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ABSTRACT 
In this paper, we give a review of recent transition path 

search methods for nanoscale phase transition simulation A 
potential energy surface (PES) characterizes detailed 
information about phase transitions where the transition path is 
related to a minimum energy path on the PES. The minimum 
energy path connects reactant to product via saddle point(s) on 
the PES. Once the minimum energy path is generated, the 
activation energy required for transitions can be determined. 
Using transition state theory, one can estimate the rate constant 
of the transition. The rate constant is critical to accurately 
simulate the transition process with sampling algorithms such 
as kinetic Monte Carlo.  

1 NOMENCLATURE 
PES Potential energy surface 
MEP Minimum energy path 
QO Vector of the molecular conformation of the reactant 

in reaction coordinates on the PES with respect to its 
time (t) in the reaction i.e. t=0 

QF Vector of the molecular conformation of the product in 
reaction coordinates on the PES with respect to its 
time (t) in the reaction i.e. t=F 

QX Vector of the molecular conformation of a point in 
reaction coordinates on the PES with respect to its 
time (t) in the reaction i.e. t=X 

V Potential Energy 
∇  Gradient 

2 INTRODUCTION 
In this paper, we give a review of recent transition path 

search methods for nanoscale phase transition simulation. It is 
not in the scope of this review to compare the methods against 
each other. Rather, we aim to provide the reader with the 
essence of each method reviewed.  

A phase transition is a geometric and topological 
transformation process of materials from one phase to another, 
each of which has a unique and homogeneous physical 
property. The most important step involved in modeling phase 
transition is the knowledge of the activation energy barrier and 
rate constant involved in the transition.  

In 1931, Erying and Polanyi proposed the transition state 
theory (TST) as a means to calculate the activation energy and 
rate constants [1,2] for characterizing reactions. An activation 
energy barrier always exists between phases. This activation 
energy characterizes the transition state. The methods reviewed 
are built on the theory prescribed by TST or some variants of 
TST (Variational Transition State Theory [3] and Reaction Path 
Hamiltonian [4])  

In an effort to simulate a reaction or transition, a potential 
energy surface (PES) that characterizes the process is first 
generated. Then, a minimum energy path (MEP) is computed 
which represents the transition pathway in the reaction 
coordinate space. Finally, the activation energy and rate 
constant that define the speed of the process (the rate of the 
reaction) can be calculated using TST and information about 
the saddle point(s).  
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Figure 1. An illustration of the MEP on the PES where two degrees 
of freedom (x and y) vary while the other dimensions are fixed. 

  

  
Figure 2. An illustration of the MEP on a contour plot the PES 
where two degrees of freedom (x and y) vary while the other 
dimensions are fixed. 

 
A major challenge in searching MEP is the generation of 

the PES accurately. Reference [5] provides a detailed review of 
available methods to generate the PES characterizing 
information regarding the interatomic and intermolecular 
interactions that characterize the reaction. Also listed are some 
examples of methods one could use to generate the PES 
[6,7,8,9,10,11]. Libraries and repositories of PES are also 
available and ready for use [12]. Further discussion of these 
methods is beyond the scope of this review. 

The MEP can be interpreted as the steepest descent path on 
the PES from saddle point(s) connecting the reactant and the 
product [13]. An important property of the MEP is that the 
direction of the gradient of the potential energy at any point on 
the MEP is the tangent direction along the MEP at that point. At 
the same time, for any degree of freedom perpendicular to the 
MEP at that point, the gradient of the potential energy is zero 
i.e. stationary [13,14]. 

Mathematically speaking, on the PES, the transition state is 
the first-order saddle point1 (hence forth referred to as ‘saddle 
point’) located between the local minima, i.e. the reactant and 
product along the MEP. Once the MEP is generated, the saddle 
point(s) can be extrapolated. Then using transition state theory 
one can estimate the activation energy and the transition rate 
constant. The kinetic Monte Carlo (KMC) simulation [15,16] 
can be applied to simulate the rare events of transitions in a 
longer time scale than traditional molecular dynamics 
simulations. 

Figure 1 illustrates the MEP on a hypothetical PES. The 
two green circles represent the reactant (higher circle relative to 
the “POTENTIAL” axis) and the product. The red line 
represents the MEP on the PES. Figure 2 illustrates the contour 
plot for the same PES, the area within the black circle is the 
saddle point region. One needs to traverse the PES from the 
reactant to the product to translate the MEP and thereby find 
the activation energy and the rate of the reaction or transition. 

Since 1970, there have been many methods developed to 
search and identify the transition state [17,18,19], while [20,21] 
are older influential methods circa 1980. With the recent 
advancement of computational capability and computational 
chemistry, the systematic generation of PES with fine 
resolution becomes possible. Various numerical methods to 
search transition paths and saddle points have been developed 
in the recent decade. Some review papers [22,23,24] were 
published. However, there have been new methods and 
improvements that have yet to be documented. The focus of 
this paper is to review these latest advancements.  

We categorize the computational modeling methods into 
two types: transition path search methods and saddle point 
search methods. Transition path search methods generate the 
MEP on the PES while saddle point search methods aim at 
finding the saddle points on the PES.  Reference [25] provides 
a review saddle point search methods for phase transition 
simulations. In this paper, we will discuss the various methods 
to generate the MEP on a PES. 

In the remainder of this paper, we characterize the 
transition path search methods into Chain of States methods 
and Other Methods. We can define Chain of States methods as 
methods in which the transition pathway is divided into a 
number of intermediate states that are relaxed and linked to 
finally reveal the MEP, while Other methods in the scope of 
this paper are methods that cannot be characterized as Chain of 
States methods, however, these methods generate the MEP in a 
different manner.   

For the Chain of States Methods, we review the Nudge 
Elastic Band (NEB) method [14] along with its improvements 
[26,27,28,29] and the String method [30,31] along with its 
improvements [32,33,34]. For the Other Methods, we review 
the Conjugate Peak Refinement (CPR) method [ 35 ], the 
Accelerated Langevin Dynamics (ALD) method [36], and the 

                                                           
1 A first-order saddle point has only one negative Eigen value in the 

Hessian matrix to the PES. 
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Hamilton-Jacobi method [37].   

3 CHAIN OF STATES METHODS 
In chain of states methods, the transition pathway is divided 
into a number of intermediate states. One could imagine the 
intermediate states as snapshots of the configuration of the 
atoms as they transform from initial to final state along the 
transition pathway. After the search converges, the 
intermediated states are chained to each other, usually by 
interpolating between the states, to obtain the transition 
pathway and the saddle point. They work well in transitions 
where there may be more than one saddle point, i.e. there may 
be more than one transition state. In situations where there may 
be multiple transition pathways, the methods will converge to 
the pathway closest to the initial guess for the transition 
pathway. 

3.1 Nudge Elastic Band (NEB) Method 

3.1.1 Original NEB Method [14]  
The method requires that the initial and final states should 

be known. A number of intermediate states, usually between 
four and twenty, are iteratively adjusted and finally converge to 
the MEP keeping the initial and final state fixed.  

In general, the transition path is described by a set of P+1 
images in configuration space with reactive coordinates: 

0 1 2, , ,........, P= ⎡ ⎤⎣ ⎦R R R R R  (1)

Images are connected by an imaginary elastic band. The 
target MEP is a group of images where the total forces acting 
on them reach equilibrium i.e. for any degree of freedom 
perpendicular to the MEP the energy is stationary. The force 
acting on each image is a combination of the perpendicular 
component of the true force due to potential energy and the 
parallel component of the spring force projected along the unit 
tangent vector to the path. The force acting on image i is given 
by 

||( ) | | .s
i i iV ⊥= −∇ +F R F  (2)

The perpendicular component of the true force is give by 

ˆ( ) | ( ) ( )i i i iV V V⊥∇ = ∇ −∇ ⋅R R R τ  (3)

where V is the potential energy of the system. The unit tangent 
vector is given by 

1 1

1 1| | | |
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 (4)

Here a normalized unit tangent vector 

ˆ
| |

i
i

i
= ττ

τ
 (5)

is used. The unit tangent vector ensures the P+1 images are 
equally spaced. The unit tangent vector uses information of 
both the adjacent images for image i.  

The parallel component of spring force is given by 

|| 1 1 ˆ ˆ| (| | | |)s
i i i i i i ik + −= − − − ⋅F R R R R τ τ  (6)

where k is the spring constant. At each iteration, the force 
acting on an image is minimized using an optimization 
algorithm. As a result, the images iteratively converge to the 
MEP. To interpret the results, one must interpolate between 
adjacent images to get the MEP. In the event of multiple MEP, 
the algorithm will converge to the MEP closest to the initial 
guess of the path.  

The algorithm works efficiently on systems with multiple 
transition states, although the interpolation of the images may 
reveal kinks in the MEP because no perpendicular spring forces 
are considered. Another problem associated with NEB is that 
the actual saddle point may not be located by one of the images 
directly. Further improvements of the NEB algorithm were 
developed. 

 

3.1.2 Improved Tangent Method [26]  
This method is an improvement to the original NEB 

method [14]. The Improved Tangent method builds on the NEB 
method with an improved estimate of the tangent direction and 
a resulting change to the component of the spring force acting 
on the images i. This improved tangent estimate reduces the 
chances of getting kinks in the MEP after interpolation.  

In this method, only the adjacent image with higher energy 
is used in computing the tangent, unless i is at a maximum or a 
minimum. The tangent vector from (4) is now calculated as 
follows 

1 1

1 1

i i i i
i

i i i i

V V V

V V V

+
+ −

−
+ −
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where Vi is the potential of image i and 

1
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 (8)

If the image i is at a maximum or a minimum the tangent 
vector is calculated based on a weighted average from the 
energy differences as follows 

max min
1 1

min max
1 1

  if  

  if  
i i i i i i

i
i i i i i i

V V V V

V V V V

+ −
+ −

+ −
+ −
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 (9)

where 
max

1 1
min

1 1

max(| |,| |)

min(| |,| |)
i i i i i

i i i i i

V V V V V

V V V V V
+ −

+ −
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⎨
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 (10)

The tangent vector has to be normalized as in (5). Finally, 
the spring force acting on image i is calculated as follows 

|| 1 1 ˆ| (| | | |)s
i i i i i ik + −= − − − ⋅F R R R R τ  (11)

As a result of the above changes prescribed by (7) - (11) 
there is a reduction in the kinks along the MEP. 
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3.1.3 Climbing Image Method [27] 
This method in conjunction with the Improved Tangent 

method [26] improves the NEB methods [14].  Once the 
image imax with the highest energy is identified, only for imax the 
force is calculated separately as  

max max max max max
ˆ ˆ( ) 2 ( )i i i i iV V= −∇ + ∇ ⋅F R R τ τ  (12)

One may notice there is no spring component, bur rather 
the true force due to the potential with the component along imax 
inverted. Therefore image imax actively climbs towards the 
saddle point. At the same time, the spring constants are 
calculated differently and result in greater resolution of the 
images around the saddle point. The spring constants are 
calculated as 

max
max

max

max

*
*

*

  if  

  if  
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i
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 (13)

where *
iV = max{ Vi , Vi-1 }, Vmax  is the maximum value of  

the energy for the entire elastic band, Vref  is the higher energy 
endpoint of the MEP , kmax is the maximum value to be chosen 
for the spring constant and ∆k is the difference between kmax 
and  kmin .  The above formulation leads to a maximum 
spring constant if the energy is at maximum. For images that 
are away from this maximum energy, the corresponding spring 
constant approaches its minimum. This ultimately results in 
more images settling around the saddle point therefore 
achieving higher resolution. 

3.1.4 Doubly Nudged Elastic Band (DNEB) Method 
[28] 

This method is a modification to the NEB [14] method that 
takes into account the modifications as suggested by [26,27]. 
Essentially, the major change is that a manipulation of 
perpendicular component of the spring force *s

iF is added to 
the total force (2) to give us  

||
*( ) | |s s

i i ii V ⊥= −∇ + +F R F F  (14)

where 
* ˆ ˆ| | ( )s s s

i i i i i⊥ ⊥= − ⋅F F F τ τ  (15)

The band is now doubly nudged as a result of the inclusion 
of both the components of the spring force. The perpendicular 
component of the spring force for a particular image may 
interfere with the forces of the neighboring images. However, 
this is not an issue as the properties of the path are not 
estimated from the discrete representation of the path but rather 
from relaxing the paths after the convergence criterion is 
reached.  

The authors suggest use of the limited-memory quasi-
Newton (L-BFGS) optimization method [38] for the relaxation 
process. It approximates the Hessian matrix. For each iteration, 

only the m corrections to the Hessian are updated. The L-BFGS 
optimization algorithm is efficient and thus provides faster 
convergence of the relaxation process for each image.  

In the event of multiple transition states a revised 
connection method is suggested. All the images where the 
energy of the image is greater than those of its adjacent images 
are separated. These distinct transition states are used to 
identify the minima, and they are connected by walking down 
the minimum energy paths. At each successive DNEB search, 
the new minima are stored in a database while new connections 
are recorded for the known minima. The DNEB method aims at 
building up a connected path by iteratively filling in the 
connections between the endpoints and the intermediate 
minima. This can be achieved by classifying all known minima 
into three sets: minima connected to a starting endpoint (S), 
minima connected to a final endpoint (F), and minima not 
connected to S or F (U). The end points separated by the 
shortest distance, where one endpoint belongs to either S or F, 
and the other belongs to U, are chosen as the endpoints for the 
next DNEB search. 

Essentially, in the event of multiple transitions the DNEB 
method effectively splits the transition pathway into individual 
transitions. This increases the resolution for each transition 
state and also increases the efficiency of the relaxation process. 

 

3.1.5 Cubic Spline Method [29] 
This method is a modification to the original NEB method 

[14]. The authors aim at improving the efficiency of searching 
in the original NEB method. Two major changes are proposed, 
a different optimization algorithm is used to relax the images at 
each stage and the spring force in (2) is eliminated.    

Similar to the DNEB method [28], the authors use the L-
BFGS [38] method to relax the images. The next change 
involves eliminating the spring force from (2) and replacing it 
with a cubic spline.  

For image i, the spline is generated from the 3N-
dimensional representative coordinate vector. The distance 
between adjacent images is the arc length along the spline. The 
total length of the path is the sum of the distances between 
images. For the images to be equally spaced, the total length is 
divided by the number of intermediate images. This gives us a 
new set of coordinates for the images on the original path. A 
new interpolated spline then can be generated.  

The authors suggest that one should reposition the images 
and reparameterize the spline when the spacing of the images 
becomes significantly distorted, i.e. if the ratio of the largest 
inter-image distance to the smallest such distance is greater 
than a certain threshold.  

In the iterative searching process, one first initializes the 
model as in the NEB method. Then, one generates the cubic 
spline, gradient, tangent vector (as in improved tangent 
method) and the perpendicular component of the force. Then, 
the image with the largest force is identified and its structure is 
relaxed using the L-BFGS optimization algorithm. Then, a new 



 5 Copyright © 2008 by ASME 

interpolated spline is constructed from the new structure, 
checking if the images need to be redistributed and the spline 
needs to be reparameterized. The gradient, tangent and force 
are recalculated. Then, one identifies the image with the largest 
force and the entire process is repeated.  

This method greatly improves the efficiency of the NEB 
algorithm; most of this improvement is attributed to the use of 
the L-BFGS algorithm. 

 

3.2 String Method 

3.2.1 Original Method [30,31]  
Similar to the NEB method, the String method is a chain of 

states method for locating the MEP and hence the saddle 
points. In the NEB, it is difficult to change the number of 
images, and a spring force is introduced to keep the images 
equidistant along the elastic band (Original NEB method). In 
contrast, the String method uses a smooth curve with intrinsic 
parameterization to represent the transition pathway. Therefore 
the number of discretized points along the curve can be readily 
increased in situations when the energy landscape is rough.  

Let Ψ(α, t) be a string connecting two minima of potential 
energy with α as the parameter at time t. One may either use arc 
length or energy weighted arc length in the parameterization. 
However, the energy weighted arc length provides a higher 
resolution at the transition state as compared to the 
parameterization without the energy weighted arc length. Once 
parameterized the string is discretized into number of points Ψi 
called the images on the string similar to the images Ri in the 
NEB Method. 

A MEP is a smooth curve that satisfies 

( ) | 0V ⊥∇ =Ψ  (16)

The MEP is found by evolving the discretized iϕ  according to 
the force given by 

( ) |V
t ⊥

∂Ψ = −∇
∂

Ψ  (17)

To enforce a particular parameterization constraint, a 
Lagrange multiplier λ  is added in the tangential direction 
without affecting the evolvement of the curve itself, as in 

ˆ( ) |V
t

λ⊥
∂Ψ = −∇ +
∂

Ψ τ  (18)

where the unit tangent vector is given by  
/ˆ
/
α
α

∂Ψ ∂=
∂Ψ ∂

τ  (19)

A reparameterization step is applied once in a while to enforce 
the proper parameterization of the strings. 

One may use either the steepest descent method [39] or the 
non-linear Broyden-accelerated method [39] to converge faster. 
The String method can easily be generalized to infinite-
dimensional dynamical systems by introducing an appropriate 
norm in phase space. 

3.2.2 Improved String Method [32]  
The original string method used the perpendicular 

component of the force for evolution of images as in [31]. To 
ensure numerical stability, the way of computing the tangent 
direction requires to be modified before and after the saddle 
points are crossed. This step lowers the accuracy of the overall 
method. In the Improved String method, the force projection 
step is eliminated. The entire force in the evolution of the 
images is used, given by 

* ˆ( )V
t

λ∂Ψ = −∇ + ⋅
∂

Ψ τ  (20)

where the new Lagrange multiplier is  

* ˆVλ λ= +∇ ⋅τ  (21)

The new representation gives more accurate results 
without the projection step. The new method also shows the 
advantage of numerical stability. It implies larger time step may 
be used during the string evolution. The time step limit tΔ  to 
ensure stability is not dependent of the number of images, 
whereas the time step limits for the original String and NEB 
methods are dependant on the number of images. 

3.2.3 Growing String Method [33]  
The Growing String method consists of a two step 

procedure: evolution and parameterization. The string grows 
from the reactant and the product end points until both ends 
join each other thereby trace the MEP. The number of nodes 
change as the number of images on the string grows. 
In the evolution step, the images are moved such that the total 
force Eq. (22) minimized. 

2

0
( ) | ( ) |i

n

i
F V

=
= ∇∑Ψ Ψ  (22)

In the parameterization step, the images are redistributed 
along the string with a pre-chosen density. A new node is added 
to the string only if the force is smaller than a tolerance limit. 
This eliminates the problem associated with guessing the initial 
reaction pathway, thereby eliminating the dependence of speed 
and even the convergence of the method on initial guess. After 
the ends join, the iterations become identical to the original 
String method [30,31]. 

 

3.2.4 Quadratic String Method [34]  
This method is a modification to the original String 

method. The method uses multi-objective optimization, which 
is defined as the minimization of many different functions that 
share the same domain [40].  

The most important modification made in this method is 
that the integration is done locally on a quadratic PES 
approximation. A damped Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) is used to update Hessian matrix [41]. The integration 
is performed with an adaptive step-size solver, which is 
restricted in length to the trust radius of the approximate 
Hessian. It also uses the steepest descent algorithm for 
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minimization along a direction perpendicular to the path at each 
point along the path. 

It was claimed that the method is capable of practical 
super-linear convergence, in contrast to the linear convergence 
of other methods. One can use step size larger than that used in 
the original String method. The method also eliminates the 
need to pre-determine the step size and spring constants. 

 

4 OTHER METHODS  

4.1 Conjugate Peak Refinement Method [35] 
This method iteratively finds a series of saddle points that 

are connected to each other and form a continuous reaction 
path from reactant to product. It exploits the fact that for a 
saddle point, the Hessian matrix (H) as the second derivative of 
the energy has exactly one negative eigenvalue. This further 
implies that there will be one direction along which the energy 
has a local maximum and k -1 directions along which the 
energy has a local minimum, considering k dimensions.  

The method starts of guessing an initial maximum 
direction s0, usually by setting the direction from reactant to 
product. Then maximizing the energy along s0 and minimizing 
the energy along k-1 other directions iteratively yields the 
saddle points.   

The conjugate directions are refined following  

1
1 1 0

0

T

T
= − +

g h
s g s

s h
 (23)

and 
2

1
0 12

0 1

| |
  if  1

| |

T
j

j j jT
j

j−
−

= − + + >
gg h

s g s s
s h g

 (24)

where gj is the gradient of the energy along sj-1.  
The path generated consists of vectors (points) 

⎡ ⎤⎣ ⎦O X1 X2 FQ ,Q ,Q , ... ,Q  (25)

One performs line maximization between successive points 
along the path (the initial path consists of just QO and QF). If an 
energy maximum is found, line minimization is carried out 
along the conjugate direction to the path at the point of the 
energy maximum. The new point added to the path is the 
energy minimum along the conjugate direction from the energy 
maximum, in essence, a saddle point. Thus, the path is 
modified to include the new point. The path is refined until no 
further energy maximums are found along the entire path. 
Thus, the remaining maximum points along the path are saddle 
points.  

The path segments are constructed by interpolating 
between adjacent points. The MEP can be generated after 
applying a minimization algorithm [39,40,41] to the path 
segments.   

4.2 Accelerated Langevin Dynamics Method 
[36] 

This method is a stochastic transition path sampling 
method by solving the Langevin equation (LE) describing the 
stochastic dynamics of a thermally activated system. It works in 
the event of multiple transition states. It is a method by which 
one can survey the potential energy surface, find the saddle 
point, and find the transition rates.  

The standard dimensionless LE is given by 

( )Vγ ξ+ +∇ =X X XQ Q Q  (26)

where γ is the dimensionless frictional coefficient and ξ is 
white noise with zero mean and correlations.  

For a simple transition, the method starts from an initial 
state (QO) and does not require knowledge of the final state 
(QF). For a single transition, the pathway is divided into 2 
parts: activation path and deactivation path. The activation path 
is the pathway from the initial state (QO) to a point (QM) while 
the deactivation path is the pathway from (QM) to the final state 
(QF). The point of separation (QM) is ideally the position vector 
of the saddle point. Hence, ideally M is the activation time to 
the saddle point, which implies that, one would require a priori 
knowledge of the system as the efficiency of the model 
depends on a suitable choice of the activation time. The 
activation time can be best estimated if the saddle point is 
known or by integrating the LE and checking for a transition.  

The activation path can be obtained by integrating the LE 
as shown in Eq.(27) from the initial conditions at QO to the 
conditions at QM. The standard LE is modified to 

( )Vγ ξ− +∇ =X X XQ Q Q  (27)

The activation phase occurs with a very small probability, and 
direct sampling of paths by integrating Eq.(26) is not possible. 
The use of the negative friction coefficient (-γ) is to facilitate 
the generation of the activation paths by enabling the system to 
gain enough energy to escape from the minima at QO to the 
saddle point. Hence, the proposed method is poised to perform 
simulations at low temperatures. The deactivation path can be 
obtained by integrating the standard LE as in Eq.(26) from the 
conditions at QM to the conditions at QF. For both, the 
activation path and the deactivation path various realizations of 
each can be generated by varying the white noise (ξ).  

 The transition path can be approximated as a weighted 
average of all the possible paths along the activation phase and 
the deactivation phase. The transition rate and the activation 
energy can be computed in a similar manner.  

 

4.3 Hamilton-Jacobi Method (HJ) [37] 
This method generates the MEP by solving the Hamilton-

Jacobi type equation. The search is based entirely on the 
knowledge of the reactants (QO). The information about 
products (QF) is not required. It works on the cost principle, 
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that is, it assigns costs to the points on the surface. Points with 
higher potential energy will have a much larger cost than points 
with a lower potential energy. In this manner the minimum 
energy path has a much lower energy than other higher energy 
paths. 

The Hamilton-Jacobi type equation may be represented as   

2
( ) ( )

( )

n

n E V
E V

τ
−

∇ =
−

⎡ ⎤
⎢ ⎥
⎣ ⎦min

XQ
Q

 (28)

where, τ(n) is the path integral from the point QO to QX on the 
potential surface. It can be though of as being the level curves 
from QO to QX, or the least arrival cost curve from QO to QX 
and n can be any real or integer value. In the case of finding the 
MEP, as n  -∞ the approximation by this method gets closer 
to the reaction coordinate, i.e., the MEP, thereby assigning a 
much higher cost to points with higher potential energy. This 
method often uses Qmin = QO.  

The fast marching approach developed by Adalsteinsson 
and Sethian [42] is used to solve the Hamilton-Jacobi type 
equation of Eq.(28) to compute τ(n) for new grid points. 
Essentially, the HJ method builds a set of points by marching 
outwards from QO, keeping τ(n)(QO)=0, while sequentially 
adding other grid points that are the lowest-cost grid points, i.e. 
point with the lowest τ(n). In this manner the τ(n) curve is 
generated. Then one needs to follow the steepest descent path 
from QF to QO.  Thus, the near-MEP can be constructed by 
following the negative gradient direction of 

( )

( )

( )
n

n

C s
τ

τ
= −

∇

∇  (29)

The algorithm is best suited to work on adiabatic potential 
energy surfaces. 

 

5 CONCLUDING REMARKS 
Various transition path search methods were reviewed in 

this paper. These methods aim at generating a MEP on a PES 
characterizing detailed information regarding the interatomic 
and intermolecular interactions that characterize the reaction 
detailing a rare event. We classified the methods into two types: 
Chain of States Methods and Other Methods. 

Among the chain of states methods, the NEB method and 
its improvements have immense popularity among 
practitioners. It is a relatively simple method to implement [14]. 
More importantly, it can be parallelized as each image on the 
path can be run on a separate computer [14]. Various 
improvements were made to effectively reduce kinks 
(Improved Tangent NEB method [26]), increase the resolution 
of the images around the saddle point (Climbing Image NEB 
method [27]), improve the stability of the method during the 
optimization process (Doubly Nudged NEB method [28]) and 
improve the efficiency of the NEB method (Cubic Spline NEB 
method [29]).  

The String Methods and its improvements are another type 
of chain of states method. In contrast to the NEB method, the 
String method uses a smooth curve with intrinsic 
parameterization to represent the transition pathway [30,31]. 
Various improvements were made to effectively improve the 
accuracy (Improved String method [32]), eliminate the problem 
associated with guessing the initial reaction pathway (Growing 
String method [33]) and effectively improve the efficiency of 
the string method (Quadratic String method [34]). 

Among the other methods, the CPR method is widely used 
to simulate complex proteins and is effective at finding 
multiple transition states [35]. The ALD method which is a 
stochastic transition path search method that works well for 
low temperature simulations and thermally activated systems 
[36]. The HJ method is computationally efficient, robust and 
only requires knowledge of the reactants. It generates a very 
good approximation to the MEP without using the 
computationally expensive Hessian matrix. As in the NEB and 
String methods, the HJ method can be parallelized [37]. 

We also noticed the key to the efficiency of these methods 
is the optimization algorithm used while the efficacy is 
determined by the global scope of the algorithm, i.e. the ability 
to model multiple transitions. In general, most path search 
methods can generate the MEP for a multi-stage transition 
process, thereby enabling the practitioner to extract vital 
information such as the transition rate and the activation energy 
of the reaction.  
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