traditional MD simulation methods. We normally focus on the 
dynamical bottleneck for the rare event to avoid such a long 
computational time. In the case of nucleation in a system, for 
instance, this rare event is the formation of critical nuclei.  
Once the transition rate is derived, simulation methods such as 
path sampling [10] or temperature accelerated hyperdynamics 
[36] can be applied. Other accelerated sampling methods such 
as umbrella sampling [1] can also be used.  

More recently, methods to directly search saddle points by 
exploring potential energy surfaces have been developed. One 
may generate potential surfaces by using the ab initio 
calculation [4], analytical parameterization [5], and quantum-
chemical approximation [6]. One may even approximate the 
actual potential with the sum-of-squares decomposition of 
potential energy surfaces [7] or local Taylor approximation [8, 
9] to make the numerical methods applicable for computation. 
Even though the approximations may not be applicable to 
complex surfaces, they reduce the computational cost with 
faster convergence.  

In this paper, we give a review of saddle point searching 
methods in phase transition simulation, as a continuation of 
[12] which summarizes minimum energy path searching 
algorithms. There have been a few survey papers on methods of 
searching transition path and saddle point [37, 38]. The latest 
one on saddle point search was published in 2004 by Olsen et 
al [13]. However, it reviewed mostly the surface walking 
methods. Here we provide a comprehensive survey of surface 
walking and other methods developed more recently such as 
the ridge, the step and slide, the distinguished coordinate and 
other methods. We intend to make the review as self-contained 
as possible so that it could be assimilated easily by researchers 
with different backgrounds.  

2. SADDLE POINT SEARCHING METHODS 
Most of the methods reviewed here rely on a local 

approximation of the potential energy surface such that the 
computational cost involved in the iteration decreases. In most 
of the cases the surface is approximated by a quadratic 
function. Some of the methods also require both the initial and 
final states of the system to be known and are based on double-

ended search. These methods include the DHS, the Ridge, the 
Step and slide, etc. In contrast, others such as the activation 
relaxation, the dimer, etc. are based on single-ended search. 

2.1 Automated Surface walking algorithm (1983) 
This method was developed by Simons et al. [14] and can 

be used for finding the local minima as well as a saddle point 
depending on the eigenvalue being tracked: either positive 
(corresponds to a minimum) or negative (corresponds to a 
saddle). Only local information (local gradient and Hessian) is 
used to walk towards the stationary point.  

The essence of the walking algorithm is to search iteratively 
based on a local quadratic approximation of the potential 
energy surface using second-order Taylor polynomials. Thus 
the approximation is only valid within a local neighborhood 
specified by a trust radius. The trust radius is updated in each 
iteration by the Fletcher approach [15], which is done by 
comparing the approximate potential energy i( )E x  and the 
actual potential energies ( )E x  at the position x  in the 
configuration space with reaction coordinates. The ratio of the 
actual and the approximate energy change of the step 1i−x  to 
xi  is represented as 
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The ratio of the actual and the approximate energy change 
represents the fitness of the local approximation to the actual 
potential energy surface. The closer Ω  is to unity, the more 
quadratic is the true energy surface. The walking step size is 
constrained to be within the trust radius ih . The algorithm for 
updating the trust radius and the criteria for the rejection of the 
current step if carried in wrong direction are listed as follows, 
where minΩ  and maxΩ  are two thresholds to measure the 
difference. 

i. If minΩ ≤ Ω ≤ Ωgood  or min2 2−Ω ≤ Ω ≤ −Ωgood , then 
accept the step from 1i−x  to ix  and keep the same 
trust radius 1−=i ih h .  

ii. If 2good goodΩ ≤ Ω ≤ −Ω , then accept the step from 

1i−x  to ix  and increase the trust radius 1−=i ih hα , 
where 1>α . 

iii. If minΩ < Ω  or min2Ω > −Ω , then the step 1i−x  to ix  
is rejected. Instead a new step is formulated with a 
decreased trust radius 11/ −=i ih hα , where 1>α .  

The example potentials tested in [14] showed that the method is 
insensitive to the choice of minΩ , Ωgood  and α . 

The Hessian matrix for the method is updated for each 
iteration using the BFGS update procedure [15] or Powell’s 
update procedure [16]. However, other update procedures 
available in numerical analysis literature [15] may also be used. 
The BFGS update of the Hessian matrix 1+Hi  at the step 
(i+1)th is defined as 
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where 1( )+ −F Fi i  is the forward force difference, and the force 
is defined by the gradient of potential as = −∇F E . 
Comparatively, the Powell’s update scheme is defined as  
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where g is the gradient vector with 
1 1( ) ( )+ +Δ = −g g x g xi i i  (4) 

The Powell’s scheme preserves the Hermitian character of 
the updated matrix ( 1i+H ). One may use the identity matrix as 
the initial Hessian.  

The automated surface walking algorithm also involves the 
scaling of one of the active coordinates in order to make the 
eigenvalues of the Hessian lie in a required range, depending 
on whether one is finding a local minima or a saddle point. 
Reference [14] describes how this method can be applied to 
simulate the transition of HCN from ground to excited state.   

To summarize, the algorithm starts with the initial guess of 
the Hessian either based on the force characteristics of local 
minimum energy geometry or by approximating the Hessian 
with the identity matrix. Then, the search starts by tracking the 
eigenvalue of the updated Hessian at each step till the 
convergence is reached.     

2.2 DHS Method (1984) 
This method developed by Dewar et al [17] is an efficient 

method for finding the region of the saddle point on less 
complicated potential energy surfaces. 

In the configuration space, each configuration is called an 
image. Essentially, the main idea of this method is to pull the 
lower energy image over the potential energy surface towards 
the higher energy image. At a certain point along this 
movement of the lower energy image, the saddle point is 
crossed, which can be checked via the optimization step. 

Initially, one needs to determine the reactant and product, 
and join the two by a line. Each of these geometries forms an 
image in the high dimensional configuration space with 
reaction coordinates. For each iteration, the energy of both the 
images is calculated and the lower energy image is pulled 
towards the higher energy image along the line segment 
connecting the two images. This is obtained by reducing the 
distance between the images by a factor of 5%, keeping the 
higher energy image fixed. The lower energy image is the 
minimized keeping the newly computed reduced distance 
between the fixed images. If the distance between the images is 
sufficiently small, the iteration is terminated.  

Reference [17] describes the application of this method to 
simulation of Cope and Claisen rearrangement of organic 
molecules. 

2.3 The partitioned rational function optimization 
(RFO) method (1985) 

 This method developed by Banerjee et al. [18] is a local 
saddle point search algorithm, which is based on local rational 
function approximation to the potential surface with augmented 
Hessian, as in 
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where ( )xE�  is the approximate to the energy ( )xE , x is the 
step vector, g is the gradient vector described by equation (4), 
H is the Hessian, S is a diagonal scaling matrix. 

Reference [18] claims that the convergence of the method 
to the saddle point is quadratic as opposed to linear for most of 
the other methods. The method may be further classified as: 
RFO using exact Hessian to the systems for which the exact 
Hessian is known, and RFO with approximated Hessian for 
systems where the calculation of Hessian is laborious. The 
simplest starting approximation for the initial Hessian is the 
identity matrix. The Hessian is updated for the (i+1) iteration 
as, 1+ = + ΔH H Hi i i  where iΔH is generated either using 
Powell’s Hessian updating procedure [16] or Bofill’s Hessian 
[19] updating procedure. The Powell’s update scheme is 
represented by Equation (3). The Bofill update scheme is 
represented by 

1 (1 )Bofill Bofill SR Bofill Powell
i i iΔ = Δ + − ΔH H Hφ φ  (6) 
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is a symmetric and rank one matrix update and  
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is a Bofill factor.  
Partitioned rational functions rather than rational functions 

are used for ease of implementation in finding saddle points. 
The difference between the rational function optimization and 
the partitioned rational function method is that in partitioned 
RFO with a μ th order saddle point, one performs energy 
maximization along μ  chosen principal modes corresponding 
to μ  smallest eigenvalues of the Hessian and minimization 
along the remaining ( )−n μ  principal modes. The RFO matrix 
is partitioned as follows: 
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where pλ  is the highest eigenvalue and is always positive and 

nλ  is the lowest eigenvalue which is always negative.  
Once the RFO matrix is formulated, one needs to calculate 

only the lowest eigenvalue of the matrix, which defines the 
new starting point for the next iteration. Soft mode and stiff 
mode can be chosen to walk depending on the direction. This 
process is continued till convergence where pλ  and nλ  both 
become zeros. 

2.4 Ridge Method (1993) 
This method was developed by Ionova and Carter [20]. It 

is a surface walking algorithm and does not involve the use of 
Hessian. Hence, this method can be used for systems where the 
computation of Hessian is difficult. The initial guess for 
transition state geometry is not required. It starts searching for a 
maximum on the linear path connecting reactants and products, 
and the search is solely based on local information. As a result, 
it may lead to a path that is different from MEP if the search is 
initiated far from the MEP.  

Once the maximum energy point along the initial linear 
path is found, two images around that point on the same initial 
linear path are formed and separated by a certain distance. 
These two images are then displaced individually towards 
down-hill directions. In the next iteration, a maximum along 
the line joining the two images at the new locations is searched. 
The line joining the two images is always kept in the direction 
of negative curvature in each iteration. This procedure of 
displacing and searching for maximum along the line is 
continued till the saddle point is reached, where the curvature 
becomes zero.  

It is important to note that one can also impose linear 
constraints on the system modeled by the ridge method, as 
discussed in [20], such that the certain coordinates are frozen or 
the center of mass of the images is fixed. The ridge method 
does not guarantee that the saddle point obtained is global. 

Reference [20] describes how the ridge algorithm can be 
successfully applied to the simulation of decomposition of 
disilane. 

2.5 Activation-Relaxation Technique (ART) (1998) 
The activation-relaxation technique was developed by 

Mousseau and Barkema [21]. The method is based on a 2-step 
process called “event”. In the first step a configuration (system) 
is activated from a local minimum to a saddle point and then 
relaxed from that saddle point down-hill to another minimum. 
This method can track a certain fraction of saddle points 
depending on the implementation and the system. This method 
uses 3N-dimensional configurational space to model the moves 
of atoms. This method can be applied very well to the glassy 
and amorphous materials, polymers, semiconductors and 

clusters, which can be described very well in configurational 
space. However, it is difficult to describe or represent these 
complex systems in real space. ART does not require any initial 
guess. It just needs the potential energy surface. To reach the 
saddle point the method involves the displacement of the 
configuration in such a way that forces are minimized along all 
directions except one which corresponds to the lowest 
eigenvalue.  

The algorithm essentially consists of three parts: escaping 
the starting local minimum, convergence to the saddle point 
and relaxation to the minimum. For escaping the minimum, one 
needs to take a small random displacement away from the 
minimum as a first step. Authors of [21] recommended 
following the direction along the force induced by a small 
random displacement for escaping the minimum. This direction 
is followed until the threshold of escape is reached, which is 
indicated by either force component parallel to the 
displacement becoming constant or the ratio of this parallel 
force component to the perpendicular component becoming 
smaller than a given fraction. Once this harmonic region is left, 
the process of convergence to saddle point begins by following 
the direction of a modified force vector G  as 

(1 )( )α= − + ⋅G F F r r� �  (9) 

where F  is the total force on the configuration which is 
calculated using the interaction potential, α  is the control 
parameter, r  is a displacement vector from current position    
( x ) to the local minimum ( m ), i.e. = −r x m , and r�  is the 
normalized vector of r . It is important to note that G  cannot 
be generated using gradient of a scalar, so we cannot use 
standard minimization techniques here. The convergence to the 
saddle point will be indicated by the change of sign of the force 
component parallel to the displacement. The step size is  

1( )−Δ =x H F  (10) 

with l β= +H H I ; where lH  is the local Hessian, I is the 
identity matrix, and β is another control parameter.  

Once the saddle point is reached, it just remains to relax 
the configuration down the gradient to another local minimum. 
This is a very stable process and many minimization algorithms 
can guarantee the convergence. However, authors of [21] 
recommend that one should use the same algorithm described 
above to descent down as well. Since this algorithm follows a 
single eigenvector, it cannot be used to find second or higher 
order transition states. 

Reference [21] describes the application of ART to 
simulation of amorphous silicon and silica glass. The 
configuration of the atoms at saddle point of transition has been 
successfully obtained using this technique. 

2.6 Dimer Method (1999) 
This method originally developed by Henkelman and 

Jónsson [22] is a minimum-mode (curvature) following saddle 
point search algorithm. This method can be used when the final 
state of the transition is not known and does not require the 
knowledge of the Hessian matrix. This method does not 
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evaluate the complete Hessian. Rather, it evaluates the lowest 
eigenvalue and the corresponding eigenvector. 

This method considers a pair of two images of the system, 
called dimer, and minimizes the energy using rotation and 
translation at the center of the dimer iteratively.  

The curvature at the dimer midpoint is given by 
0

2

(2 )

( )

−
=

Δ

E E
C

R
 

 
(11) 

where E is the energy of the dimer, E0 is energy at dimer 
midpoint and RΔ  is the distance from the dimer midpoint to 
the dimer end point.  

Eq.(11) reveals that the minimization of the curvature 
implies the minimization of the dimer energy. The rotation of 
the dimer is made in such a way so as to minimize the 
curvature, thereby minimizing the energy. In the last step of the 
iteration the dimer is translated by application of a force, 
depending on the curvature, so as to bring the dimer to the 
saddle point. One may use either the Newton’s method or the 
conjugate gradient method for rotation and either the quickmin 
or the conjugate gradient for dimer translation. 

Reference [22] quotes an example where dimer method is 
used to study the transition mechanisms for diffusion of an Al 
adatom on Al(100) surface. The study was aimed at finding the 
mechanism by which the diffusion occurs. 

2.7 Improved Dimer Method (2005) 
This method is an improvement by Heyden et al [23] to the 

Dimer method [22]. The original Dimer performs well on an 
analytical potential energy surface, but performs significantly 
poorly when applied to the quantum-chemical potential surface, 
where the forces are subject to a large amount of numerical 
noise. The improved method is based on the fact that reducing 
the number of gradient calculations per cycle from six to four 
gradients or three gradients will significantly improve the 
overall performance of the dimer algorithm on quantum-
chemical potential energy surfaces.  

This improved method uses a larger rotation step than the 
original Dimer method for exploring the quantum-chemical 
potential energy surfaces. Also it uses steepest descent method 
for rotation calculations rather than the conjugate gradient 
method. It uses the conjugate gradient for translation of dimer. 
Instead of performing the gradient calculation at one of the 
images, it is done at the dimer midpoint, and the gradient at the 
image is approximated by a linear function. This decreases the 
accuracy of the curvature calculation in Eq.(11) from 2( )ΔO R  
to ( )ΔO R . It also decreases the number of gradient 
calculations. Reference [23] discusses various examples where 
the improved dimer converges more efficiently for systems 
where the forces are subject to numerical noise than the 
original dimer method. It also gives a flow chart of the 
algorithm for the improved Dimer method.  

2.8 Step and Slide Method (2001) 
This method was originally developed by Miron and 

Fichthorn [24]. The initial and final states must be known 

(referred as two replicas). The replicas traverse from the 
isoenergetic surfaces lying below the saddle point to higher 
isoenergetic surfaces and eventually converge to the saddle 
point by bracketing the potential.  

The stepping part involves placing each replica on a 
specified isoenergetic surface, while the sliding part involves 
each replica sliding on its respective isoenergetic surface until 
the distance between the replicas is minimized. The images are 
pulled towards each other with distance minimization between 
the replicas on isoenergetic surfaces. The replicas on either side 
of the saddle point will eventually converge to the saddle point 
as the potential approaches the transition state. This distance 
minimization step avoids the problem of one replica jumping 
over to the other potential well when it is close to the saddle 
point. 

After each minimization, the saddle point is bracketed. 
This bracketing is used to monitor convergence, with an upper 
bound (the maximum potential on the line connecting the two 
replicas) and a lower bound (the current potential, i.e. the 
potential as described by the isoenergetic surface the replica is 
on). The procedure is repeated by moving to a higher 
isoenergetic surface until a saddle point is reached. However 
one must proceed with caution. If the step size is too high, the 
replicas may move to an isoenergetic surface above the saddle 
point. This can be checked by calculating the force at the point 
where the replicas meet. If the force is greater than zero, we 
have stepped above the saddle point. Essentially, two images 
climb the mountain separating the initial and final states and 
meet at the saddle point.  

The method can also be applied for probing complex 
potential surfaces with many minima and saddle points. In the 
event of multiple minima, a minimal bracketing with no 
intermediate potential minima for each saddle point should be 
found. The procedure should be restarted with the initial 
position in the closest set of minima.  

Reference [24] describes the application of this method to 
study diffusion mechanisms of a small Ag cluster on a Ag(111) 
surface using an embedded-atom method potential. 

2.9 Concerted Variational Strategy (2003) 
This method was developed by Passerone et al. [25]. It 

uses variational principles of classical mechanics to generate a 
transition path connecting the reactant and the product. This 
technique is based on the Hamilton principle, which states that 
every classical trajectory that starts from a configuration qA and 
ends in qB after a time period τ   renders the action 
stationary, and the Maupertuis principle, which gives the path 
followed by the system without the specification of the time 
parameterization of the path. The method can be used for large 
systems. 

Starting with any two points qA and qB which lie in two 
potential basins, a linear interpolation is constructed joining 
them. Further, a rough approximation to the MEP is generated 
using inverted potential in  



 6 Copyright © 2008 by ASME 

j
2( 1) ( )1

( )

1

1: ( )
2

+−

=

⎛ ⎞⎛ ⎞−⎜ ⎟= Δ −⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠
∑ q q q

l lP
l

H
l

S m E  
 

(12) 

where, jHS  is called as a discretized “action” of Hamilton’s 
principle with the integral substituted by a sum, q(t) is a 
dynamical path, m is the mass, P is the number of points on the 
mesh and Δ  is the time step ( / )Δ = Pτ .  

Once the rough estimate of the MEP is obtained, a non-
uniform time distribution is calculated using 
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where Etot is the total energy, E is the potential energy and 
(0) =q qA  and ( ) =q qBσ  are two end points parameterized 

by σ in the spatial domain for the Maupertuis action, which is 
SM described by Eq.(14). For a system of N particles, with 3N 
degrees of freedom of mass mi, the Maupertuis action is 
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Once the updated τ  is obtained one needs to go back to the 
Hamilton’s principle in Eq.(12) and iterate till convergence is 
reached. Then the conjugate residual method [26] for local 
search is used to find the saddle point of SH.    

The most important part of this method is energy 
conservation, which is the most critical requirement for this 
method to converge most efficiently and in a numerically stable 
way to a path that is very close to the dynamical path. 

Reference [25] describes the successful application of this 
method to the configurational transition of alanine dipeptide 
molecule. In this study, the authors have condensed the 
molecule except the atoms involved the transition into 
“superparticles” in accordance with united atom scheme.  

2.10 Synchronous Transit Method (2003) 
The original synchronous transit method was proposed by 

Halgren and Lipscomb [27].  This method can be used to find 
the first order saddle points. The linear synchronous transit 
(LST) generates idealized structures using linear interpolation 
of distance between two limiting structures that are reactant and 
product, whereas the quadratic synchronous transit (QST) deals 
with quadratic interpolation formed by three points: initial 
state, final state, and an estimate of transition state. The 
interpolation formula for the LST can be represented as: 

( ) (1 )= − −i R P
ab ab abr f f r fr  (15) 

where R
abr  and P

abr are the inter-nuclear distances between the 

atoms a and b in reactant and product respectively and f  is 
an interpolation parameter. The QST uses a similar equation 
except that the equation is quadratic in f . The path obtained 

from the linear interpolation is adjusted so as to minimize the 
objective function:  
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r cc r ii
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(16) 

where, (cc) and (ii) denote calculated and interpolated 
quantities and aw  is the Cartesian coordinate of the atom. The 
LST maximum estimate may be further improved using 
orthogonal constraint optimization described in [27]. The 
method may be summarized as a single line minimization of 
energy in the direction orthogonal to the LST path, which is 
followed by the energy maximization along the QST path.  

An improvement to this method was proposed by Govind 
et al [28]. The new method is a combination of LST and QST 
with conjugate gradient refinement for periodic systems, where 
the objective function needs to be modified. The modified 
objective function is  

2 6 2
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( )
1 ( ( ) ( ( )) (( ( )) 10 ( ( ) ( ))
2 a aab R ab R ab R

aa b R
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r cc r ii r ii w cc w iiζ −
+ + +
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where  
(( ( ))abr iiζ =0                      : a = b 
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( ( ))ab R
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r ii
r ii

ζ
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+

=JG
JG

            : , 0a b R≠ =
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4 4

1 1(( ( ))
( ( ))ab R

cutab R

r ii
r ii r

ζ
+

+

= −JG
JG

       : ( ) cutab Rr cc r
+

<JG  

  , 0a b R≠ ≠
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(( ( )) 0ab Rr iiζ

+
=JG                    : ( ) cutab Rr cc r

+
>JG  

Here, a and b are taken for all atoms in a unit cell; R
JG

 is 
the real space lattice vectors and rcut is chosen such that R

JG
 

spans a few unit cells. 
Reference [27] describes the successful application of the 

method to the Woodward-Hoffmann allowed disrotatory 
interconversion of the cyclopropyl and ally1 cations and 
conrotatory interconversion of cyclobutene and cis-butadiene. 

2.11 Reduced Gradient Following (RGF) Method 
(1998) 

This method was developed by Quapp et al [29]. The 
method is an adaptation of the distinguished coordinate method 
[30-32], which essentially prescribes forcing some coordinates 
to have a null gradient by means of which a path can be 
generated. The RGH method is based on generating and 
following a curve connecting the saddle point(s) to the 
extremes, i.e. initial, final and intermediates states, if they exist. 
This curve is not the MEP, although it may follow the reaction 
coordinate for some examples. The curve is characterized by 
the shape of PES and the gradient vector between the different 
states.  

A stationary point is always one of the intersections of 
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curves that satisfy the (N-1) equations 
( ( )) 0      1, , , ,  i

E x t i k N
x

∂
= =

∂
… …  

 
(17) 

in N-dimensional space, where E(x(t)) is the function of the 
potential energy surface defined by the coordinates x with the 
parameter t. The starting direction of the search must be chosen 
carefully. It is usually the initial state of the transition.  

Every iteration of RGF involves two steps: If Eq.(17) is 
satisfied with a given tolerance ε, a predictor step is executed. 
Otherwise, a corrector step is executed. The algorithm is 
terminated when some stopping criteria are met. The authors 
suggest determining the step length of a hypothetical Newton 
step to the next stationary point. If this step length is less than a 
certain level, the algorithm is terminated as the stationary 
points are connected.   

The predictor step is given by: 

1+ ′= +
′m m m
m

sx x x
x

 
 

(18) 

where, s is the step length, mx′ is the tangent to the curve given 
by the solution of  

( ( )) 0      1, , , ,  i
d E x t x i k N
dt x

∂ ′= = =
∂

H … …  
 

(19) 
where, H is the Hessian matrix, that is updated using the 
Davidson-Fletcher-Powell update procedure [33].   

The corrector step involves a Newton-Raphson like 
method to solve the systems of equations in Eq.(17) to get the 
corrected point. This step is computationally expensive. Once 
the corrected point is obtained, the predictor step is applied 
again.  

Essentially, this method fixes one parameter while 
minimizing the other parameters with respect to the energy for 
each parameter. Eq.(17) generates (N-1) one dimensional 
curves that intersect at the saddle point(s) and other stationary 
points. However, in the event of multiple saddle points, this 
method does not predict which saddle point(s) will be found. 

Reference [29] describes the application of this method to 
simulation of various chemical reactions like HCN to CNH 
isomerization and Azidotetrazole isomerization to map the 
geometries at the saddle point. 

2.12 Improved Reduced Gradient Following (RGF) 
Method (2002) 

This method was developed by Hirsch and Quapp [34] as 
an improvement to [29]. In the original RGF method, the 
corrector step is called often as a result of the predictor step 
going wrong. The improved RGF uses an implied corrector 
step for each predictor step as a measure of improving the 
estimates with almost no additional computational effort.  

The new predictor-corrector step is given by: 
1 1 1

1 1

( ) ( )

( )
+ + +

+ +

=

=

H x τ g x

t x τ s
m m m

T
m m m

 
 

(20) 

where H(x) is the Hessian of the potential energy surface, g(x) 
is the gradient of the potential energy surface, t(x) is the unit 

tangent vector to the RGF curve, s is the step length of the 
former prediction step, and τ is the step vector. The solution to 
Eq.(20) is thus the combined predictor-corrector step with step 
length s in the direction of t which is essentially a Newton-
Raphson like step. As a result, the predictor-corrector strategy 
follows the curve generated by Eq.(17) more closely thus 
reducing the number of calls to the corrector step. 

As in the original RGF method, every iteration of RGF 
involves two steps: If Eq.(17) is satisfied with a given tolerance 
ε, a predictor step is executed. Otherwise, a corrector step is 
executed. The algorithm is terminated when some stopping 
criteria are met. 

Essentially, the predictor step in the original RGF method 
is modified to include a portion of the corrector step as shown 
in Eq.(20). As a result, the computationally expensive corrector 
step is called less often since the prediction error is usually less 
than the threshold, hence improving the efficacy of the RGF 
method. The authors also suggest use of Bofill’s update [19] to 
the Hessian matrix to improve the efficiency of the improved 
RGF method.  

Reference [34] depicts the application of this method to the 
isomerization of butane and ring opening of sym-tetrazine. 

2.13 Reduced Potential Energy Surface Model (2000) 
This method developed by Anglada et al. [35] is also an 

adaptation of the distinguished coordinate method [30-32]. 
However, as opposed to the RGF method [29, 34], the authors 
propose a distinguished coordinate method implemented as a 
steepest ascent path from reactant or products to the transition 
state. The path generated is not the MEP.  

The geometric parameters are partitioned into two subsets, 
br and bp, where br is the subset of parameters exhibiting the 
largest changes in internal coordinates during transition, while 
bp includes the rest of the parameters. The saddle point 
searching is based on a reduced surface with the dimensions of 
the subset br instead of the original PES, since the stationary 
points on the reduced surface are also the stationary points on 
the full surface. To initialize the model, the br parameters are 
perturbed and optimized, as a result we have the initial 
geometry, gradient vector and Hessian matrix.  

Using a variation of the rational function optimization 
(RFO) method [18], where the authors suggest the use of BFGS 
method [15] to update the entire Hessian matrix as opposed to 
the partial Hessian update as prescribed by RFO, the authors 
minimize the energy with respect to bp, while keeping the br 
parameters fixed. This results in a new set of parameters br and 
bp, the gradient and Hessian matrix.  

At any position, if the norm of the gradient is less than a 
certain threshold; the authors infer that the point is at a possible 
transition state. Otherwise, the minimization step is repeated till 
the convergence criterion is met.  

Reference [35] describe the application of this method to 
various simulations like thermal rearrangement of cyclopropyl 
radical to allyl radical, rearrangement of the methoxy radical to 
hydroxymethylene radical, the oxidation of the methoxy radical 
by molecular oxygen forming formaldehyde and hydroperoxy 
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radical, etc. 

3. CONCLUSION 
Various methods for finding the saddle point for phase 

transition simulation were reviewed in this paper. We can 
classify the methods as double ended search and single ended 
search. Double ended search requires both initial and final 
states of the process to be known, whereas the single ended 
search involves only one of the two states to be known prior to 
the start of the simulation. The double ended search includes 
the DHS, the Ridge, the Step and slide, etc. whereas others 
such as the activation relaxation, the dimer, etc. are based on 
single-ended search. 

The key to the efficiency of the algorithms reviewed is the 
optimization methods used. The efficacy is determined by the 
global scope of the algorithm, i.e. the ability to find multiple 
transitions. Our goal is to provide basic overview for a variety 
of methods, ranging from the classical to the latest methods. 

The convergence of most of the methods depends on the 
good initial guess of the path or the starting point of the search. 
In the event of a bad initial guess, the methods may converge to 
a wrong saddle point. Another general trend observed in the 
survey was that Hessian updating as in quasi-Newton methods 
has been widely accepted to reduce the computational cost. 

Most of the surveyed methods rely on an inbuilt 
assumption that the potential energy surface is perfectly 
modeled. Yet it should be realized that one important source of 
simulation errors of phase transitions may be the errors in the 
potential surface generation itself. 
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