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Abstract—To enable effective human-agent collaboration, 
new human-centric computing paradigms are needed. This 
paper presents a soft constraint representation scheme based 
on generalized intervals. With logically quantified intervals, 
semantics and intent can be integrated in numerical computing. 
The interpretable numerical results allow for better human-
agent communication. 

I. INTRODUCTION 
Human and computer possess different strengths in 

solving problems such as planning and searching. Compared 
to traditional autonomous agent-based planning and problem 
solving, new issues related to information representation and 
reasoning paradigms between human and computer need to 
be addressed in human-agent collaboration [1]. For instance, 
information should be represented towards human needs and 
capabilities. Human beings solve problems, including 
perception, abstraction, and understanding of real world, at 
different levels of granularity.  

Second, asymmetric communication capabilities between 
human and computer exist. Human can capture computer’s 
intent fairly quickly, while it is hard for computer to 
understand human intention. Dialog style communication 
between human and agent is needed during collaboration 
[2].  

Third, collaboration within a human-agent team prefers 
soft computing. Reducing chances of conflict during the 
searching process of solution is important. In general, to 
enable effective agent-human collaboration, new human-
centric soft computing paradigms are valuable. 

As a subset of soft computing, granular computing [3, 4, 
5] is an emerging conceptual and computing paradigm of 
information processing.  It has been motivated by the urgent 
need for intelligent processing of empirical data into a 
humanly manageable abstract knowledge. Granular 
computing offers a landmark change from the current 
machine-centric to human-centric approach to information 
and knowledge, which involve interval and set theories 
(fuzzy set, rough set, etc.) in a highly comprehensive 
treatment. Philosophically, it is an intention of describing a 
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way of thinking that relies on human ability to perceive the 
real world under various levels of granularity, which is 
captured and modeled with set-based logic and information 
representation schemes.  

The essence of human-centric soft computation is 
computing with words as opposed to numbers in traditional 
machine-centric approach. Rather than applying traditional 
soft computing techniques such as fuzzy logic, neural 
computing, and machine learning, we use a generalized 
interval approach for human-agent collaborative problem 
solving. This is to allow soft constraint representation and 
solving in granular computing for human-agent interaction.  

Interval, as a set of real values, is a good soft constraint 
representation mechanism in word-based human-human 
communication. For example, in giving direction, instead of 
“turn 90.0 degree”, we usually say “turn left”, which can be 
represented with interval as “turn [70, 100] degree”. Instead 
of saying “drive at a speed of 11.5 miles/hour”, we just say 
“drive very slowly”, which may be captured as “drive at a 
speed of [5,15] miles/hour”. In a human-centric computing 
environment, softness of constraints is one of the basic 
characteristics for human-agent communication. 

In this paper, a new algebraic soft constraint 
representation scheme based on generalized intervals is 
proposed for human-agent collaboration. Extended from 
traditional set-based intervals, generalized intervals include 
logical quantifiers and provide interpretation of relations 
among intervals. This new scheme accommodates logic 
relations and semantics in mathematical forms. Intent 
capturing thus can be integrated into numerical computation. 

The remainder of the paper is organized as follows. 
Section II briefly reviews interval analysis and generalized 
intervals. Section III describes the principles of 
interpretation in algebraic interval constraints. Section IV 
illustrates how soft constraints can be applied in human-
agent collaborative path planning. 

II. BACKGROUND 

A. Human-Agent Collaboration 
In traditional human-robot interaction where humans 

remotely operate robots which have limited autonomy, 
human and robot have a master-slave relation. In human-
agent collaboration, a cooperative and peer-to-peer relation 
exists between the two entities. Human and agent help each 
other to solve a common problem with the same goal. In 
previous work, Allen and Ferguson [6] developed an 
architecture of human-agent collaborative scheduling and 
planning. Breazeal et al. [7] demonstrated a framework of 
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human-robot cooperative working and learning. Sidner et al. 
[8] studied the engagement process in collaborative 
conversation. Other research issues include collaborative 
control [9], motion planning for safety [10, 11], team centric 
autonomy [12, 13], and social order [14], etc.  

However, in existing research of human-agent 
collaboration, soft constraint-driven approach for problem 
solving has not been considered. In human-centric 
communication, the property of softness in constraint 
imposition is important. In this paper, we propose a soft 
constraint driven problem solving approach based on 
generalized intervals.  

B. Interval Analysis 
Interval mathematics [15] is a generalization in which 

interval numbers replace real numbers, interval arithmetic 
replaces real arithmetic, and interval analysis replaces real 
analysis. The set of intervals is 

Not only intervals solve the problem of representation for 
real numbers on a digital scale, but they are the most 
suitable way to represent uncertainties and errors in 
technical constructions, measuring, computations, and 
ranges of fluctuation and variation.  

Interval analysis has been extensively used in reliable 
computing in computer science. In engineering fields, 
methods of interval analysis have been used in computer 
graphics [16], robust geometry construction and evaluation 
[17], robot control [18], imprecise structural analysis [19], 
finite-element formulation and analysis [20], soft constraint 
solving [21], and tolerance analysis and synthesis [22, 23].  

Interval analysis captures intrinsic uncertainty and 
variance. However, it is based on a worst-case scenario as in 
traditional linear stack-up methods. The computational 
results usually are pessimistic in this variance addition 
scheme if dependency exists between variables. In contrast, 
modal interval analysis based on generalized intervals is an 
extension of the traditional interval analysis and 
differentiates different semantics of interval specification. 

C. Modal Interval Analysis 
Modal interval analysis (MIA) [24, 25, 26, 27, 28, 29, 30] is 

a logical and semantic extension of interval analysis. In 
MIA, a modal interval or generalized interval is not 
restricted to ordered bounds. Operations are defined in 
Kaucher arithmetic [31]. 

A modal interval or generalized interval KR∈= ],[: xxx  
is called proper when xx ≤  and called improper when 

xx ≥ . The set of proper intervals is denoted by 
{ }xxxx ≤= |],[IR , and the set of improper interval is 
{ }xxxx ≥= |],[IR . Given a generalized interval 

KR∈= ],[ xxx , two operators pro and imp return proper 
and improper values respectively, defined as 

The relationship between proper and improper intervals is 
established with the operator dual: 

For example, ]1,1[−=x  and ]1,1[ −=y  are both valid 
intervals. While x  is a proper interval, y  is an improper 
one. x  and y  have the relationship yx dual= .  

Given a set of closed intervals of real numbers in R , and 
the set of logical existential ( ∃ ) and universal ( ∀ ) 
quantifiers, the semantics of a generalized interval KR∈x  
is denoted by ( )xx proQ ∈x  where },{Q ∀∃∈x . An 
interval KR∈x  is called existential if ∃=xQ . Otherwise, 
it is called universal if ∀=xQ .  

The uniqueness of generalized intervals is its logic 
extension from classical intervals. With this extension, MIA 
is able to model problems on a logical basis and to obtain 
the interval functional evaluations for mathematical models. 
The implications of constraint stacking can be modeled 
based on interpretability principles, as described in Section 
III.  

III. INTERPRETABILITY PRINCIPLES 
If a real relation ),,( 1 nxxfz "=  is extended to the 

interval relation ),,( 1 nxxfz "= , the interval relation z  is 
interpretable if there is a semantic relation 

 As the basis of interpretation, two interval extensions of a 
real function RR →nxf :)( , so-called semantic interval 
functions, are defined in min-max form as  

where ),( ip xx  is the component splitting corresponding to 
interval vector ),( ip xxx = , with sub-vectors px and ix  
containing proper and improper components respectively. 
Important properties of interpretability are available and 
proved based on these two semantic interval functions. 
 
Theorem 3.1 [24] Given a continuous function 

RR →nf :)(x  and a generalized interval vector 
nKR∈x , if there exists an interval KR∈)(xf , then  

Theorem 3.2 [24] Given a continuous function 
RR →nf :)(x  and a generalized interval vector 

nKR∈x , if there exists an interval KR∈)(xf , then 

},|],{[ RRIR ∈∈= baba  (1) 

)],max(),,[min(:pro xxxx=x  (2) 

)],min(),,[max(:imp xxxx=x  (3) 

],[:dual xx=x  (4) 
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Let RR →nf :)(x  be a rational continuous function. Its 

modal rational extension KRKR →n:f  replaces the real 
variables of f  with generalized interval variables and real 
operators with interval operators. The semantics of a modal 
interval relation or function is embodied in the relation’s 
syntax. The syntax of a function RR →n

nxxf :),,( 1 …  
can be represented by a syntax tree. For example, the syntax 
tree of ( )321211 xxxxxf −+=  is shown in Fig. 1. A 

component ix  is uni-incident in the function ),,( 1 nxxf …  if 
it occupies only one leaf of the syntax tree, such as 3x  in 

1f . Otherwise, it is multi-incident, such as 1x  and 2x  in 1f . 
Leaves and branches of the syntax tree are connected with 
either one-variable operators such as  and , or two-

variable operators such as /,,, ×−+ . 

x3 

x1 

x2 x2 x1 

×+

−

 
Fig. 1. The syntax tree of ( )

321211 xxxxxf −+=  

A. Uni-Incident Interpretation 
Theorem 3.3 [24] For a modal rational function 

KRKR →n:)(xf , if all arguments of )(xf  are uni-
incident, then 

 
From Theorems 3.1, 3.2, and 3.3, we know modal rational 

functions of uni-incident variables are interpretable. For 
example, yxyxf +=),(  is considered for ]3,1[∈x  and 

]5,2[∈y . 
]8,3[]5,2[]3,1[])5,2[],3,1([ =+=f , 
]5,6[]2,5[]3,1[])2,5[],3,1([ =+=f , 
]6,5[]5,2[]1,3[])5,2[],1,3([ =+=f , 
]3,8[]2,5[]1,3[])2,5[],1,3([ =+=f , 

have the meanings of  
( )( )( )( )yxzzyx +=∈∃∈∀∈∀ ]8,3[]5,2[]3,1[ , 
( )( )( )( )yxzyzx +=∈∃∈∀∈∀ ]5,2[]6,5[]3,1[ , 
( )( )( )( )yxzzxy +=∈∃∈∃∈∀ ]6,5[]3,1[]5,2[ , 
( )( )( )( )yxzyxz +=∈∃∈∃∈∀ ]5,2[]3,1[]8,3[ , 

respectively. 

B. Multi-Incident Interpretation 
Theorem 3.4 [24] For a modal rational function 

KRKR →n:)(xf , if there are multi-incident improper 

arguments in )(xf  and )(* xt  is obtained from x , by 
transforming, for every multi-incident improper component, 
all incidences but one into its dual, then ))((t)( ** xfx ⊆f . 
Theorem 3.5 [24] For a modal rational function 

KRKR →n:)(xf , if there are multi-incident proper 

arguments in )(xf  and )(** xt  is obtained from x , by 
transforming, for every multi-incident proper component, all 
incidences but one into its dual, then ))((t)( **** xfx ⊇f . 

 
From Theorems 3.1, 3.2, 3.4, and 3.5, modal rational 

functions of multi-incident variables are interpretable with 
some modifications. For example, )/(),( yxxyyxf +=  is 
extended to ]3,1[−=x  and ]7,15[=y . 

]5.1,5.0[])7,15[]3,1/([]7,15[]3,1[),( −=+−×−=yxf  
is not interpretable, whereas  

]5.3,1667.1[])15,7[]3,1/([]7,15[]3,1[)),(( * −=+−×−=yxtf , 

]2143.3,0715.1[])7,15[]3,1/([]15,7[]3,1[)),(( * −=+−×−=yxtf , 

]1667.1,3889.0[])7,15[]1,3/([]7,15[]3,1[)),(( ** −=+−×−=yxtf , 

]5.1,5.4[])7,15[]3,1/([]7,15[]1,3[)),(( ** −=+−×−=yxtf  
are interpretable. They are interpreted as 

( )( )( )( ))/(]5.3,1667.1[]15,7[]3,1[ yxxyzzyx +=−∈∃∈∃−∈∀ , 
( )( )( )( ))/(]2143.3,0715.1[]15,7[]3,1[ yxxyzzyx +=−∈∃∈∃−∈∀ , 
( )( )( )( ))/(]3,1[]1667.1,3889.0[]15,7[ yxxyzxzy +=−∈∃−∈∀∈∀ , 

( )( )( )( ))/(]5.4,5.1[]3,1[]15,7[ yxxyzzxy +=−∈∃−∈∃∈∀  
respectively. 

Following the interpretability principles, we can formulate 
interval constraints in human-agent collaborative problem 
solving. In order to achieve specific semantics, different 
modalities can be assigned to interval variables accordingly. 
The constraint formulation process in human-agent 
communication is described in Section IV. 

IV. HUMAN-AGENT COMMUNICATION BASED ON SOFT 
CONSTRAINTS 

Combination of natural languages and gestures is the 
natural communication method for human beings. Thus 
computing with words and perception requires extensive 
semantics and intent representation. Generalized intervals 
provide a good logic embedding mechanism for semantics 
embodiment for numerical computation. We use spatial 
relationships and reasoning to illustrate the concept of 
algebraic soft constraint representation, since spatial 
language is heavily used in task-level planning, searching, as 
well as navigation for robots. In these scenarios, 
collaborative environments with a combination of verbal 
commands and synthetic gesture aids such as personal 
digital assistant (PDA) are commonly used. 

( )( )
( )( )),(pro
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A. Intent Capturing and Semantics Modeling 
Intent capturing is one of the challenges in human-agent 

communication. There are two levels of intent: informative 
and communicative. Informative intent is the abstract 
intention in the plan, and it contains the meaning of plan. 
Communicative intent is manifested during the 
implementation, and it includes the meaning of planner. 
Task level human-agent communication focuses more on 
communicative intent. 

In the algebraic interval constraint representation, 
communicative intent is embodied as specifications or 
constraints. For example, as illustrated in Fig. 2, when 
human asks robot to “go that direction to find the door”, 
natural language is inherently imprecise. In our soft 
constraint representation scheme, the direction and distance 
are ranges and represented as intervals. Thus, the interval 
constraint capturing the relation between variables is 

dx =θcos , 
which is the interval extension of the real constraint. The 
direction and distance to move and the distance of the door 
are all given as interval ranges instead of rigid real numbers, 
which facilitate human-centric communication and 
computation with coarse-grained abstraction. 

d

x

θ

dx =θcos

Human: “Go that direction to find the door” 

 
Fig. 2. Soft constraint is used in human-agent communication 
 
The advantage of the algebraic interval constraint 

representation is that it allows us to capture some subtle 
semantics difference as an important component of 
communicative intent. In the example of Fig. 2, “go that 
direction to find the door” means the traveling distance x is 
to be determined and the semantics is 

However, “go that direction, you may find a door” means 
differently. The semantics is represented as 

Similarly, “go a direction, you need to find the door” can be 
captured as 

In this sense, intent and semantics are represented by 
interval-based predicates. If interval values with different 
modalities are given, different range estimation from 
computation will be derived. For instance, if we need to 
express the semantics of (11), the interval values are 

IR∈= ]4001.0,2999.0[θ , IR∈= ]4026.31,4281.43[x , 
and IR∈= ]000.30,000.40[d . The numerical relation is 

]000.30,000.40[])4001.0,2999.0cos([]4026.31,4281.43[ =× . 

In this case, ranges of θ  and d  are predetermined a priori 
by, e.g., sensors, whereas x  is the range derived a posteriori 
by the constraint. However, if we want to express the 
semantics of (12), different interval values will be assigned 
or derived with different modalities. An example is 

IR∈= ]4001.0,2999.0[θ , IR∈= ]8701.41,5711.32[x , 
and IR∈= ]000.40,000.30[d . The numerical relation is 

]000.40,000.30[])4001.0,2999.0cos([]8701.41,5711.32[ =× . 
Here, the range of θ  may be predetermined a priori through 
sensing and x  may be predetermined through, e.g., the 
estimation of battery life.  

In general, within an algebraic interval constraint, an 
interval is called a priori estimation if it has a universal 
modality and called a posteriori estimation if it has an 
existential modality. Depending on application contexts, 
intervals are assigned as a priori estimations if they have the 
semantics of “predetermined”, “crucial”, “unchangeable”, 
etc., in contrast to a posteriori estimations that have the 
semantics of “derived”, “adjustable”, “flexible”, etc.  

B. Constraint Chain Formulation 
The semantic richness of generalized intervals provides a 

new computing mechanism with mixed symbolic and 
numerical computation. In a human-agent collaboration 
environment, information granule can be captured by 
interval values and associated logical quantifiers.  

Soft constraints are formulated within specific 
collaboration scenarios. Problems need to be solved based 
on formulation of soft constraint chains, which are 
constructed as a result of conversational human-computer 
dialogs. As more constraints are added into the chain, 
solution space is narrowed down, and granularity of 
information increases.  

Here, the constraint chain formulation process is 
illustrated with a collaborative path planning between 
human and robot in the example of Fig. 3. The objective is 
to find a path for the robot to navigate from a current 
position to a target. Suppose human suggests a path from 
any position 1−ip  to a next position ip  with gestures, which 
are depicted as dash arrows in Fig. 3. Based on this 
approximated path, the robot needs to find a detailed and 
implementable one that will avoid collisions. The robot 
detects obstacle positions ir ’s between two positions. Some 
intermediate positions iq ’s are generated to avoid collision. 
Because of the vagueness of gestures, the positions ip ’s are 
represented as interval boxes. With the consideration of 
errors and uncertainties involved in sensing, the obstacle 
positions ir ’s that robot detects are also interval boxes. The 
derivation of intermediate positions iq ’s is based on 

( )( )( )( )dxxd =∈∃∈∀∈∀ θθ cosxdθ  (11)

( )( )( )( )dxdx =∈∃∈∀∈∀ θθ cosdxθ  (12)

( )( )( )( )dxxd =∈∃∈∀∈∀ θθ cosθxd  (13)
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where s  is the safety ratio to bypass obstacles; 0=v  if 
robot passes from the right side of an obstacle, and 1=v  if 
from the left side.  

1q 2q1p

2p0p

1r 2r

 
Fig. 3. An example of human-agent collaborative path planning 
 
Based on the suggested path from human, robot computes 

intermediate interval positions and generates feasible paths. 
With the interpretability principles, logic relations among 
positions in the calculated path can be interpreted. The 
semantics of the relations is helpful for human and robot to 
understand the consequence of path planning.  

The arithmetic of generalized intervals is implemented in 
Matlab and integrated with INTLAB [32], a toolbox for the 
classical interval analysis. The example of collaborative path 
planning in Fig. 3 is developed with a graphical user 
interface that uses mouse clicks to simulate synthetic 
gestures. The left-mouse and right-mouse clicks represent 
proper and improper intervals respectively. Users specify the 
positions ip ’s. The derivation of intermediate positions 

iq ’s is based on (14) and (15). 
For instance, if considering 0p , 1p , 1r , and 1q  with the 

input as  

( )
( )
( ) 2

1

2
0

2
1

]5000.0,0999.0[],8501.1,4499.1[

]7215.1,6814.1[],3370.0,2969.0[

]6401.0,5599.0[],9501.0,8499.0[
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we have the output ( )]4397.0,2183.0[],7374.0,4932.0[1 =q . The 
interpretations are  

( )( )
( )( )
( )( )holds )14(Equ.]7374.0,4932.0[

]9501.0,8499.0[]2201.0,1799.0[

]5000.0,0999.0[]7215.1,6814.1[
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10
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and 
( )( )

( )( )
( )( )holds )15(Equ.]4397.0,2183.0[

]6401.0,5599.0[]2201.0,1799.0[

]8501.1,4499.1[]3370.0,2969.0[

1

1
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y
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Combining these two, the result has the meaning of 
( )( )( )( )( )

( )formed is path A
11111100 qrspp ∈∃∈∀∈∀∈∀∈∀ qrspp

 

Here, 1q  is a “flexible” or “soft” position where the robot 
can adjust itself for the next step. In contrast, 0p  and 1p are 
“rigid” positions where the positions are critical and cannot 
be adjusted. The numerical result is shown in Fig. 4-a.  

Suppose the position of 1p  becomes flexible, that is,  

( ) 2
1 ]0999.0,5000.0[],4499.1,8501.1[' IR∈=p  

the variation range of 1q  can be reduced to  
( )]3677.0,3063.0[],6654.0,5812.0['1 =q  

The result is shown in Fig. 4-b and interpreted as 
( )( )( )( )( )

( )formed is path A

''pro 11111100 qprsp ∈∃∈∃∈∀∈∀∈∀ qprsp
 

Assigning different combinations of modalities to interval 
variables, different semantics and relations can be achieved. 

(a) 
( )( )( )

( )( )
( )formed is path A

1111

1100

qr

spp

∈∃∈∀

∈∀∈∀∈∀

qr

spp
 

(b) 
( )( )( )

( )( )
( )formed is path A

''pro 1111

1100

qp

rsp

∈∃∈∃

∈∀∈∀∈∀

qp

rsp
 

1q 1p

0p

1r

1q 1'p

0p

1r

 
Fig. 4. Numerical results with semantics, where blue and red boxes 

represent a priori and a posteriori estimations respectively  
 
If multiple paths are involved, the segments can be 

computed separately. Then the concatenation of these 
segments forms a chain of paths with a combination of 
semantics. For example, the concatenation of 

( )( )( )( )( )
( )formed is 1 Path

11111100 qrspp ∈∃∈∀∈∀∈∀∈∀ qrspp
 

and 
( )( )( )( )( )

( )formed is 2 Path
22222211 qrspp ∈∃∈∀∈∀∈∀∈∀ qrspp

 

generates 
( )( )( )( )( )

( )( )( )( )formed are Paths221122

11221100

qqr

rsppp

∈∃∈∃∈∀

∈∀∈∀∈∀∈∀∈∀

qqr

rsppp
 

as shown in Fig. 5-a. The concatenation of  
( )( )( )( )( )

( )formed is 1 Path

'' 11111100 qprsp ∈∃∈∃∈∀∈∀∈∀ qprsp
 

and 
( )( )( )( )( )

( )formed is 2 Path

'' 22222211 qrspp ∈∃∈∀∈∀∈∀∈∀ qrspp
 

generates 
( )( )( )( )( )

( )( )( )( )formed are Paths''' 221111

22112200

qqp

rrspp

∈∃∈∃∈∃

∈∀∈∀∈∀∈∀∈∀

qqp

rrspp
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as shown in Fig. 5-b. Notice that the concatenation of 
p∈∀p  and p∈∀p  is p∈∀p , and the concatenation of 
p∈∀p  and p∈∃p  is p∈∃p . However, the 

concatenation of p∈∃p  and p∈∃p  is not p∈∃p  in 
general.  

           (a)    (b) 
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Fig. 5. Concatenation of constraints forms a chain of paths 

V. CONCLUDING REMARKS 
In human-agent collaborative problem solving, human 

beings need to interactively give guidance to autonomous 
agents during searching, while agents perform computation 
concurrently. This interactivity can speed up the solution 
searching process. In this paper, we present a new soft 
constraint formulation mechanism based on generalized 
intervals, in which semantics and communicative intent are 
captured and embedded in numerical computation. This 
human-centric constraint-driven problem solving approach 
is illustrated with collaborative path planning. Interval 
values represent imprecise position information inherent in 
human dialogs. With existential and universal modalities, 
interpretable logic relations among intervals are integrated 
with numerical constraints. This creates a new possibility of 
improving human-agent communication with mixed 
symbolic and numerical computing. 
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