
Computational Stochastic Mechanics - Proc. of the 7th International Conference (CSM-7)
G. Deodatis and P. D. Spanos (eds.)

Santorini, Greece, June 15-18, 2014

SIMULATING DIFFUSION WITH QUANTUM WALKS ON
GRAPHS

YAN WANG

Woodruff School of Mechanical Engineering

Georgia Institute of Technology, Atlanta, GA 30332, USA

Email: yan.wang@me.gatech.edu

The path integral method has been an effective approach to solve the Fokker-Planck equation that simulates
the evolution of probability distributions in diffusion processes. Yet the major challenges include the
memory requirement to store the transition matrix in a fine-grained state space and a small time step
required for the accurate estimation of short-time transition probabilities. Previously, one-dimensional
continuous-time quantum walk has been used in diffusion simulation. By combining quantum diffusion and
random diffusion, the new simulation approach can achieve acceleration by increasing the time step size
significantly. It has been demonstrated that dozens or even hundreds of times longer step sizes can be used.
In this paper, a new generic quantum operator is proposed to simulate drift-diffusion processes in high-
dimensional space, which combines quantum walks on graphs with traditional path integral approaches.
Probability amplitudes in quantum walks can be computed efficiently by spectral analysis. The efficiency
of the new simulation method is demonstrated with stochastic resonance problems.
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1 Introduction

Stochastic diffusion processes are universal and ap-
pear in various physical, chemical, biological and
economical systems. In engineering applications, we
usually need to simulate and design system dynam-
ics, such as in modeling suspension of vehicles on
rough pavement, analyzing vibration of structures
under stochastic load, and designing rotational ma-
chinery with random excitation.

Stochastic differential equation (SDE) and Fokker-
Planck equation (FPE) are two general approaches
to describe the drift-diffusion processes in a stochas-
tic system. SDEs model the system under uncer-
tainty with samples of individual trajectories as a re-
sult of the Wiener process, whereas FPEs capture the
time evolution of probability distributions directly.
Solving SDEs relies on the Monte Carlo sampling of

system trajectories. A large number of samples need
to be generated to draw statistical conclusions. In
contrast, a FPE captures the dynamics of the prob-
ability density for all possible states and models the
evolution process of the overall distribution.

The main research challenge of solving SDEs and
FPEs is to develop efficient and robust numerical
methods to obtain the complete information about
probability distributions for the whole time period of
evolution. In SDEs, since one sample only provides
one out of the many possible trajectories, a complete
range estimation for variation requires a very large
number of samples. FPEs provide the global picture
of distributions and are solved typically by path in-
tegral methods. Yet, all possible states need to be
known during the solving process. The memory re-
quirement to store transition matrix that captures
the dynamics in a fine-grained state space can be-
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come prohibitive. Additionally, the time step is re-
quired to be small enough for accurate estimation of
short-time transition probabilities in the path inte-
gral methods.
Recently, a continuous-time quantum walk ap-

proach was proposed to simulate stochastic drift-
diffusion processes in one-dimensional (1-D) lattice
space (Wang, 2013). With a novel formulation that
combines quantum and random diffusions in the
simulation algorithm, drastic acceleration can be
achieved by the use of non-local correlation in quan-
tum systems. This acceleration is particularly useful
in simulating complex dynamic systems such as in
stochastic resonance problems. The numerical re-
sults showed that the formulation provides an effec-
tive approach to simulate stochastic drift-diffusion
processes.
In this paper, the quantum walk based diffusion

simulation formulation is generalized to simulate
processes in two- or higher-dimensional space. A new
quantum operator is proposed for drift-diffusion pro-
cesses on graphs. By combining quantum walks in
the topological space and drift-diffusion in the Eu-
clidean space, simulation can be accelerated.
In the remainder of the paper, Section 2 pro-

vides the background of numerical methods of solv-
ing FPEs and quantum walks. Section 3 summarizes
the 1-D continuous-time quantum walk formulation
to accelerate the stochastic drift-diffusion processes.
In Section 4, the 1-D formulation is generalized to
high-dimensional diffusion problems with quantum
walks on graphs. In Section 5, a numerical example is
given to demonstrate the effectiveness and efficiency
of the proposed approach.

2 Background

2.1 Solving Fokker-Planck Equations for
Stochastic Diffusions

Stochastic drift-diffusion processes can be generally
modeled by FPEs, which describe the time evolution
of probability density functions in the state space.
Various numerical methods to solve FPEs have been
developed, including Monte Carlo (Ermak and Buck-
holz, 1980), finite element (Masud and Bergman,
2005), finite difference (Park and Petrosian, 1996),
spectral approximation by polynomials (Wei, 1999;

Spanos et al., 2007), and path integral (Haken, 1975).
In particular, the path integral method has been

shown as a simple yet accurate approach. Wehner
and Wolfer (Wehner and Wolfer, 1983) used a short-
time transition probability density matrix to approx-
imate the evolution of drift-diffusion processes. To
improve numerical efficiency and accuracy, Naess
et al. (Naess and Johnsen, 1993; Naess and Moe,
2000) developed a B-spline interpolation approach
where continuous probability density functions are
approximated based upon limited discrete evalua-
tions such that the error reduction speed is increased
to O(τ) with time step size τ . Spencer and Bergman
(Spencer and Bergman, 1993) solved the equation by
direct polynomial interpolations in the state space.
Santoro et al. (Di Paola and Santoro, 2008; Pir-
rotta and Santoro, 2011) extended the path integral
approach for systems under Gaussian white noise
perturbation as in the classical Fokker-Planck equa-
tion to the Kolmogorov-Feller equation under Pois-
son white noise. Kougioumtzoglou and Spanos (Kou-
gioumtzoglou and Spanos, 2012) developed an ana-
lytical approach to calculate distributions based on
a variational formulation for nonlinear oscillation
problems, instead of using short time steps as in
path integrals, to improve the computational effi-
ciency. Narayanan and Kumar (Narayanan and Ku-
mar, 2012) used Gauss-Legendre integration to ap-
proximate non-Gaussian transition probability den-
sities. Di Paola et al. (Cottone and Di Paola, 2009;
Di Matteo et al., 2014) recently developed a frac-
tional calculus approach to solve stochastic dynamics
problems based on fractional complex moments.

2.2 Quantum Walks

In this paper, a new formulation to simulate stochas-
tic diffusions based on quantum walks is proposed.
Quantum walk can be considered as a quantum ver-
sion of the classical random walk, where a stochas-
tic system is modeled in terms of probability ampli-
tudes instead of probabilities. In random walk, the
system’s state x at time t is described by a prob-
ability distribution p(x, t). The system evolves by
transitions. The state distribution after a time pe-
riod of τ is p(x, t + τ) = T (τ)p(x, t) where T (τ) is
the transition operator. In quantum walk, the sys-
tem’s state is described by the complex-valued am-
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plitude ψ(x, t). Its relationship with the probability
is ψ∗ψ = |ψ|2 = p. The system evolution then is
modeled by ψ(x, t+τ) = U(τ)ψ(x, t) with U being a
unitary and reversible operator. In quantum walks,
probability is replaced by amplitude and Markovian
dynamics is replaced by unitary dynamics.
Similar to random walks, there are discrete-time

quantum walks and continuous-time quantum walks.
The study of discrete-time quantum walks started
from 1990s (Meyer, 1996; Ambainis et al., 2001) in
the context of quantum algorithm and computation
(Kempe, 2003; Kendon, 2007; Konno, 2008). Al-
though the term, continuous-time quantum walk,
was introduced more recently (Farhi and Gutmann,
1998), the research of the topic can be traced back
much earlier in studying the dynamics of quantum
systems, particularly in the path integral formula-
tion of quantum mechanics generalized by Feynman
(Feynman, 1948) in 1940’s. The relationship be-
tween the discrete- and continuous-time quantum
walks was also studied. The two models have similar
speed performance and intrinsic relationships. The
convergence of discrete-time quantum walks toward
continuous-time quantum walks has been demon-
strated (Strauch, 2006; Childs, 2010).

3 Quantum Walks in One-Dimensional Lat-
tice Space

The quantum diffusion is described by the
Schrödinger equation

i
d

dt
ψ(x, t) = Ĥ(t)ψ(x, t) (1)

where Ĥ(t) is the Hamiltonian. Path integral is a
classical approach to solve the quantum dynamics
problem. To construct the unitary operator U that
describes quantum state transitions, a general func-
tional integral (Farhi and Gutmann, 1992)

Fjk :=

∫
dqjke

−i
∫ t0+τ
t0

Wq(s)ds
∏
l→m

eiθml (2)

for a path from state xk to state xj is applied. A
path q(s) is defined as a functional mapping from
time s to the state space. For instance, q(t0) = xk
and q(t0 + τ) = xj represent the transitional path

from state xk to state xj during a time period of

τ .
∫ t0+τ

t0
Wq(s)ds gives the overall probability of all

possible paths from xk at time t0 to xj at time t0 +

τ . e−i
∫ t0+τ
t0

Wq(s)ds can be regarded as the weight of
transition from xk to xj .

∏
l→m eiθml is the total

phase shift factor for all jumps in transition from xk
to xj , where each of eiθml corresponds to the phase
shift for one of the jumps during the transition. Here,
dqjk is the probabilistic measure on the path from xk
to xj , which is analogous to continuous-time Markov
chain model. The probabilistic measure for one path
from state 0 to n∆ that has l left jumps is (Wang,
2013)

dq
(l)
n,0 =

e−bτ/(2∆2)( bτ
2∆2 )

l

l!

e−bτ/(2∆2)( bτ
2∆2 )

n+l

(n+ l)!
(3)

Continuous-time quantum walks can be used to
model the quantum drift-diffusion and random drift-
diffusion processes in 1-D lattice space with different
functional integrals, described as follows.

3.1 Quantum Drift-Diffusion Process

The quantum drift-diffusion process is described by

i
∂

∂t
ψ(x, t) = − b

2

∂2

∂x2
ψ(x, t)− iV (x, t)ψ(x, t) (4)

where b is the diffusion coefficient and V is the po-
tential function. For a transition with n steps away
from the initial state for a total period τ , the weight
for the functional integral in Eq.(2) can be calculated
as

e−i
∑

l Wlτl = e−i
∑

l [
b

∆2 +i( b
∆2 −Vl)]τl ≈ e(1−i) b

∆2 τ−Vnτ

where Vn denotes the potential at the final state and∑
l τl = τ . With the probabilistic measure as in

Eq.(3), the complete functional integral for quantum
drift-diffusion processes is (Wang, 2013)

Fn,0 = ine−ibτ/∆2−VnτJn(
bτ

∆2
) (5)

where Jn(y) is the Bessel function of first kind with
integer order n and input y (y ≥ 0). Notice that for
diffusion processes without drift, the potential Vn in
Eq.(5) is a constant or zero.
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3.2 Random Drift-Diffusion Process

The one-dimensional random drift-diffusion process
is described by an imaginary-time quantum system
as

− ∂

∂t
ψ(x, t) = − b

2

∂2

∂x2
ψ(x, t)− iV (x, t)ψ(x, t) (6)

where V (x, t) is the potential function. Here, the
weight in Eq.(2) becomes e−i

∑
l Wlτl where τl is the

duration that the system stays at state l during the
transition. If the total duration of transition τ =∑

l τl is small, then the weight can be numerically
approximated as e−iWnτ where Wn is the transition
rate corresponding to the final state at time t0 + τ .

With the same probabilistic measure as in Eq.(3),
the final functional integral for random drift-
diffusion processes is (Wang, 2013)

Fn,0 =
∞∑
l=0

e−bτVndq
(l)
ji = e−(Vn+b/∆2)τIn(

bτ

∆2
) (7)

where Vn is the potential corresponding to the final
state at time t0 + τ , and In(y) is the modified Bessel
function of first kind with integer order n and input
y (y ≥ 0).

4 Quantum-Random Diffusion on Graphs

4.1 Quantum Diffusion on Graphs

Quantum diffusion on graphs based on CTQW for-
mulation can be computed by spectral analysis. Sup-
pose that the adjacency matrix of a graph G = (V, E)
is H, where V = {vi} is a set of nodes and E =
{(vi, vj)} is a set of edges. The elements of the adja-
cency matrix H are defined as Hij = 1 if (vi, vj) ∈ E ,
Hij = 0 otherwise, andHii = 0 for i, j = 1, 2, . . .. We
use ∂(vi, vj) to denote the shortest graph distance
between nodes vi and vj as a natural number. For
instance, ∂(vi, vi) = 0. ∂(vi, vj) = 1 if there exists
an edge (vi, vj) ∈ E .
Let Γ be a K-dimensional Hilbert space with an

orthonormal basis {ϕ0, ϕ1, . . . , ϕK−1}. We define a
creation operator H+, an annihilation operator H−,
and a conservation operator H◦ such that (Hora and

Obata, 2007)

H+ϕk =
√
ωk+1ϕk+1 (k = 0, 1, 2, . . .)

H−ϕk =
√
ωkϕk−1 (k = 1, 2, . . .) (8)

H−ϕ0 = 0

H◦ϕk = αk+1ϕk (k = 0, 1, 2, . . .)

A pair of sequences ({ωk}, {αk}) is called Jacobi pa-
rameters or Jacobi coefficients with {ωk} being a Ja-
cobi sequence.

The adjacency matrix is decomposed asH = H++
H− +H◦, as a process of stratification. Its interpre-
tation in quantum walks on graphs is as follows. By
specifying a reference or origin node v0 in the graph
G = (V, E), we decompose the nodes in G into strata
as V =

∪
Vk, where Vk = {v ∈ V : ∂(v, v0) = k} is

the stratified set of nodes that has a shortest graph
distance of k to the origin node v0.

The orthonormal basis in Eq.(8) can be con-
structed as

ϕk =
1√
|Vk|

∑
v∈Vk

|k, v⟩ (9)

where |k, v⟩ denotes the eigenket of vertex v in the
k-th stratum of nodes Vk. Then the elements of H+,
H−, and H◦ are defined as follows. For vi ∈ Vk,
H+

ji = Hji if vj ∈ Vk+1, otherwise H
+
ji = 0. H−

ji =

Hji if vj ∈ Vk−1, otherwise H
−
ji = 0. H◦

ji = Hji if

vj ∈ Vk, otherwise H
◦
ji = 0. Therefore, H+, H−,

and H◦ specify the adjacency relations between the
nodes of the current stratum and those of the ‘for-
ward’ stratum, between of the current and of the
‘backward’, as well as within the current stratum,
respectively. Then the diffusion process on a graph
can be modeled as CTQWs on the graph starting
from v0. The propagation is through the strata of
nodes.

The Jacobi coefficients capture the edge va-
lences between strata. For j ∈ Vk+1,

√
ωk+1 =

κ−j
√

|Vk+1|/|Vk| where κ−j = |{v ∈ Vk :
∂(v, vj) = 1}|. For i ∈ Vk, αk+1 = κ◦i where κ◦i =
|{v ∈ Vk : ∂(v, vi) = 1}|. That is, ωk’s characterize
the inter-strata valence whereas αk+1 represents the
valence inside the k-th stratum.

With Gram-Schmidt orthogonalization, polynomi-
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als {Pk(ξ)}∞k=0 can be obtained as

P0(ξ) = 1,

P1(ξ) = ξ − α1,

xPk(ξ) = Pk+1(ξ) + αn+1Pn(ξ) + ωkPk−1(ξ) (10)

where k = 1, 2, . . .. Based on Eqs.(8) and (18), given
a probability measure µ defined by the moments

⟨e0, (H+ +H− +H◦)me0⟩ =
∫ +∞

−∞
ξmµ(ξ)dξ

(m = 1, 2, . . .) (11)

we have

⟨ϕk,Hmϕ0⟩ =
1

√
ω1ω2 . . . ωk

∫ +∞

−∞
ξmPk(ξ)µ(ξ)dξ

(m = 1, 2, . . .)
(12)

The functional integral for amplitude update at the
k-th stratum for CTQW on the graph is

Fk,0(τ) = ⟨ϕk, e−iHτϕ0⟩

=
1

√
ω1ω2 . . . ωk

∫ +∞

−∞
e−iξτPk(ξ)µ(ξ)dξ

(13)

4.2 Quantum Drift-Diffusion on Graphs

Different from the above CTQWs on graphs, the
quantum drift-diffusion process on graphs has an ex-
ternal potential field involved. Similar to Eq.(5),
the proposed functional integral for quantum drift-
diffusion processes in graphs is

Fk,0(xn,x0, τ)

=
e−iC(xn,x0,τ)−V (xn,t)τ

√
ω1ω2 . . . ωk

∫ +∞

−∞
e−iξτPk(ξ)µ(ξ)dξ

(14)

where V (x, t) is the potential field in the configura-
tion space and is associated with drift, C(xn,x0, τ)
is the work of diffusion from node x0 to node xn, and
t is the time.
To illustrate, a two-dimensional (2-D) Euclidean

space χ = {x = (x, y)} in the neighborhood of x0 =

(x0, y0) is discretized to N1 ×N2 nodes as a regular
grid χd = {. . . , (x0 − 1, y0 − 1), (x0 − 1, y0), (x0, y0 −
1), (x0, y0), (x0 + 1, y0), (x0, y0 + 1), (x0 + 1, y0 +
1), . . .}. A graph is formed with each edge connecting
two spatially adjacent nodes. and partitioned into K
subspaces {χd

1, . . . , χ
d
K} according to the distances.

For instance, χd
1 = {(x0−1, y0), (x0+1, y0), (x0, y0−

1), (x0, y0 +1)}, and χd
2 = {(x0 − 2, y0), (x0 − 1, y0 −

1), (x0−1, y0+1), (x0, y0−2), (x0, y0+2), (x0+1, y0−
1), (x0+1, y0+1), (x0+2, y0)}. The nodes χd

1, . . . , χ
d
K

correspond to K strata in the graph.
Suppose that the diffusion matrix in the 2-D

space is B(x, t) ∈ R2×2 and the drift vector is
A(x, t) ∈ R2×1 for a 2-D problem. The relation be-
tween the drift vector and the potential function is
A = [−∂V/∂x,−∂V/∂y]T . In the Euclidean space,
the work of diffusion from node x0 to node xn is
calculated as

C(xn,x0, τ)

= ((xn − x0 −Aτ)TB−1(xn − x0 −Aτ))/(2τ)
(15)

4.3 Quantum-Random Drift-Diffusion in 2-
D Space

The functional integral in Eq.(14) describes the pro-
cess of quantum drift-diffusion in two or higher di-
mensional space. Similar to the one-dimensional case
in Section 3.2, the random drift-diffusion process in
2-D space can be described with an imaginary-time
quantum formulation. The proposed functional in-
tegral for random drift-diffusion processes is

Fk,0(xn,x0, τ)

=
e−C(xn,x0,τ)−V (xn,t)τ

√
ω1ω2 . . . ωk

∫ +∞

−∞
e−iξτPk(ξ)µ(ξ)dξ

(16)

To build a graph to cover the 2-D space, a comb
graph (Accardi et al., 2004) is chosen because it pro-
vides an effective structure yet with simple polyno-
mials. The comb product of a backbone graph G1

and a finger graph G2 is obtained by grafting a copy
of G2 into each vertex of G1 at G2’s reference vertex
o, as shown in Fig. 1.

In the 2-D comb lattice in Fig. 2, the strata are
indicated by the dashed lines, with respect to the
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Figure 1: Comb product combines two 1-D lattices
into a 2-D lattice

Figure 2: The strata in the 2-D comb lattice

reference node in white. The number of nodes in
strata are |V0| = 1 and |Vk| = 4k (k = 1, 2, . . .). The
Jacobi coefficients are ω1 = 4, ωk = k/(k − 1) (k =
2, 3, . . .), and αk = 0 (k = 1, 2, . . .). It has been
shown that (Accardi et al., 2004; Jafarizadeh and
Salimi, 2007)

µ(ξ) =
1

π
√
8− ξ2

(2
√
2 ≤ ξ ≤ −2

√
2) (17)

Based on Eq.(18), we have

P0(ξ) = 1

P1(ξ) = ξ

P2(ξ) = ξ2 − 4

Pk+1(ξ) = xPk(ξ)− k/(k − 1)Pk−1(ξ) (k = 2, 3, . . .)
(18)

Then the functional integral in Eq.(16) can be cal-
culated as

Fk,0(xn,x0, τ)

=
e−C(xn,x0,τ)−V (xn,t)τ

√
ω1ω2 . . . ωk

∫ 2
√
2

−2
√
2

e−iξτPk(ξ)

π
√

8− ξ2
dξ (19)

With the advantage of the strong non-local corre-
lation in quantum diffusion, large step sizes can be

taken during the simulation, which significantly ac-
celerates the simulation of stochastic diffusion. Algo-
rithm 1 shows the algorithm of simulating diffusion.
The timing of simulation is based on the quantum
walk time step τQ. A much shorter time step τR is
used to perform one step of traditional path integral
for probability distribution update. In other words,
one step of quantum walk based on quantum oper-
ator UQ is followed by one step of traditional path
integral based on the short-time transition probabil-
ity TR in each iteration of the simulation.

Algorithm 1 The quantum walk algorithm to simu-
late stochastic drift-diffusion processes based on the
formulation of quantum and random diffusions

1: ψ = ψ0(x);
2: t = 0;
3: while t < T do ◃ main iterations of search
4: update quantum operator UQ =
F (τQ,A,B,V,x, t) by Eq.(16);

5: |ψ⟩ = UQ|ψ⟩;
6: P = ⟨ψ|ψ⟩;
7: update short-time transition probability
TR = C(τR,A,B,x, t) by Eq.(15)

8: P = TRP ;
9: output probability P at time t;

10: t = t+ τQ;
11: end while

5 A Numerical Example

In this section, a numerical example is used to
demonstrate the new quantum walk based diffusion
simulation method. The stochastic resonance phe-
nomenon is a nonlinear response of a system with
sinusoidal inputs simultaneously subject to noise,
where the system oscillates between states. To sim-
ulate stochastic resonance using traditional path in-
tegral approaches, small time step sizes need to be
chosen so that the simulated paths represent the ac-
tual dynamics in the physical system. In contrast,
quantum walk based drift-diffusion simulation can
use much larger step sizes so that the simulation can
be accelerated.
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The simulated system is described by

∂

∂t
p(x1, x2, t) =− ∂

∂x1
(g1(x1, x2)p(x1, x2, t))

− ∂

∂x2
(g2(x1, x2)p(x1, x2, t))

+D
∂2

∂x22
p(x1, x2, t) (20)

where the position x1 and velocity x2 represent the
system’s state that evolves along time t. Functions

g1(x1, x2) = x2

g2(x1, x2, t) = x1 − 2ζϵx2 − a0 sin(2πf0t)

define the drifting coefficients, where ζ and ϵ damp-
ing parameters, a0 is the oscillation coefficient, and
f0 is the oscillation frequency. The corresponding
potential function is

V (x1, x2, t) = −x1x2 − ζ(1− ϵx22) + a0 sin(2πf0t)x2

In this example, the values of the parameters are
ζ = 0.5, ϵ = 1.0, D = 1.0, a0 = 20, and f0 = 0.1.
The drift vector isA = [g1(x1, x2), g2(x1, x2, t)]

T and
the diffusion matrix is

B =

[
D 0
0 Dx22

]
In the simulation, the step size for quantum walks
is τQ = 1.0 whereas the one in the path integral
method is τR = 0.1. For comparison, the system is
also simulated by the path integral method with a
time step size of τ = 0.1. Figs. 3 and 4 show the
probability evolutions computed by traditional path
integral and the proposed CTQW based methods re-
spectively. The system oscillates between two stable
states, which appear at times t = 5 and t = 10 re-
spectively. A ‘rotational’ motion appears during the
dynamic transition process. Figs. 5 and 6 compare
the respective contour lines of probability densities
by the two methods.

6 Concluding Remarks

In this paper, a new continuous-time quantum walk
formulation is developed to simulate stochastic drift-
diffusion processes in two- or higher-dimensional

spaces. The random drift-diffusion process is mod-
eled as the dynamics of imaginary-time quantum
systems. The new simulation algorithm combines
continuous-time quantum walk on graphs with path
integral in Euclidean space. The formulation is
generic and applicable to diffusions when potential
functions are available. The advantages of the pro-
posed quantum walks based approach is the dras-
tic quantum acceleration by choosing larger time
step sizes. The acceleration is particularly attrac-
tive when simulating stochastic resonance, where the
system dynamically oscillates between stable states.
The nonlocal quantum tunneling effect help the sim-
ulation based on large step sizes without the issue
of possibly missing stable states in traditional path
integral approaches. If the algorithm is implemented
in the actual quantum computer, the additional ad-
vantage is the efficiency of representing large state
space by qubits.
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