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ABSTRACT 

The objective of this research is to increase the robustness of discrete-event 

simulation (DES) when input uncertainties associated models and parameters are 

present. Input uncertainties in simulation have different sources, including lack of 

data, conflicting information and beliefs, lack of introspection, measurement errors, 

and lack of information about dependency. A reliable solution is obtained from a 

simulation mechanism that accounts for these uncertainty components in simulation. 

An interval-based simulation (IBS) mechanism based on imprecise 

probabilities is proposed, where the statistical distribution parameters in simulation 

are intervals instead of precise real numbers. This approach incorporates variability 

and uncertainty in systems. In this research, a standard procedure to estimate interval 

parameters of probability distributions is developed based on the measurement of 

simulation robustness. New mechanisms based on the inverse transform to generate 

interval random variates are proposed. A generic approach to specify the required 

replication length to achieve a desired level of robustness is derived. Furthermore, 

three simulation clock advancement approaches in the interval-based simulation are 

investigated. A library of Java-based IBS toolkits that simulates queueing systems is 

developed to demonstrate the new proposed reliable simulation. New interval 

statistics for interval data analysis are proposed to support decision making. To assess 

the performance of the IBS, we developed an interval-based metamodel for automated 

material handling systems, which generates interval performance measures that are 

more reliable and computationally more efficient than traditional DES simulation 

results.  
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CHAPTER 1:  
INTRODUCTION 

With the advancement of computational capabilities, simulation has become one 

of the most widely used operations research and management science techniques. 

Application areas for simulation are numerous and diverse, and it has been widely used in 

several applications, namely manufacturing systems, service organizations, military 

weapons systems, systems’ logistics requirements, operating transportation systems, and 

supply chain management. Simulation is used to imitate systems, real-world facilities or 

processes, by the use of computers. DES can be viewed as a 10-step study, as listed in 

Figure 1-1 (Law, 2007).  

 

 

Figure  1-1: Steps is a DES Study 

1. Formulate problem and 
plan the study

2. Collect data and define 
a model

3. Assumptions document 
valid?

4. Conduct a computer 
program and verify 5. Make pilot runs

6. Programmed model 
valid

7. Design experiemnts 8. Make production runs

9. Analyze output data10. Document, present and use results

NO

YES

NO

YES
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Figure  1-1 represents the steps that formulate a common simulation study. 

Attention must be paid to step 2 so that a reliable input analysis is guaranteed. In this 

step, the collection of data and modeling the input random variables using statistical 

distributions are performed. Traditionally, the maximum likelihood estimation (MLE) is 

used to estimate input parameters of the statistical distribution. This approach models 

statistical distributions with real-valued parameters. One of the main problems in this 

approach is the assumption that the input parameters are known with certitude. However, 

when uncertainty is significant in making decisions, it must be quantified and 

incorporated into simulations. In addition, the uncertainty must be interpreted through 

simulation predictions regardless of its source. 

The existence of uncertainties in real-world systems would never make the input 

parameters of distribution functions known in certainty. The fact that MLEs are 

asymptotically normally distributed suggests a way of checking how sensitive a 

simulation output with respect to (w.r.t.) a particular input parameter. This characteristic 

allows us to build a confidence interval for the estimated parameter of the MLE. 

Consequently, simulation experiments are run with input parameters using the end-points 

of the confidence interval. If performance measures of interest are sensitive to the 

selected value of the input parameter, this implies that it is erroneous to make our 

decisions based upon one single-value input parameters. 

The objective of this research is to create a new reliable interval-based discrete-

event simulation mechanism. A simulation mechanism is reliable if the completeness and 

soundness of its results w.r.t. uncertainties can be verified. A complete solution includes 

all possible occurrences. A sound solution does not include impossible occurrences. The 
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proposed simulation mechanism allows us to verify the completeness and soundness of 

results easily, and at the same time computationally efficiently.  

1.1 Statement of Problem 

In traditional simulation mechanisms, uncertainties are modeled using probability 

distributions with real-valued parameters, (e.g., Exponential(1.0)). This uncertainty 

representation does not capture the total uncertainty components explicitly. The total 

uncertainty is composed of two components: 

Variability: is due to the inherent randomness in the system. In literature, 

variability is also referred to as stochastic uncertainty, simulation uncertainty, aleatory 

uncertainty, and irreducible uncertainty. This component is irreducible even by additional 

measurements. The typical representation of variability is based on probability 

distributions.  

Uncertainty: is due to the lack of perfect knowledge or enough information about 

the system. Uncertainty is also known as epistemic uncertainty, reducible uncertainty, 

and model form uncertainty. Since the uncertainty is caused by the lack of information 

about the system, it can be reduced by increasing our knowledge to fill the information 

gap. 

The distinction between these types of uncertainty is important because, as 

mentioned above, uncertainty is reducible. Parameter uncertainty can be characterized as 

epistemic, because as the random variable sample size increases, the uncertainty about 

the parameter value is reduced. From a psychological point of view, epistemic 

uncertainty reflects the possibility of errors in our general knowledge. This has attracted 
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researchers to study how our neural systems respond to degrees of uncertainty in human 

decision-making (Hsu et al., 2005). Experiments have shown that there is a strong 

relationship between the level of uncertainties in decision-making and the activation level 

of our neural system. Thus, we can conclude that capturing the total uncertainty 

components in simulation supports robust decision making.  

The classical simulation mechanism currently adopted in the modeling and 

simulation (M&S) industry lacks the ability to study systems with the consideration of 

the above two components separately where the input probability distributions and their 

parameters in these simulations are deterministic and precise. One can argue that this 

approach may lead to erroneous conclusions because only the variability component of 

the total uncertainty is represented, while the uncertainty component is ignored. The 

reliability of inputs, and thus, the outputs of these simulations is unknown. When 

simulations are used in system analysis with significant risks involved and where 

decisions made based on simulation results are sensitive to the uncertainty component, 

we need to incorporate the total uncertainty in simulations. The reliability of output 

measures and the robustness of decisions are expected to be improved when the total 

uncertainty is captured in inputs. Thus, how accurately a simulation model can predict is 

directly related to the reliability of input analysis.  

There are many arguments (e.g. Walley, 1991; Draper, 1995; & Zimmermann, 

2000) which deliberate the sources of uncertainties and support the admission of the total 

uncertainty. The most important of those related to simulation include: 

• Lack of data: the parameters of probability distributions and distribution types are 

uncertain when the sample size of data for input analysis is small. In some situations, 
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it may not be possible to collect enough data on the random variables of interest. The 

lack of enough information introduces errors in simulation and requires the analyst to 

find new ways to describe the associated uncertainty more rigorously.  

• Conflicting information: if there are multiple sources of information, the analyst may 

face conflicts within the data sources. It is not appropriate to draw a simple 

conclusion of distributions from several pieces of contradictory evidence. The 

absence of relevant information has to be properly modeled and incorporated in the 

simulation.  

• Conflicting beliefs: when data is not available, the analyst usually depends on expert 

judgments and opinions. The information obtained from experts is subjective due to 

the diversity of their past experiences, which can lead to inconsistent observations. 

• Lack of introspection: in some cases, the analyst cannot afford the necessary time to 

think deliberately about an uncertain event or an accurate description of physical 

systems. The lack of introspection increases the risk of inaccurate simulation of the 

systems under study. The associated uncertainties have to be reflected in the 

simulation input distributions to receive more reliable outputs. 

• Measurement errors: all measurements are approximated values (instead of true 

values) due to the limitations of measuring devices and environment, process of 

measurement, and human errors. The uncertainties associated with the collected 

quantities should be addressed in input analysis in order to give more reliable outputs. 

• Lack of information about dependency: lack of evidence about the dependency among 

factors and variables as well as unknown time dependency of these factors contribute 

to increase simulation models’ uncertainties. For example, when a queueing system 
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has dependencies between arrival and service patterns, simply modeling it as an 

M/M/1 queue with arrival and service rates as the means of the available data would 

result in ignoring the dependencies. The estimation about the waiting time will be 

inaccurate. The consideration of unknown dependency among variables will build 

more reliable simulation models.  

The sources of uncertainties mentioned above draw our attention to the 

importance of including the uncertainty component in simulation. It is ultimately crucial 

to understand the impact of capturing the total uncertainty components on robust decision 

making. The two components of the total uncertainty have to be represented explicitly in 

simulation. In literature, uncertainties associated with distribution types are referred to as 

model uncertainties, and those with parameter values as parameter uncertainties. 

Therefore, in this document, input uncertainties refer to both. This research promises to 

provide a new reliable DES mechanism that incorporates input uncertainties in 

simulation. 

1.2 Motivation of this Research 

Simulation model performance measures are a function of a particular input 

parameter value. Traditionally, simulation analysts use heuristics or graphical procedures 

to fit a statistical distribution for the available data. However, the analysts do not know 

with absolute certainty if they are using the right model. Model uncertainty is prevalent 

when using these methods (e.g., Exponential(1.0) vs. Uniform([0.5,1.5])). The reason is 

the use of goodness-of-fit tests to assess the goodness of the model chosen. Goodness-of-

fit tests can be characterized as unreliable tests as they are very sensitive to the sample 
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size. Moreover, given that the input distribution is correct, simulation analysts still will 

not completely know which parameters to use. MLE assists the simulation analysts to 

estimate the value of the input parameters (e.g., Exponential(1.0) vs. Exponential(1.5)). 

This estimation fails to capture the parameter uncertainty in the input distributions and 

could lead to wrong conclusions from simulation. The validity and credibility of the 

simulation results and output performance measures depend on the choice of input 

probability distributions and the associated parameters. The following example illustrates 

the problem of this practice. 

Example 1.1: 

Consider the operation of a single-teller bank with an M/M/1 queue with the 

arrival rate of λ customers per hour and the service rate is µ customers per hour. The bank 

opens its doors at 9 A.M. and closes at 5 P.M., but it stays open until all customers at 5 

P.M. have been served. Suppose that we have abundant data about the service rate but 

only few about the arrival rate. With the MLE data fitting, we assume that the 

resulted 𝜇0 = 10 is precisely known whereas the resulted 𝜆0 = 10 is not. The objective 

of the single-server queueing simulation is to estimate the expected steady-state sojourn 

time (time spent in the system 𝑦). The bank management would decide if the bank needs 

to hire a new teller based on the simulation estimation of 𝑦. It sees that an acceptable 

average sojourn time in the system is 0.5 hour per customer at maximum.  

In the simulation, the ith customer sojourn time, 𝑤𝑖, is calculated by 𝑤𝑖 = 𝑑𝑖 − 𝑎𝑖 , 

where 𝑎𝑖 and 𝑑𝑖 are the ith customer’s arrival and departure times, respectively. The 

simulation inputs for the ith customer are its inter-arrival time 𝜏𝑖 = 𝑎𝑖 − 𝑎𝑖−1 and service 

time 𝑠𝑖. With the random-number streams 𝒖1 for the inter-arrival times and 𝒖2 for the 
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service times, we generate 𝜏𝑖 = −(1 𝜆⁄ )ln(1 − 𝑢1𝑖) and 𝑠𝑖 = −(1 𝜇⁄ )ln(1 − 𝑢2𝑖) by the 

inverse-transform method (Law, 2007). 

The average sojourn time can be estimated as 𝑡̂ = (1 𝐶⁄ )∑ 𝑤𝑖𝐶
𝑖=1  where the 

simulation was run long enough to complete the services for C customers. Since the 

arrival rate is not precisely known with limited data, three possible values λ={8, 9, 9.5} 

are suggested to study the performance of the system. The input parameter 𝜆 can be 

varied to explore different level of imprecision. Table  1-1 shows the output statistics for 

the three scenarios from n=10,000 independent replications of simulation (using Arena® 

10.0). 

 

TABLE  1-1 
SIMULATION RESULTS FOR N=10,000 INDEPENDENT REPLICATIONS OF THE BANK MODEL IN 

ARENA®  

λ Mean: 𝒚�  Half-width: 𝒕𝒏−𝟏,𝟏−𝜶 𝟐⁄ �𝒔𝒚� √𝒏⁄ � (𝒔𝒚� is sample std. 
dev.,α=0.1) 

8 0.3628 <0.01 
9 0.4732 <0.01 

9.5 0.5432 <0.01 
 

From Table  1-1, we can see that the performance measure sensitivity depends on 

the input parameter values. If the arrival rate was taken as λ=9.5, the management would 

decide to hire a new teller. However, if the estimated arrival rate from input analysis 

happened to be λ=8 or λ=9, the management would not hire a new teller. The parameter 

estimate largely depends on the sample size in the input analysis as well as the time when 

those samples were collected. For this reason, the management could potentially make 

wrong decisions with a high cost. Besides parameter uncertainty, we may also ask how 

)(hrs
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reliable the result is with the selection of exponential distributions as the input model. If 

the independent arrival assumption is not valid, ignoring correlations can have a major 

effect on the output performance (Livny et al., 1993). 

The above simple example shows us the importance of capturing the total 

uncertainty in simulation. In this example, simulation outputs could lead the management 

to unintentionally provide a service that is not as good as what is expected or make a high 

cost decision which is unnecessary. 

1.3 Significance of the Problem 

Discrete-event simulation has imposed itself as a powerful tool because of its 

ability to allow its users to imagine their existing and new systems by observing and 

quantifying the systems’ behaviors. With the advancement of computer animation and 

processing, simulation is used extensively by industry and the government to explore and 

visualize their systems, and, moreover, to study and compare alternative designs to 

significant problems. Most of our world decisions are made under uncertainties. Here are 

some facts to that premise: 

• Risk estimation of catastrophic fire incidents in manufacturing facilities, business 

high-rises, or school buildings may be used to select evacuation plans and 

suppression routes, where the prior probabilities of such breakouts and costs are 

uncertain (e.g., Elkins et al., 2007). 

• Decisions for design and modification of systems in NASA missions to achieve and 

maintain high safety standards are made under highly significant uncertainties (e.g., 

Stamatelatos, 2002).  
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• The Navy devises strategies to deter terrorist attacks on ports, without knowing 

attackers’ tactics such as the number and speed of attackers (e.g., Lucas et al., 2007).  

• Executives design resilient global supply chain networks with the consideration of 

disruptive natural disasters and political instability, however with limited information 

about the risk events (e.g., Deleris & Erhun, 2005). 

Due to the incomplete descriptions of a mechanism or process and other 

limitations of scientific knowledge, environmental and ecological problems underlie 

uncertainties for which risk analysts use different approaches to represent and propagate 

(e.g., Ferson & Ginzburg, 1996). 

Consequently, it becomes more critical to create a reliable simulation mechanism 

that helps in robust decision making. 

1.4 Research Objectives 

The objective of this research is to develop a fundamentally different discrete-

event simulation framework based on intervals instead of traditional precise numbers. 

The parameters of probability distributions in simulations are intervals, and probabilities 

become imprecise. Imprecise probability allows the total uncertainty in simulation to be 

represented in a concise form, for more details, see Section 2.2. Our goal is to create a 

new reliable interval-based DES mechanism that accounts for input uncertainties, by 

executing the following tasks: 

1. Input Analysis: methods and algorithms are developed to generate random 

interval variates from imprecise statistical distribution functions as the simulation 

input. 
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2. Simulation Mechanism: detailed simulation logic based on intervals including 

clock advancement and uncertainty propagation is implemented to carry out the 

simulation. 

3. Output Analysis: statistical measures for variability and uncertainty are proposed 

for interval data interpretation and comparison.  

The new simulation framework is to help M&S industries by providing them with 

a new reliable, understandable, verifiable, easy-to-implement, and efficient DES 

mechanism that simultaneously incorporates variability and uncertainty by estimating a 

solution whose completeness and soundness w.r.t. uncertainties can be verified. 

1.5 Major Contributions 

In this dissertation, we have developed an interval-based discrete-event simulation 

using probabilistic input distributions with interval parameters. The interval-based 

formulation of the input distributions models total uncertainty in order to support reliable 

decision making. The interval-based simulation led us to research the following DES 

components in an interval-based platform: 

1. Parameterization of statistical distributions with interval parameters: 

Selecting interval parameters for input distributions in the IBS is based on order-

statistics sampling distribution. The objective of the interval parameters is to enclose all 

possible real-valued scenarios with a certain level of confidence. A relationship is 

formulated based on order statistics sampling distribution to evaluate the interval 

parameters which can be used to parameterize single and multiple parameter 

distributions. In this dissertation, we derive the relationship for the exponential and 
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normal distributions as examples for single and multiple parameter distributions, 

respectively.  

2. Simulation robustness measure: 

As a measure of completeness to support the IBS, we reversely use the derived 

parameterization relationship to assess the IBS replication length. On the assumption of 

interval parameters, the required replication length is estimated to enclose the real-valued 

variates within the interval variates at each order with a certain level of confidence. The 

relationship is derived in the case of the exponential, normal, and triangular distributions. 

3. Interval variate generation: 

We propose an interval variate generation technique based on the inverse 

transform method. Single and multiple parameter distributions are discussed. The 

exponential distribution is used as an example in regard to the single parameter 

distributions. In practice, pairs of random variates are generated using the lower and 

upper parameter values. Applying this on the multiple parameter distribution is not 

straightforward. All possible combinations of the parameters’ values should be 

considered to generate the enclosing interval variate. Herein, we counter this by studying 

the interval variate of the normal and triangular distributions. 

4. Simulation clock advancement in the IBS: 

In this dissertation, we investigate three possible approaches to handle the IBS 

event list. It is more complex to manage the firing of interval events as they occur within 

a window of time and their occurrences are not precisely known. It also becomes more 

difficult when the interval times of the events overlap. Herein, we study three possible 

approaches to handle the event list of the IBS and the simulation clock advancement 
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respectively. The three approaches are based on: (1) the lower times to estimate an 

imprecise best-case scenario, (2) the upper times to estimate an imprecise worst-case 

scenario w.r.t. performance measure of interest, and (3) a uniformly sampling approach to 

estimate precise average scenarios that is compared to the Second-order Monte-Carlo 

(SOMC). 

5. Interval-based metamodel for the automated material handling simulation: 

We propose an interval-based automated material handling metamodel to simulate 

a 300m wafer fab. The metamodel is implemented in a Java-based object-oriented 

simulation package called, JSim. JSim, a library of Java-based interval DES toolkits, has 

been developed to support the implementation of the IBS. We modeled two dispatching 

rules for this application to estimate interval results of the mean response times. 

1.6 Thesis Outline 

The remainder of this thesis is organized as follows. In Chapter 2, we briefly 

review the current literature on the input uncertainty quantification methods in DES, and 

we argue that these methods do not produce complete and sound solutions. Hence, these 

methods could lead to unreliable conclusions. In order to lay the foundation for the IBS, 

we survey the imprecise probability representations. The IBS representation of imprecise 

probability is based on the generalized interval form. We also present Kaucher interval 

arithmetic and its extension, the generalized intervals as coherent mechanisms to carry 

out the interval mathematical computations and the design of the interval statistics. We 

end Chapter 2 by summarizing the research gaps. In Chapter 3, we introduce the interval-

based simulation mechanism. The input analysis of our mechanism is discussed by 
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proposing a standard procedure to determine the interval parameters. In order to assess 

the validity of the parameterization technique, some SOMC experiments are performed 

respectively. We also propose a simulation robustness measure regarding the required 

number of IBS replications to include all possible real-valued scenarios at a certain 

confidence level. In Chapter 4, we investigate the simulation clock advancement in the 

IBS. M/M/1 queueing system with interval parameters is employed to illustrate the IBS 

mechanism using hand simulation. Chapter 4 ends with a discussion about proposed 

output statistics for interval data. JSim is also described as our testbed to run the IBS. 

Chapter 5 presents an interval-based metamodel approach to estimate the performance of 

automated materials handling systems as a real-life application of the IBS. In the final 

chapter, a summary of the dissertation work and outlines for new future research work 

are given. 
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CHAPTER 2:  
LITERATURE REVIEW 

Many methods have been proposed to quantify the input uncertainties in DES. 

This chapter serves as a literature review of the relevant work dedicated to support 

reliable DES mechanism and introduces the concepts of imprecise probabilities and 

interval analysis. 

2.1 Input Uncertainty Quantification in Simulation 

Input uncertainty in simulation attracted researchers’ attentions only recently. The 

following sections summarize the present state of the uncertainty quantification methods 

in simulation. 

2.1.1 Second Order Monte Carlo Simulation 

One of the popular simulation techniques that represent the total uncertainty is the 

second order Monte Carlo approach (Lan et al., 2007). A second-order probabilistic 

sensitivity analysis is superimposed on the traditional simulation so that uncertainties are 

quantified by sampling the parameters of the first-order probabilistic distributions. 

SOMC contains two simulation loops. The inner loop is the variability loop that reflects 

the natural variability. The outer loop represents the uncertainty of the input parameters 

of the inner loop.  

SOMC is easy to implement. Yet, the double-loop simulation is computationally 

costly. In each replication of the outer loop, the simulation output captures one of the 

possible scenarios associated with the uncertain parameters. As the number of 
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replications for the outer loop increases, the simulation robustness increases. However, 

the analyst does not know how many replications to run in order to achieve the desired 

robustness representing all possible scenarios. The additional question that has to be 

asked is whether the analyst has enough information to select the distributions of the 

input parameters in the outer loop. 

Further, the completeness of response measurement is not easily verified in 

SOMC. In SOMC, the soundness of the response measurement is guaranteed if the outer 

loop distributions for the input parameters are valid. However, the completeness is not 

verifiable unless the number of replications for the outer loop increases tremendously. 

2.1.2 Bayesian Methods 

The basic idea of the Bayesian analysis for input uncertainty in simulation is to 

place a prior distribution on each input parameter in simulation to describe its initial 

uncertainty. The prior distribution is then updated to a posterior distribution based on the 

observed data. The two distributions are used to reduce uncertainty about the parameters.  

Glynn (1986) first proposed a general Bayesian approach to continuously update 

input distributions with real-world data. Chick (1997) suggested the applications of 

Bayesian analysis to a broader range of areas such as input uncertainties, rankings, 

response surface modeling, and experimental design. Andradóttir and Bier (2000) also 

proposed the Bayesian analysis approach for input uncertainties and model validation. A 

Bayesian model average (BMA) method, developed by Chick (1999, 2000, 2001), is used 

when multiple candidate distributions are proposed for a single source of randomness. It 

estimates the model and input parameters based on posterior distributions. The algorithm 
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generates independent and identically distributed (IID) replicates of the estimates by 

sampling a single model and parameter from the posterior. The parameters of the chosen 

model are then updated. This process is repeated and the output is averaged (Ng & Chick, 

2006). The idea of BMA was further improved by Zouaoui and Wilson (2001a, 2001b, 

2003, 2004). In their new version of BMA-based simulation algorithm, the analyst has 

more control on the number of simulation replications to be performed.  

The Bayesian methods quantify the parameter uncertainty in the simulation 

response. However, the difficulty of computing posterior distributions hindered the wide 

spread of this method. In practice, the analyst needs more computational procedures such 

as Markov chain Monte Carlo simulation or importance sampling to implement this 

method. The non-generality of the methods has also reduced their use since they need to 

be tailored to each application (Henderson, 2003). 

2.1.3 Delta Method 

Cheng and Holland proposed a Delta method (Cheng, 1994; Cheng & Holland, 

1997, 1998), and the framework was also adopted by Zouaoui and Wilson (2001a, 

2001b). The framework of this method assumes that the model is known while input 

parameters are uncertain. The true values of the parameters are estimated using the MLE 

assuming that the parameters follow a normal distribution. This estimation is valid under 

mild regularity conditions. 

The total output variance of simulation is estimated by two terms. The first term is 

the simulation variance, and the second term is the input parameter variance. The early 

work of Cheng and Holland (Cheng, 1994; Cheng & Holland, 1997, 1998) did not 
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include bias in the mean square error (MSE) of the parameters. The failure of including 

bias is substantial in the sense that the simulation output confidence intervals are 

conservative. Hence, the variance is overestimated (Henderson, 2003). The improved 

method (Cheng & Holland, 2004) considers the bias in the MSE of the parameters, which 

also needs less computational effort.  

Nonetheless, its major disadvantage is in the assumption that the model is known 

with certainty. Furthermore the performance of this method is not yet known compared to 

the other methods such as Bayesian and Bootstrap methods (Henderson, 2003). 

2.1.4 Bootstrap Approach 

Barton and Schruben (2001) proposed three non-parametric resampling methods 

to incorporate the error due to input distributions. These methods use empirical 

distribution functions (EDFs) to model the distribution functions of independent input 

random variables. For parametric resampling, Cheng and Holland (1997, 2004) 

quantified the effect of parameter uncertainty for the parametric formulation. With new 

observations in bootstrap, estimates of input parameters are continuously updated using 

the MLE. From each bootstrap, a simulation experiment is conducted to give a simulation 

average output. A percentile confidence interval of the simulation output can be 

calculated.  

The use of percentile confidence interval in bootstrapping methods assumes the 

absence of simulation uncertainty or variability. When simulation uncertainty is present, 

percentile confidence intervals are based on a convolution of the input uncertainty and 
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simulation uncertainty. Hence, it is not clear how these intervals behave (Henderson, 

2003). 

The reliability of our interval-based simulation mechanism stands on the 

imprecise probability theory, which is introduced in Section 2.2. 

2.2 Imprecise Probability 

Instead of a precise value of the probability 𝑃(𝐸) = 𝑝  associated with an event E, 

a pair of lower and upper probabilities 𝑃(𝐸) = [𝑝,𝑝] is used to include a set of 

probabilities and quantify the uncertainty. Imprecise probability differentiates uncertainty 

from variability both qualitatively and quantitatively, which is the alternative to the 

traditional sensitivity analysis in probabilistic reasoning to model indeterminacy and 

imprecision. 

Many representations of imprecise probabilities have been proposed. For 

example, the Dempster-Shafer evidence theory (Dempster, 1967 & Shafer, 1990) 

characterizes evidence with discrete probability masses associated with a power set of 

values, where Belief-Plausibility pairs are used to measure uncertainties. The behavioral 

imprecise probability theory (Walley, 1991) models uncertainties with the lower 

prevision (supremum acceptable buying price) and the upper prevision (infimum 

acceptable selling price) with behavioral interpretations. The possibility theory (Dubois 

& Prade, 1988) represents uncertainties with Necessity-Possibility pairs. A random set 

(Malchanov, 2005) is a multi-valued mapping from the probability space to the value 

space. Probability bound analysis (Ferson et al., 2002) captures uncertain information 

with p-boxes which are pairs of lower and upper distribution functions. F-probability 
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(Weichselberger, 2000) incorporates intervals into probability values which maintain the 

Kolmogorov properties. Fuzzy probability (Möller & Beer, 2004) considers probability 

distributions with fuzzy parameters. A cloud (Neumaier, 2004) is a combination of fuzzy 

sets, intervals, and probability distributions. Recently, an imprecise probability with a 

generalized interval form (Wang, 2008a, 2008b) was also proposed, where the 

probabilistic calculus structure is simplified based on the algebraic properties of the 

Kaucher arithmetic (Kaucher, 1980) for generalized intervals.  

Imprecise probability captures the total uncertainty and represents its two 

components quantitatively. It can provide a concise form to improve the robustness of 

simulation without the traditional sensitivity analysis related procedures. Interval-valued 

imprecise probabilities can help to simulate a set of scenarios for each simulation run. 

Interval arithmetic provides the calculus structure, models uncertainty propagation, and 

ensures the completeness of range estimation, as introduced in Section 2.3. 

2.3 Interval Analysis 

2.3.1 Generalized Intervals 

Interval mathematics (Moore, 1966) is a generalization in which interval numbers 

replace real numbers, interval arithmetic replaces real arithmetic, and interval analysis 

replaces real analysis. Interval arithmetic was originally developed to solve the issue of 

numerical errors in digital computation due to the floating-point representation of 

numbers, where rounding and cancellation errors put the reliability of digital computation 

at risk. Not only do intervals solve the problem of representation for real numbers on a 
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digital scale, but they also provide a generic form to represent uncertainties and errors in 

technical construction, measuring, computation, and range of fluctuation.  

Interval arithmetic considers all possibilities of variation even in the worst cases 

of uncertainty propagation. Let [𝑥, 𝑥] and [𝑦, 𝑦] be two real intervals (i.e., 𝑥, 𝑥,𝑦, 𝑦𝜖𝑅) 

and ° be one of the four basic arithmetic operations for real numbers 𝑅, ° ∈ {+,−,×,÷}. 

The set-based enclosure for intervals [𝑥, 𝑥] and [𝑦,𝑦] is �𝑥, 𝑥�° �𝑦, 𝑦� = �𝑥°𝑦|𝑥 ∈

�𝑥, 𝑥�,𝑦 ∈ �𝑦,𝑦��. The corresponding interval arithmetic operations are defined for the 

worst cases. For example, �𝑥, 𝑥� + �𝑦,𝑦� = �𝑥 + 𝑦, 𝑥 +  𝑦� , �𝑥, 𝑥� − �𝑦, 𝑦� =

�𝑥 − 𝑦, 𝑥 −  𝑦�  and  �𝑥, 𝑥� × �𝑦, 𝑦� = �min �𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦� , max(𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦)�. 

When the lower and upper bounds of an interval are equal, the point-wise interval is the 

same as a real number. 

In interval arithmetic, it is guaranteed that intervals calculated from arithmetic 

include all possible combinations of real values within the respective input intervals. That 

is, ∀𝑥 ∈ �𝑥, 𝑥�,∀𝑦 ∈ �𝑦, 𝑦� ,∃ 𝑧 𝑥 ∈ �𝑥, 𝑥�° �𝑦, 𝑦� , 𝑥°𝑦 = 𝑧. For example, [1,3] + [2,4] =

[3,7] guarantees that ∀𝑥 ∈ [1,3],∀𝑦 ∈ [2,4],∃ 𝑧 [3,7], 𝑥 + 𝑦 = 𝑧. Similarly, [3,7] −

[1,3] = [0,6] guarantees that ∀𝑥 ∈ [3,7],∀𝑦 ∈ [1,3],∃ 𝑧 ∈ [0,6], 𝑥 − 𝑦 = 𝑧. This is an 

important property that ensures the completeness of range estimations. When input 

variables are not independent, the output results will over-estimate the actual ranges. This 

only affects the soundness of estimations, not their completeness. Some special 

techniques have also been developed to avoid the range over-estimations based on 

monotonicity properties of interval functions. 
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Generalized interval (Gardenes et al., 2001) is an extension of the above set-based 

classical interval with better algebraic and semantic properties based on the Kaucher 

arithmetic (Kaucher, 1980). A generalized interval �𝑥, 𝑥� is not constrained by 𝑥 ≤ 𝑥 any 

more. Therefore, [4,2] is also a valid interval and called improper, whereas the traditional 

interval �𝑥, 𝑥� with 𝑥 ≤ 𝑥 is called proper. The relationship between proper and improper 

intervals is established with the operator dual. Given a generalized interval 𝐱 = [𝑥, 𝑥], 

then 𝑑𝑢𝑎𝑙𝐱 = [𝑥, 𝑥].. Based on the Theorems of Interpretability (Gardenes et al., 2001), 

generalized interval provides more semantic power to help verify completeness and 

soundness of range estimations by logic interpretations. The four examples in Table 2-1 

illustrate the interpretations for operator “+”, where the range estimation of [𝑧, 𝑧] = [4,7] 

in the 1st row is complete and the estimation of [𝑧, 𝑧] = [7,4]  in the 4th row is sound. 

−,×,/ have the similar semantic properties. More information about generalized intervals 

can be found in (Wang, 2008b, 2008c, 2008d). 

 

TABLE  2-1 
ILLUSTRATIONS OF THE SEMANTIC EXTENSION OF GENERALIZED INTERVAL 

Algebraic Relation: 

�𝐱, 𝐱� + �𝐲, 𝐲� = �𝐳, 𝐳]� 

Corresponding Logic Interpretation Quantifier 

 of �𝐳, 𝐳]� 

Estimation  

of �𝐳, 𝐳]� 

[2,3] + [2,4] = [4,7] (∀x ∈ [2,3])(∀y ∈ [2,4])(∃ z ∈ [4,7])( x + y = z) ∃ complete 

[2,3] + [4,2] = [6,5] (∀x ∈ [2,3])(∀z ∈ [5,6])(∃ y ∈ [2,4])( x + y = z) ∀ sound 

[3,2] + [2,4] = [5,6] (∀y ∈ [2,4])(∀x ∈ [2,3])(∃ z ∈ [5,6])( x + y = z) ∃ complete 

[3,2] + [4,2] = [7,4] (∀z ∈ [4,7])(∀x ∈ [2,3])(∃y ∈ [2,4])( x + y = z) ∀ sound 
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In our new simulation mechanism, uncertainty propagation will be modeled based 

on both the interval arithmetic and Kaucher arithmetic. This allows us to interpret interval 

results so that the completeness and soundness can be verified rigorously. Since the 

simulation performance measures are also intervals, statistics based on intervals should 

be used to draw conclusions from the simulation results. The performance statistics that 

have been recently studied are mean and variance, as summarized in the following 

section. 

2.3.2 Interval Statistics 

The mean of a set of random intervals {[𝑥𝑖 , 𝑥𝑖]|𝑥𝑖 ≤ 𝑥𝑖 , 𝑥𝑖 ∈ ℝ, 𝑥𝑖 ∈ ℝ} where 

𝑖 = 1, … , N is also an interval. It should include the smallest possible and the largest 

possible means which can be calculated from any possible enclosed real number 

𝑥𝑖𝜖[𝑥𝑖 , 𝑥𝑖]. Because the formula to calculate the mean is a monotone function, the lower 

bound of the interval mean is just the average of the left endpoints 𝑥𝑖’s, and the upper 

bound is the average of the right endpoints 𝑥𝑖’s (Granvilliers et al., 2003). Therefore, the 

arithmetic mean of random intervals is given by  

�𝜇, 𝜇� = �
1
𝑁
�𝑥𝑖 ,

1
𝑁
�𝑥𝑖

𝑁

𝑖=1

𝑁

𝑖=1

�    
(1) 

where 𝑁 is the sample size of the random intervals. 

Computing the range for the variance �𝑉,𝑉� for a set of intervals is an NP-hard 

problem (Granvilliers et al., 2003). Several algorithms (Ferson et al., 2007; Granvilliers 

et al., 2003; Xiang et al., 2007a) were proposed to obtain the bounds of the variance. It 
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was found that 𝑉 can be computed in 𝑂(𝑁log𝑁) computational steps for 𝑁 interval data 

samples. However, computing the upper bound of the variance 𝑉 requires the 

computational effort that grows exponentially with the number of intervals in the data set. 

Only for several special cases, when intervals do not overlap and there is no interval 

completely nested in another, 𝑂(𝑁log𝑁) and linear time algorithms are available to 

compute 𝑉.  

In this dissertation, we propose new measures of interval statistics for output 

interpretation in reliable simulation to support decision makings. Compared to the 

variance measures mentioned above, our measures are much easier to compute thus more 

applicable in large-scale simulations. 

2.4 Discussion of Research Gaps 

After reviewing the state of the art of the uncertainty quantification in simulation 

methods, we observed the following research gaps: 

1. The completeness and soundness of simulation measures for uncertainties are not 

verifiable. Hence, the robustness of the simulation output is not guaranteed. 

2. The computation is expensive and implementations are complex for simulation 

practitioners.  

Our proposed mechanism is to solve these two issues because it incorporates 

variability and uncertainty components based on imprecise probabilities. The new 

mechanism does not require enormous computational procedures (e.g. Markov chain 

Monte Carlo simulation). On the contrary, it requires less computational effort because an 
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IBS replication produces a solution range in an interval form instead of a single real-

valued number. 
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CHAPTER 3:  
IBS METHDOLOGY AND INPUT ANALYSIS 

This chapter introduces the concept of the interval-based simulation mechanism. 

Section 3.1 covers the theoretical aspects of the mechanism. The simulation aspects of 

the input analysis and the uncertainty propagation in the IBS are discussed in Sections 3.2 

and 3.3, respectively. 

3.1 The Proposed Interval-based Simulation 

In this research, we propose a reliable interval-based simulation mechanism to 

account for input uncertainties. The new simulation models are based on intervals instead 

of real numbers in order to help obtain more reliable estimates of outputs. Interval-valued 

imprecise probabilities are used, and interval random variates are generated for 

simulation. For each run, intervals as ranges of possibilities are given as output 

performance measures.  

For instance, in the example of Section 1.2, we model the inter-arrival and service times 

by two exponential distributions with interval parameters. Figure  3-1 illustrates the 

modeling of the interval-based simulation mechanism to the bank example mentioned in 

Section 1.2. We use the notation [M]/[M]/1 to represent a single server with inter-arrival 

times that are exponentially distributed with interval parameter, i.e. exp ��λ, λ�� and 

service times that are also exponentially distributed, i.e. exp ��𝜇, 𝜇��. From the imprecise 

probability distributions, random intervals as uncertain random variates are generated, 

such as arrival time [𝑎𝑖 ,𝑎𝑖] and service time [𝑠𝑖 , 𝑠𝑖]. 
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Figure  3-1: Bank example with [M]/[M]/1 queue 

This representation captures both parameter and model uncertainties, since one 

interval-valued distribution actually models a set of distributions simultaneously. 

Consequently, the IBS is described by a pair of cumulative distributions functions (cdf’s) 

corresponding to the lower and upper bounds, instead of a crispy cdf obtained from 

traditional simulations. In literature, the lower and the upper bounds are referred to as p-

box, (Ferson & Donald, 1998). Figure  3-2 shows the upper and lower cumulative 

distribution functions obtained from an interval-based simulation multiple real-valued 

cdf’s. 

 

 

Figure  3-2: Upper and lower bounds from an interval-based simulation enclosing 
multiple cdf’s 
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Interval-based simulation is much more efficient than the traditional Second-

Order Monte-Carlo sampling approaches based on real numbers, where many runs are 

needed to estimate a similar range. Technically, if a complete range estimation between a 

and b is required from a bounded distribution such as the uniform 𝑈(𝑎, 𝑏), the sample 

size should be large enough such that the random numbers from a full-period pseudo-

random number generator are exhausted, which is in the scale of 1018 or more. Therefore, 

the interval-based simulation is also more reliable than real-valued estimates with the 

same number of runs.  

Random intervals represent the two components of total uncertainty in simulation. 

Here, probabilistic distributions represent variabilities, and intervals capture 

uncertainties. With this interval representation of parameters, the degree of uncertainties 

is captured by the intervals’ widths. The larger the parameter interval width is, the less 

knowledge we have about this parameter, and vice versa. The goal of our reliable 

simulation mechanism is to incorporate input uncertainties in simulation and provide 

decision makers with timely and comprehensive insights of complex systems in order to 

make robust decisions. 

3.2 Input Analysis 

To carry out the IBS using interval random inputs, we have the following three 

major input analysis tasks: 

1. Finding the probability distributions of the random inputs with interval parameters 

is discussed in Section 3.2.1. 
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2. Generating interval random variates from the distribution functions, as shown in 

Section 3.2.2. 

3. Designing a simulation robustness measure that quantifies the confidence we have 

that a simulation result based on intervals would include all possible scenarios if 

real-valued cdf’s are used as in the traditional simulation, as illustrated in Section 

3.2.3. 

3.2.1 Hypothesizing and Parameterization of Interval Probability Distributions 

An important question is how to select the probability distributions and interval 

parameters. In section 3.2.1.1, we propose a standard procedure to determine interval 

parameters of probability distributions when data is available. Section 3.2.1.2 addresses 

the question in the absence of data. 

3.2.1.1 In the Presence of Data 

If it is possible to collect data for an input random variate of interest, the set of 

data is used to fit a theoretical interval based distribution form. First, the data is used to 

build a theoretical distribution with real-valued parameters in the traditional approaches. 

In simulation applications, it is common that MLE guides the selection of the 

distributions parameters. Based on the obtained distribution with real-valued parameters 

and the replication length 𝑛 that the analyst can afford to run, the lower and the upper 

bounds of the interval parameters are estimated. The parameter bounds are calculated 

such that all possible real-valued scenarios are included in the simulation output with a 

certain confidence level of (1-α). 
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This confidence is interpreted as the probability of having an assumed real-valued 

random variable x bounded by the corresponding random interval �𝑥, 𝑥� at any 

cumulative probability p in cdf. The goal is to achieve the probability of enclosure 

𝑃�𝑥 ∈ �𝑥, 𝑥�� ≥ 1 − 𝛼 
(2) 

where 𝑥 is the random variable if the simulation is run from any real-valued parameter 

bounded by the interval parameter. Extending the notation of probability in Eq.(2), we 

can write it as follows assuming the independence of the lower and upper bounds  

𝑃�𝑥 ≤ 𝑥 ≤ 𝑥� =  𝑃�𝑥 ≤ 𝑥� ×  (1 − 𝑃(𝑥 ≤ 𝑥) ) 
(3) 

Order statistics sampling distribution is used to ensure that the probability in 

Eq.(3) at any cumulative probability 𝑝 is at least (1 − 𝛼). If the real-valued variables are 

ordered as 𝑥(1), 𝑥(2),⋯𝑥(𝑛), the corresponding value of 𝑝 associated with the 𝑟𝑡ℎ ordered 

observation is given by (𝑟 − 0.5) 𝑛⁄ . The sampling distribution of the transformed order 

statistics cdf is given by 𝐺𝑟(𝑥).  𝐺𝑟(𝑥) is interpreted as the probability that at least 𝑟 

observations in the sample do not exceed 𝑥 and can be calculated as (Stuart, 1987) 

 𝐺𝑟(𝑥) = ���
𝑛
𝑗� �𝐹(𝑥)�𝑗�1 − 𝐹(𝑥)�𝑛−𝑗�

𝑛

𝑗=𝑟

 (4) 

where 𝐹(𝑥) is the cdf of the random variable 𝑥. 

Based on the ordered statistics sampling distribution, the probability of having the 

𝑟𝑡ℎ random variable 𝑥(𝑟) between the 𝑟𝑡ℎ bounds of the interval random variable �𝑥𝑟 , 𝑥𝑟� 

is given by  
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𝑃�𝑥𝑟 ≤ 𝑥𝑟 ≤ 𝑥𝑟� = 𝐺(𝑥𝑟) × �1 − 𝐺(𝑥𝑟)� 
(5) 

where 𝐺(𝑥𝑟) and 𝐺(𝑥𝑟) are the upper and the lower sampling distribution, respectively.  

To find the lower parameter interval limit, we set the upper sampling distribution 

𝐺(𝑥𝑟) at any order 𝑟 to (1-α) as 

𝐺(𝑥𝑟) = ���
𝑛
𝑗� �𝐹(𝑥𝑟)�

𝑗
�1 − 𝐹(𝑥𝑟)�

𝑛−𝑗
�

𝑛

𝑗=𝑟

≥ 1 − 𝛼 (6) 

where 𝑥𝑟 is calculated from the inverse transform of the assumed distribution function 

with real-valued parameters as 

𝑥𝑟 = 𝐹−1((𝑟 − 0.5)/𝑛) 
(7) 

The probability in Eq.(6) can be used for any probabilistic distribution function by 

replacing the upper cumulative distribution function 𝐹(𝑥) with the corresponding 

distribution form. The lower interval parameter limit is first assumed as the real-valued 

parameter and then it is decreased gradually until the desired probability of (1-α) is 

achieved.  

On the other hand, for the upper interval parameter limit, we set the complement 

of the lower sampling distribution �1 − 𝐺𝑟(𝑥)� at any order r to (1-α) as 

�1 − 𝐺(𝑥𝑟)� = �1 −���
𝑛
𝑗� �𝐹(𝑥𝑟)�

𝑗
�1 − 𝐹(𝑥𝑟)�

𝑛−𝑗
�

𝑛

𝑗=𝑟

� ≥ 1 − 𝛼 (8) 

The probability in Eq.(8) can be used for any probability distribution function by 

replacing the lower cumulative distribution function 𝐹(𝑥) with the corresponding 

distribution form. The upper interval parameter is obtained by increasing its value until 
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the probability of (1-α) is achieved. The following illustrates the interval 

parameterization technique for single and multiple parameter distributions. 

As an example, we demonstrate the interval parameterization for single parameter 

distribution with the exponential distribution. Here we derive the specific form of Eq.

Single Parameter Distribution 

(6) 

and Eq.(8) for the exponential distribution. Assume a stochastic process follows an 

exponential distribution with an estimated real-valued rate of 𝛽. An interval exponential 

distribution with the rate of �𝛽,𝛽� is used to enclose the real-valued cdf, where 𝛽ϵ[𝛽,𝛽]. 

The upper bound cdf is associated with 𝛽 and the lower bound cdf is with 𝛽. Substituting 

the exponential upper cumulative distribution function 𝐹(𝑥𝑟) = 1 − 𝑒−𝑥𝑟 𝛽⁄  and the 

random variate 𝑥𝑟 = −𝛽ln (1 −  (𝑟 − 0.5)/𝑛) at order 𝑟 in Eq.(6), we receive  

𝑃�𝑥𝑟 ≤ 𝑥𝑟� = ���
𝑛
𝑗��1 − �1 −

𝑟 − 0.5
𝑛

�
𝛽 𝛽�

�
𝑗

× ��1 −
𝑟 − 0.5
𝑛

�
𝛽 𝛽�

�
𝑛−𝑗

�
𝑛

𝑗=𝑟

 (9) 

With the exponential lower cumulative distribution function 𝐹(𝑥) = 1 − 𝑒−𝑥 𝛽⁄  

and the random variate 𝑥𝑟 = −𝛽ln (1 −  (𝑟 − 0.5)/𝑛) at order 𝑟 in Eq.(8), we receive 

𝑃(𝑥𝑟 ≤ 𝑥𝑟) = 1 −���
𝑛
𝑗��1 − �1 −

𝑟 − 0.5
𝑛

�
𝛽 𝛽�⁄

�
𝑗

× ��1 −
𝑟 − 0.5
𝑛

�
𝛽 𝛽⁄

�

𝑛−𝑗

�
𝑛

𝑗=𝑟

 (10) 

The lower interval mean 𝛽 at any order 𝑟 is calculated as follows. Given a 

particular value of 𝛽 and the available sample size 𝑛, set 𝛽 = 𝛽, then gradually reduce 

the value of  𝛽 to compute the probability of enclosure using Eq.(9) until it reaches the 

predetermined probability of (1 − 𝛼). The resulted 𝛽 is the value satisfying the desired 

probability at the predetermined order 𝑟. Similarly, use Eq.(10) to find 𝛽 for the desired 
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probability of enclosure by gradually increasing the initial value of 𝛽 = 𝛽. Since the 

parameter is sensitive up to three significant digits, 0.001 is used as the incremental step 

size. Figure 3-4 illustrates the computation algorithm for the exponential distribution. 

 

To find the lower interval parameter 𝜷 at any 

order 𝐫: 
Step 0: Given 𝛽, 𝑛, and 𝛼 

To find the upper interval parameter 𝜷 at any 

order 𝐫: 

Step 1: Set 𝛽 = 𝛽  

Step 2: Calculate the probability 𝑝 in Eq.(9) 
Step 3: If (𝑝 ≥ 1 − 𝛼) 
                        return 𝛽 

             Else 𝛽 = 𝛽 − 0.001,  

                      Back to Step 2. 

Step 0: Given 𝛽, 𝑛, and 𝛼 

Step 1: Set 𝛽 = 𝛽  
Step 2: Calculate the probability 𝑝 in Eq.(10) 
Step 3: If (𝑝 ≥ 1 − 𝛼) 

                        return 𝛽 

             Else 𝛽 = 𝛽 + 0.001,  
                      Back to Step 2. 

Figure  3-3: The algorithm to calculate the interval parameter for an exponential 
distribution 

The probability of enclosure in Eq.(9) and Eq.(10) can be verified by SOMC 

simulation (Batarseh & Wang, 2009). The following numerical example is used to 

illustrate. 

Example 3.1: For an exponential distribution with a rate of 1 𝛽⁄  where 𝛽 is assumed to 

follow a uniform distribution U[0.111,0.143]. For each sampled mean  𝛽 from its uniform 

distribution, the corresponding 𝛽 and 𝛽 are calculated based on the algorithm in Figure 3-

4 at three orders 𝑟 = 250, 𝑟 = 500, and 𝑟 = 750 at a confidence level of 𝛼 = 0.1. Table 3-1 

shows the results for three orders. The tabulated values of 𝛽 is the minimum value of the 

calculated  𝛽’s based on Eq.(9) at a particular order, whereas the tabulated 𝛽 is the 
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maximum value of the calculated 𝛽’s based on Eq.(10). The interpretation of those 

intervals is that the resulted bounds from a single IBS replication with a length of 𝑛 using 

the calculated interval parameter at a particular order will enclose at least 90% of the 

SOMC cdf’s. 

 

TABLE  3-1 
INTERVAL MEAN FOR AN EXPONENTIAL DISTRIBUTED PROCESS AT 𝑟 = 250, 𝑟 = 500,𝑎𝑛𝑑 𝑟 =

750 
r 250 500 750 

�𝜷,𝜷� [0.102,0.155] [0.105,0.151] [0.106,0.150] 

 

The enclosure at the desired probability of at least 90% is verified by the 

following experiments. We ran SOMC where 𝛽~U[0.111,0.143] for one thousand 

replications, i.e. the outer loop was run 𝑛 = 1000 times. The IBS was run a single 

replication with a length of 𝑛 at a particular order using the corresponding interval mean 

from Table 3-1. Table 3-2 shows the obtained probability of enclosing the 1000 SOMC 

replications between the lower and upper bounds of the IBS for the three orders. 

 

TABLE  3-2 
 PROBABILITY OF ENCLOSING 1000 SOMC REPLICATIONS BETWEEN THE LOWER AND THE 

UPPER BOUNDS AT 𝑟 = 250, 𝑟 = 500, AND 𝑟 = 750 
r 250 500 750 

𝑷(𝒙𝒓 ≤ 𝒙𝒓 ≤ 𝒙𝒓) 91% 96.2% 91.5% 
 

The probabilities in Table  3-2 are above 90%, which is the desired confidence 

level. From Table  3-2, we can notice that the probability at the small and the high orders 
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represented by 𝑟 = 250 and  𝑟 = 750, respectively, are very close to 90% compared to the 

middle order represented by 𝑟 = 500.  This is due to the narrow width of the cdf bounds at 

the low and the high cumulative probability. Figure  3-4 shows an example of the desired 

enclosure for five SOMC replications between the lower and the upper bounds of the 

IBS. With regard to the simulation time, the IBS replication needed 1 wall-time second to 

be run while the 1000 SOMC replications required 158 wall-time seconds. The IBS has 

offered a saving of 99.4% of the simulation time with a confidence of enclosing at least 

90% of the SOMC replications. 

 

 

Figure  3-4: Example for the enclosure of five SOMC replications between the bounds of 
IBS for the exponential distribution in Example 3.1 

If a candidate family of distributions with multiple parameters is hypothesized 

using MLE, we must somehow specify the values of their interval parameters in order to 

specify the variables distributions and use them in the IBS.  

Multiple Parameter Distributions 
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For instance, assume that 𝑋 is a random variable, and simulation analysts 

hypothesize that the underlying distribution of 𝑋 is a normal distribution with a mean 𝜇 

and a variance of 𝜎2, which can be written as 𝑋~𝑁(𝜇,𝜎2).  

Normal Distribution 

However, process owners can only characterize whether the parameters are 

precisely known or not. We assume that both parameters are imprecise. In this case, the 

distribution of 𝑋 can be extended to 𝑋~𝑁 ��𝜇, 𝜇� , �𝜎2,𝜎2��. One possible approach to build 

the lower and the upper bounds of the normal distribution is based on the confidence 

intervals (Aughenbaugh & Paredis, 2005). The confidence intervals of the mean and the 

standard deviation for a normal distribution can be estimated (Mood & Graybill, 1963). 

According to the Central Limit Theorem, the mean is normally distributed with the same 

mean 𝜇 and a variance of 𝜎
2

𝑛
. Therefore, the confidence interval of the mean is calculated 

as 

�𝜇, 𝜇� = �𝜇 −
𝑡𝛼
2 ,𝑛−1𝜎

√𝑛
, 𝜇 +

𝑡𝛼
2 ,𝑛−1𝜎

√𝑛
� 

(11) 

where 𝑡 is a quantity obtained from Student distribution with (𝑛 − 1) degrees of freedom 

at a cumulative probability �1 − 𝛼
2
�, and 𝑛 is the sample size of the available data. The 

interval in Eq.(11) means that each time we use the resulted confidence intervals to 

estimate the mean, the intervals contain the true value of the mean (1 − 𝛼) number of 

times. In addition, the variance of the normal distribution follows a chi-square 

distribution with (𝑛 − 1) degrees of freedom. The confidence interval for the variance can 

be estimated as 



37 
 

�𝜎2,𝜎2� = �
(𝑛 − 1)𝑠2

𝜒𝛼
2 ,𝑛−1
2 ,

(𝑛 − 1)𝑠2

𝜒
1−𝛼2 ,𝑛−1
2 � 

(12) 

where 𝜒𝑎,𝑏
2  is a quantity obtained from the chi-distribution at a confidence level 𝑎 and 𝑏 

degrees of freedom. The intervals in Eqs.(11) and (12) guarantee that the mean and the 

variance are enclosed (1 − 𝛼) of the times between the bounds of their estimated 

intervals. However, this enclosure of the parameters does not guarantee the enclosure of 

the real-valued cdf between the lower and the upper cdf’s generated from these intervals. 

The general motivation of the interval parameterization in the IBS is to enclose 

the real-valued cdf between the lower and the upper cdf’s with a certain level of 

confidence as shown in Eq.(5). This enclosure of the input distributions gives interval 

simulation results that contain the real-valued results with a certain level of confidence. 

Therefore, we use the order statistics sampling distribution to estimate the interval 

parameters of the normal distribution. 

Order statistics sampling distribution can be used to quantify the parameters’ 

bounds at any order 𝑟. However, there are two parameters, namely 𝜇 and 𝜎, for which we 

need to estimate the bounds. There are four combinations of 𝜇 and 𝜎 for a random 

variable 𝑋~𝑁 ��𝜇, 𝜇� , �𝜎2,𝜎2��, as illustrated in Figure  3-5. The combinations are formed 

as follows: 𝑐1~𝑁(𝜇,𝜎2), 𝑐2~𝑁(𝜇,𝜎2), 𝑐3~𝑁(𝜇,𝜎2), 𝑐4~𝑁(𝜇,𝜎2). Figure  3-5 shows that the 

22 = 4 combinations intersect at order 𝑐𝑑𝑓 = 0.5. In addition, the four combinations 

form the extreme boundaries that compose the lower and the upper bounds. The 

combinations are arranged increasingly in a different manner for a different cdf illustrated 

in Figure  3-5. 

 



38 
 

 

Figure  3-5: Four combinations for the normal distribution with interval parameters 

Order statistics sampling distribution is used to find the interval mean �𝜇,𝜇� at any 

order. First, we estimate the confidence interval of variance using the chi-distribution as 

in Eq.(12). Herein, we derive the lower and upper sampling distribution for a normally 

distrusted random variable, as in Eq.(13) and Eq.(14), respectively. 

The lower sampling distribution for a normally distributed process is given as 

𝑃�𝑥𝑟 ≤ 𝑥𝑟� = ����
𝑛
𝑗
��

1
2

+
1
2
𝑒𝑟𝑓 �

𝑥𝑟 − 𝜇

𝜎𝑙 √2⁄
��

𝑗

× �
1
2
−

1
2
𝑒𝑟𝑓 �

𝑥𝑟 − 𝜇

𝜎𝑙 √2⁄
��

𝑛−𝑗

�
𝑛

𝑗=𝑟

� 

 

(13) 

where  

σ𝑙 = �
𝜎 (𝑟 < 𝑛/2)
𝜎 (𝑟 > 𝑛/2)

� 

and the error function is given as  

𝑒𝑟𝑓(𝑥) = 2/√𝜋� 𝑒−𝑡2
𝑥

0
𝑑𝑡 

The real-valued variate at order 𝑟 is estimated as follows 

𝑥𝑟 = 𝜇 + √2𝜎 𝑒𝑟𝑓−1 �
2𝑟 − 1
𝑛

− 1� 
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and 𝑒𝑟𝑓−1 is the inverse error function. The lower bound is generated from the lower 

mean 𝜇 at any order 𝑟 from Eq.(13). However, if order 𝑟 is less than 𝑛
2
 then the lower 

bound is generated from the upper variance 𝜎2, and it switches to the lower variance 𝜎2 

if 𝑟 is greater than 𝑛
2
. The upper sampling distribution is given as 

𝑃(𝑥𝑟 ≥ 𝑥𝑟) = �1 − ����
𝑛
𝑗� �

1
2 +

1
2 𝑒𝑟𝑓 �

𝑥𝑟 − 𝜇
𝜎𝑢 √2⁄

��
𝑗

× �
1
2 −

1
2 𝑒𝑟𝑓 �

𝑥𝑟 − 𝜇
𝜎𝑢 √2⁄

��
𝑛−𝑗

�
𝑛

𝑗=𝑟

�� 

 

(14) 

where  

σ𝑢 = �
𝜎 (𝑟 < 𝑛/2)
𝜎 (𝑟 > 𝑛/2)

� 

Similarly, the upper bound is generated from the upper mean at any order 𝑟 from 

Eq.(14). The switching of the variance occurs at 𝑐𝑑𝑓 = 0.5. The lower variance 𝜎2 

generates the upper bound if order 𝑟 has a 𝑐𝑑𝑓 < 0.5. On the other hand, the upper bound 

is generated from the upper variance 𝜎2 for orders that have a 𝑐𝑑𝑓 > 0.5. The difficulty of 

the normal distribution enclosure occurs at the middle orders. The bounds become wider 

at small and large orders. Thus, wider interval means are obtained at the middle orders to 

enclose the real variates and the means get narrower at the small and large orders for the 

same confidence level of enclosure. The algorithms to generate the lower and upper 

bounds of means are shown in Figure  3-6. 
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To find the lower interval parameter 𝛍 at any 

order 𝐫: 
Step 0: Given 𝜇, [𝜎,𝜎], 𝑛, and 𝛼 

To find the upper interval parameter 𝛍 at any 

order 𝐫: 

Step 1: Set 𝜇 = 𝜇  

Step 2: Calculate the probability 𝑝 in Eq.(13),  

                        if 𝑟 < 𝑛
2
, 𝜎 = 𝜎, 

                               else 𝜎 = 𝜎. 

Step 3: If (𝑝 ≥ 1 − 𝛼) 
                        return 𝜇, 

             Else 𝜇 = 𝜇 − 0.001,  

                      Back to Step 2. 

Step 0: Given 𝜇, [𝜎,𝜎], 𝑛, and 𝛼 

Step 1: Set 𝜇 = 𝜇  
Step 2: Calculate the probability 𝑝 in Eq.(14) 

                        if 𝑟 < 𝑛
2
, 𝜎 = 𝜎, 

                               else 𝜎 = 𝜎. 

Step 3: If (𝑝 ≥ 1 − 𝛼) 
                        return 𝜇, 
             Else 𝜇 = 𝜇 + 0.001,  
                      Back to Step 2. 

Figure  3-6: The algorithm to calculate the interval parameters for a normal distribution 

Assume that the candidate distribution follows a triangular distribution behavior. 

The triangular distribution parameters are usually provided by the process owners. A 

subject matter expert (SME) in the system would know the values of the triangular 

distributions, namely, the location parameter a, the scale parameter (b-a), and the shape 

parameter m, where a<m<b. The IBS analyst would ask the SME of imprecise values of 

the three parameters as [𝑎, 𝑎], [𝑚,𝑚], and [𝑏, 𝑏]. 

Triangular Distribution 

Written in terms of [𝑎,𝑎], [𝑚,𝑚], and �𝑏, 𝑏�, the three intervals form 23 = 8 

possible combinations of the parameters such as those shown in Figure  3-7. The upper 

and the lower bounds are formed by the lower parameters (𝑎, 𝑚, and 𝑏) and the upper 

parameters (𝑎, 𝑚, and 𝑏.), respectively. All the other six combinations are contained 

inside the formed boundaries of the bounds. 
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Figure  3-7: Inverse transformation for triangular distributions with interval parameters 

3.2.1.2 In the Absence of Data 

If no data are available, the analyst can select the distribution type either based on 

domain experts’ opinions, or based on the level of availability or convenience. Note that 

the distribution does not have to precisely represent the true one. It only bounds the 

possible ones. The distribution can represent the worst and best scenarios that might 

occur.  

3.2.2 Random Interval Variate Generation 

Interval random variates are generated from statistical distributions with interval 

parameters to run the IBS. Given a statistical distribution with interval parameters, we 

use the inverse transform to calculate the lower and upper random variables, Here is an 

example to illustrate the method. Assume a random process that is exponentially 

distributed as �𝑋,𝑋�~exp([𝛽,𝛽]). From the random-number stream 𝐮 = {𝑢1,𝑢2, … ,𝑢𝑛}, 

the interval variates are calculated as: 
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[𝑥𝑖 , 𝑥𝑖] = �−𝛽�ln(1 − 𝑢𝑖)�,−β�ln(1 − 𝑢𝑖)�� (∀𝑖 ∈ [1,𝑛]) 
(15) 

The obtained interval variates form the lower and the upper cdf’s as in Figure  3-2. 

At a certain value of the cumulative probability  𝐹(𝑥), the generated random variate 

is �𝑥, 𝑥� where 𝑥 and 𝑥  are the lower and upper bounds of the interval random variate, 

respectively. The upper and lower bounds of cdf in Figure  3-2 can also be read in a 

second way. For a value of a random variable 𝑥, the cumulative probability is represented 

by an interval probability [𝐹(𝑥),𝐹(𝑥)]. These two representations of uncertainty are 

equivalent.   

For distributions with multiple parameters, all combinations of the parameters 

need to be investigated. Then the respective minimum and maximum from the 

combinations are selected as the lower and upper bounds of the generated interval 

random variate. For instance, for a normal distribution with the mean of [𝜇, 𝜇] and 

standard deviation of [𝜎,𝜎]. The inverse transform method generates the interval random 

variate as 

[𝑥𝑖 , 𝑥𝑖] = �𝜇 + √2𝜎𝑙 𝑒𝑟𝑓−1(2𝑢𝑖 − 1) , 𝜇 + √2𝜎𝑢 𝑒𝑟𝑓−1(2𝑢𝑖 − 1)� (∀𝑖 ∈ [1,𝑛]) 
(16) 

again  

𝜎𝑙 = �
𝜎, if 𝑖 < n 2⁄
𝜎, if 𝑖 < n 2⁄

� and 𝜎𝑢 = �
𝜎, if 𝑖 < n 2⁄
𝜎, if 𝑖 < n 2⁄

� 

Similarly, the parameterization of distributions with three or more parameters 

needs to consider all the possible combinations with respect to the real-valued 

distributions. For instance, assume a random variable has a triangular distribution 
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triang([𝑎,𝑎], [𝑏, 𝑏], [𝑚,𝑚]) with interval parameters for the location, the scale, and the 

shape parameters [𝑎,𝑎], [𝑚,𝑚], and [𝑏, 𝑏], respectively. We first assume 

[𝑋,𝑋]′~triang([0,0], [1,1], [𝑘,𝑘]) where 𝑘 = (𝑚 − 𝑎) (𝑏 − 𝑎)⁄  and 

𝑘 = (𝑚− 𝑎) (𝑏 − 𝑎)⁄ , then the random variate [𝑥𝑖 , 𝑥𝑖] is calculated as follows, 

[𝑥𝑖 , 𝑥𝑖] =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �𝑎 + �𝑏 − 𝑎��𝑘𝑢𝑖 ,𝑎 + �𝑏 − 𝑎��𝑘𝑢𝑖    �                                                                                             𝑖𝑓 0 ≤ 𝑢𝑖 ≤ 𝑘, 0 ≤ 𝑢𝑖 ≤

 �𝑎 + �𝑏 − 𝑎� × �1 −��1 − 𝑘��𝑎 − 𝑢𝑖�� , 𝑎 + �𝑏 − 𝑎��𝑘𝑢𝑖  �                                                     𝑖𝑓 𝑘 ≤ 𝑢𝑖 ≤ 1,0 ≤ 𝑢𝑖

�𝑎 + �𝑏 − 𝑎��𝑘𝑢𝑖 , 𝑎, 𝑎 + �𝑏 − 𝑎� × �1 −��1 − 𝑘�(𝑎 − 𝑢𝑖)�  �                                                𝑖𝑓 0 ≤ 𝑢𝑖 ≤ 𝑘, 𝑘 ≤ 𝑢𝑖 ≤

�𝑎 + �𝑏 − 𝑎� × �1 −��1 − 𝑘��𝑎 − 𝑢𝑖�� , 𝑎 + �𝑏 − 𝑎� × �1 −��1 − 𝑘�(𝑎 − 𝑢𝑖)��           𝑖𝑓 𝑘 ≤ 𝑢𝑖 ≤ 1, 𝑘 ≤ 𝑢𝑖 ≤

 

 

(17) 

Once random intervals are generated, they are used in simulation. Interval 

arithmetic is applied in calculating interval values. Simulation robustness measure, 

defined as the required IBS replication length to enclose real-valued cdf’s between the 

IBS bounds with a certain level of confidence, is described in following section. 

3.2.3 Simulation Robustness Measure 

For the interval enclosure of real-valued cdf, a natural question we would like to 

ask is how much confidence we have that a simulation result based on intervals would 

include all possible scenarios if real-valued cdf’s are used as in the traditional simulation. 

We need to measure the robustness quantitatively.  Figure  3-8 illustrates the simulation 

enclosure situation.  
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Figure  3-8: An illustration of interval cdf 

Our objective of reliable simulation is that the generated interval random variates 

or simulation output performance based on intervals (as empirical cdf [𝐹,𝐹]) should 

include the unknown cdf of real-valued distribution. In general, enclosing the small or 

large orders of observations is more difficult than enclosing those in the middle. 

Obviously, the probability of the desired enclosure will increase as the replication length 

increases.  

Eq.(5) can be used to measure simulation robustness in terms of the probability of 

enclosing all possible real-valued scenarios by the interval at a particular order 𝑟. 

Substituting Eq.(4) in Eq.(5) we receive the general form to measure the simulation 

robustness 

𝑃�𝑥𝑟 ≤ 𝑥𝑟 ≤ 𝑥𝑟� = ���
𝑛
𝑗� �𝐹(𝑥𝑟)�

𝑗
�1 − 𝐹(𝑥𝑟)�

𝑛−𝑗
�

𝑛

𝑗=𝑟

× �1 −���
𝑛
𝑗
� �𝐹(𝑥𝑟)�

𝑗
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𝑛−𝑗
�

𝑛

𝑗=𝑟
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(18) 

The robustness measure in Eq.(30) is general and can be applied to both input 

random variate and output performance enclosure. It can be used to determine the 
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minimum IBS replication length necessary for a prefixed value of confidence level (1 −

𝛼). 

In Section 3.2 and (Batarseh & Wang, 2008), we derived and implemented the 

enclosure relationship of Eq.

Single Parameter Distribution 

(18) when a stochastic process is exponentially distributed, 

the result is in 

𝑃�𝑥𝑟 ≤ 𝑥𝑟 ≤ 𝑥𝑟� = ���
𝑛
𝑗� �1 − �1 −

𝑟 − 0.5
𝑛

�
𝛽 𝛽�

�
𝑗

× ��1 −
𝑟 − 0.5
𝑛

�
𝛽 𝛽�

�
𝑛−𝑗

�
𝑛

𝑗=𝑟

 

                       × �1 −���
𝑛
𝑗� �1 − �1 −

𝑟 − 0.5
𝑛

�
𝛽 𝛽�⁄

�
𝑗

× ��1 −
𝑟 − 0.5
𝑛

�
𝛽 𝛽⁄

�

𝑛−𝑗

�
𝑛

𝑗=𝑟

� 

(19) 

 

Figure  3-9 illustrates the algorithm to calculate 𝑛 as the measure of robustness. 

 

Step 0: Given 𝛽, [𝛽,𝛽], and 𝛼 

To calculate the robustness measure 𝐧 at any 

order 𝐫 for an exponential distribution: 

Step 1: Set 𝑛 = 𝑟  
Step 2: Calculate the probability 𝑝 in Eq.(19) 
Step 3: If (𝑝 ≥ 1 − 𝛼) 
                        return 𝑛 
             Else 𝑛 = 𝑛 + 1,  
                      Back to Step 2. 

Figure  3-9: The algorithm to calculate the replication length of the IBS with an 
exponential distribution 

We solve Eq.(19) numerically for three ratios of �𝛽 𝛽⁄ ,𝛽 𝛽� � as [0.9,1.1], 

[0.8,1.2] , and [0.6,1.4] and construct Tables A-1, A-2 and A-3 respectively in Appendix 
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A. The tables can be used based on the ratios between the bounds of the interval mean 

and the real-valued mean, regardless of the absolute values of the means. The replication 

lengths were calculated to achieve the confidence levels (CLs) of 90% and 95%. For 

Table A-1 the replication length was calculated only at 90% CL. The replication lengths 

needed at 90% CL is very large in general due to the narrow interval of [0.9,1.1]. The 

replication lengths for 95% CL are even greater than the corresponding ones for 90% CL. 

It is noticed that as the interval width increases the replication length for simulation 

decreases at the same percentile, yielding the same probability of enclosure.  

In the calculation, we stopped when n is greater than 1030 because the program 

reaches its computational limit of calculating the large n. In the tables, (> 1030) 

indicates the limit is reached. The maximum bounding probability when 𝑛 = 1030 is 

also given in the tables. The transition from > 1030 to three or two decimals of 

replication numbers shows how affordable it is to reach the completeness of the solution 

in these orders of 𝑟. For the small orders of observations, the replication required for a 

specified CL is very large. It shows the difficulty of enclosing the real-valued cdf at small 

orders of 𝑟 for small interval widths compared to large interval widths. For the very large 

orders of observations, the replication length also starts to increase. This is due to the 

narrow width of the cdf bounds at the high cumulative probability as the cdf curves 

become flatter. 
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The simulation robustness measure is studied for the normal and the triangular 

distributions as multiple parameter distributions. 

Multiple Parameter Distributions 

The simulation robustness measure can be also applied to the multiple parameter 

distributions. For instance, Eq.

Normal Distribution 

(18) can be rewritten for the normal distribution with a 

mean of [𝜇, 𝜇] and a standard deviation [𝜎,𝜎], as follows:  
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(20) 

The values of 𝜎𝑙 and 𝜎𝑢 are set based on the corresponding order 𝑟 as discussed 

above and 𝑥𝑟 are calculated as in Eq.(16). Yet again, the simulation length required for 

the normal distribution is calculated from Eq.(33) as the value 𝑛 that guarantees the 

enclosure of the real variate at any order 𝑟 with a certain level of confidence. Given the 

values of [𝜇, 𝜇] and [𝜎,𝜎], we use Eq.(20) to find 𝑛 by gradually increasing its value until 

its satisfies the desired probability of enclosure of (1 − 𝛼) at any order 𝑟 as shown in 

Figure  3-10. 
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Step 0: Given 𝜇, 𝜎 , [𝜇, 𝜇], [𝜎,𝜎], and 𝛼 

To calculate the robustness measure 𝐧 at any order 𝐫 

for the normal distribution: 

Step 1: Set 𝑛 = 𝑟  
Step 2: Calculate the probability 𝑝 in Eq.(20)  
Step 3: If (𝑝 ≥ 1 − 𝛼) 
                        return 𝑛 
             Else 𝑛 = 𝑛 + 1,  
                      Back to Step 2. 

Figure  3-10: The algorithm to calculate the replication length of the IBS for the normal 
distribution 

In addition, the probability in Eq.

Triangular Distribution 

(16) can be used for the triangular distribution 

function with the three parameters as [𝑎, 𝑎], [𝑚,𝑚], and [𝑏, 𝑏]. The upper triangular cdf 

using the lower parameters replaces 𝐹(𝑥) and the lower cdf replaces 𝐹(𝑥) using the 

upper parameters as follows: 

1. If 𝑎 ≤ 𝑥𝑟 ≤ 𝑚 then Eq.(18) is derived as follows:  
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(21) 
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2. If 𝑚 < 𝑥𝑟 ≤ 𝑏 then Eq.(18) is derived as follows:  
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(22) 

 

Eq.(21) and Eq.(22) are used according to real-valued random variate value 𝑥𝑟 

w.r.t. real-point parameters, where 𝑥𝑟 is calculated as in Eq.(17). The required replication 

length 𝑛 is also calculated as discussed previously and as shown in Figure  3-11. 

 

Step 0: Given 𝑎, 𝑚, 𝑏, [𝑎,𝑎] [𝑚,𝑚], and [𝑏, 𝑏], and 𝛼 

To calculate the robustness measure 𝐧 at any order 𝐫for 

a triangular distribution: 

Step 1: Set 𝑛 = 𝑟  
Step 2: Calculate the probability 𝑝 in Eq.(21) or (22)  
Step 3: If (𝑝 ≥ 1 − 𝛼) 
                        return 𝑛 
             Else 𝑛 = 𝑛 + 1,  
                      Back to Step 2. 

Figure  3-11: The algorithm to calculate the replication length of the IBS for the triangular 
distribution 
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3.3 Uncertainty Propagation in the IBS 

In a typical DES model, an entity (𝑖) is created by a Source at time 𝑎𝑖 based on 

statistical distributions. Then the entity starts its life cycle in a system and ends at a Sink. 

Statistics are collected, such as how much time the entity spent in the system. In contrast, 

in the IBS, an entity (𝑖) arrives at the system with an interval arrival time �𝑎𝑖 ,𝑎𝑖�. This 

interval represents the uncertainty associated with the arrival time.

Figure  3-12

 Each entity then is 

assigned to spend an interval service time �𝑠𝑖 , 𝑠𝑖� at each station in the system. For 

instance, a simple linear system with interval random variables, where interested random 

variables such as arrival and service times are random intervals, is shown in .  

 

 

Figure  3-12: Simple Linear System Based on Intervals 

In the traditional simulation, entity (𝑖) arrives at a linear system with 𝐾 stations 

such as the one in Figure  3-12 at time 𝑎𝑖 and departs at time 𝑑𝑖 after spending a total time 

of 𝑠𝑖 = ∑ 𝑠𝑘𝑖𝐾
𝑘=1 , where 𝑠𝑘𝑖 is the time entity (𝑖) spends at station 𝑘. The performance 

measures are calculated based on real arithmetic that assumes no uncertainty is included 

in the entity’s time attributes. However, the IBS is based on interval arithmetic that 

accounts for the uncertainty propagation. For instance, the total time in the system here is 

calculated as [𝑠𝑖 , 𝑠𝑖 ] = [∑ 𝑠𝑘𝑖𝐾
𝑘=1 ,∑ 𝑠𝑘𝑖𝐾

𝑘=1 ] in worst-case. The width of an interval 

represents the level of uncertainty. In the worst-case scenario, the uncertainty associated 

with the total time is greater than those of times in individual stations. The performance 

Source
Arrival time:

Expo([λ,λ])

Station 2
Service time:
N([μ,μ],[σ,σ])

Station K Sink
Station 1

Service time:
N([μ,μ],σ)
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measures are also calculated based on interval arithmetic that estimates the best and 

worst-case scenarios. The interval estimations assist in evaluating the completeness and 

the soundness of our solution. With random intervals generated, the simulation starts with 

a proposed simulation clock advancement mechanism, which is addressed in Chapter 4 

with the [M]/[M]/1 example.  
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CHAPTER 4:  
DEMONSTRATION OF SIMULATION CLOCK MECHANISM 

AND THE IBS IMPLENATION IN JSIM 

This chapter discusses handling the simulation events to advance the simulation 

clock in the IBS. In particular, we need to investigate possible approaches that could be 

employed to handle the simulation events in the IBS. Thus, this chapter first introduces 

the nature of the problem related to the simulation clock advancement in the IBS as 

discussed in Section 4.1. Section 4.2 proposes three possible approaches to sort the 

simulation events and accordingly advance the clock based on lower times, upper times, 

and a uniform sampling. Section 4.3 proposes new statistical dispersion measures for 

interval data. The implementation of the IBS in JSim is discussed in Section 4.4. Finally, 

a hand simulation of [M]/[M]/1 is illustrated in Section 4.5 to demonstrate the IBS 

mechanism. 

4.1 Simulation Clock advancement in the IBS 

The simulation clock is the simulation model variable that gives the current value 

of the simulated time. Based on the next-event-time advancement approach, the 

simulation clock is advanced from one event time to the next scheduled one. One of the 

greatest new challenges in the IBS is the advancement of the simulation clock. In the 

IBS, the events are scheduled to happen within a window time represented by an interval 

[𝑡𝑖 , 𝑡𝑖]. In the traditional DES, it is easy to decide the next event that will advance the 

simulation clock. However, the partial order between two intervals in the IBS is more 

complex than real numbers. In other words, the less-than-or-equal-to relationship 
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between two arrival times �𝑎𝑖 ,𝑎𝑖� and �𝑎𝑖+1,𝑎𝑖+1� for entities 𝑖 and 𝑖 + 1 can be defined 

in several ways. There are six cases in which two intervals, �𝑎𝑖 , 𝑎𝑖� and �𝑎𝑖+1, 𝑎𝑖+1�, are 

located w.r.t. each other, as illustrated in Figure  4-1. In simulation, events are stacked in a 

so-called event list in an ascending order based on their time of occurrence. When events 

with interval times are inserted in the event list, it is difficult to prioritize them if they 

occurred as in the cases of 3, 4, 5, and 6 because the two intervals overlap. That is, given 

existing uncertainties in the system, there may not be a single, clear, or best approach to 

handle the events in the IBS. Therefore, we counter this by analyzing three possible 

approaches to handle the events. 

 

 

Figure  4-1: Six locations of two intervals with respect to each other 

In Figure  4-1, the event list consists of interval events. Therefore, we define the 

simulation clock variable in the IBS as an interval simulation clock initiated at time [0,0] 

and the interval times of future events determine the clock time. The lower and upper 

bounds of the simulation clock tracks the earliest possible and the latest possible times of 

Case 3:

],[ iaia

Case 1:

Case 5:

Case 4:

Case 6:

Case 2: ]1,1[ ++ iaia

]1,1[ ++ iaia

]1,1[ ++ iaia

]1,1[ ++ iaia

]1,1[ ++ iaia

]1,1[ ++ iaia
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the events, respectively. For instance, when it is time to execute the next event, the event 

at the top of the event list is removed based on some event selection rules, and the 

interval simulation clock is advanced, thereby synchronizing the lower and the upper 

bounds.  

There are multiple approaches that could be employed to sort simulation events in 

the IBS platform. We propose three possible approaches to handle events. One approach 

is to use the lower interval times. In other words, we prioritize the events in the event list 

based on their earliest possible occurrence time. We refer to this approach as lower-based 

sorting. Another possible approach is to prioritize the events based on their upper bounds. 

This approach sorts the events based on their latest possible time of occurrence and is 

referred to as upper-based sorting. Finally, a third approach is to handle the events based 

on a uniformly sampled time from the events’ interval times. The details of the three 

clock advancement approaches will be described in Section 4.2. Herein, we illustrate how 

IBS runs by the [M]/[M]/1 example. Regardless of the selected approach, there are three 

events involved in the simulation of the [M]/[M]/1 example. They are: 

1) Arrival: entity (𝑖) enters the system at time �𝑎𝑖 ,𝑎𝑖�; 

2) Departure: entity (𝑖) leaves the system at time �𝑑𝑖 ,𝑑𝑖� after its service is 

completed; 

3) End: the simulation stops after a designated time. 

For all of the three proposed clock advancement approaches, the simulation event 

list is structured based on a real-valued arrival time obtained from the interval arrival 
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times �𝑎𝑖 ,𝑎𝑖�’s. The following is the next-event simulation algorithm that is executed in 

the IBS: 

- Initialize: interval simulation clock is initialized at [0,0].  

- Process Event and Advance Clock: the most imminent event is processed 

and the simulation clock is updated according to the occurrence time of 

the scheduled event  [𝑡𝑛𝑜𝑤, 𝑡𝑛𝑜𝑤]. This update accounts for the uncertainty 

associated with the events occurrence times. 

- Schedule Next Event: a new event is selected from the event list based on a 

pre-determined approach to replace the processed event, and the algorithm 

goes to Step (2) to process new events.   

- Terminate Simulation: simulation continues to process next events until a 

terminal condition is satisfied. 

This is the general algorithm behind the IBS when used for queueing systems 

simulations based on the next-event-time advancement approach. A natural question 

arises at this point: does the employment of one single real-valued instance from the time 

intervals neglect the possibility of entity (𝑖 + 1) arriving earlier than entity (𝑖)  with an 

overlap of their interval times? We answer this question by analyzing the result of 

handling the event list based on the three clock advancement approaches as in section 4.2.  
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4.2 Proposed Approaches to Advance the Simulation Clock in IBS 

As discussed earlier, three possible approaches to handle the event list in the IBS 

are investigated. First, let us assume the interval arrival times of entities 𝑖 and 𝑖 + 1 are 

given as �𝑎𝑖 , 𝑎𝑖� and �𝑎𝑖+1, 𝑎𝑖+1�, respectively, and they are given as proper intervals. 

After the entities get sorted in the event list, their service-start time becomes the critical 

factor to be determined. The service-start time of entity (𝑖), [𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖], is calculated as 

[𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖] = [max�𝑎𝑖 ,𝑑𝑖−1� , max�𝑎𝑖 ,𝑑𝑖−1�]  (23) 

Eq.(23) is based on the maximum of entity (𝑖) arrival time and entity (𝑖 − 1) 

departure time for each bound separately. Eq.(23) represents the initial time interval 

attribute that is attached to the entities upon their arrivals. The entity’s service-start time 

changes in accordance with the selected approach to sort the event list. As a result, the 

obtained interval performance measures vary. Herein, the three proposed approaches are 

discussed and their resulting effects on the performance measures of interest are 

analyzed. 

4.2.1 Lower bound Approach to Advance Simulation Clock 

The first approach is the lower-based sorting. This approach manages the event 

list based on the earliest events time of occurrence. In this respect, the simulation events 

are prioritized based on the lower bounds of times. Consequently, the event list is 

comprised of any two events stacked as in cases of 1, 3, and 6 of Figure  4-1. 

In case 1, interval �𝑎𝑖 ,𝑎𝑖�  is associated with interval �𝑎𝑖+1,𝑎𝑖+1�  in a less than 

relationship “<” defined as 
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�𝑎𝑖 ,𝑎𝑖�  < �𝑎𝑖+1,𝑎𝑖+1�  ⇔ (𝑎𝑖 < 𝑎𝑖+1)⋀(𝑎𝑖 < 𝑎𝑖+1)⋀(𝑎𝑖 < 𝑎𝑖+1) (24) 

For case 3, interval �𝑎𝑖 , 𝑎𝑖�  is associated with interval �𝑎𝑖+1, 𝑎𝑖+1�  in a partially 

less than relationship “≺” defined as 

�𝑎𝑖 ,𝑎𝑖�  ≺ �𝑎𝑖+1,𝑎𝑖+1� ⇔ (𝑎𝑖 < 𝑎𝑖+1)⋀(𝑎𝑖 > 𝑎𝑖+1)⋀(𝑎𝑖 < 𝑎𝑖+1)  (25) 

In both cases the condition (𝑎𝑖 < 𝑎𝑖+1)⋀(𝑎𝑖 < 𝑎𝑖+1) is satisfied. In other words, 

the lower and upper arrival times are arranged in an ascending order. Consequently, there 

is no disorder in events sorting at either bound. However, case 6 leads to a logical 

complexity because interval �𝑎𝑖 ,𝑎𝑖� is associated with interval �𝑎𝑖+1,𝑎𝑖+1� in an inclusion 

relationship “⊃” defined as 

�𝑎𝑖 ,𝑎𝑖� ⊃ �𝑎𝑖+1,𝑎𝑖+1�  ⇔ (𝑎𝑖 < 𝑎𝑖+1)⋀(𝑎𝑖 > 𝑎𝑖+1) (26) 

In this case, the entity placed ahead in the event list has a larger upper arrival than 

of the succeeding one, i.e. (𝑎𝑖 > 𝑎𝑖+1). Therefore, the entities at their upper arrival times 

are not served according to the first-in-first-out (FIFO) basis as desired. This disorder in 

the upper times commonly causes an increase in the minimum expected performance 

measures as addressed below. 

In queueing systems, the lower-based sorting can be compared to a traditional 

simulation experiment with the higher arrival rate as the input. A simulation run with the 

lower arrival rate estimates a worst-case scenario w.r.t. the waiting time in the queue (i.e. 

waiting time in the event list) referred to as 𝑤𝑢. To illustrate, consider the bank example 

in Figure  3-1 with interval- arrival rate of [𝜆, 𝜆] and a service rate of [𝜇, 𝜇]. Assume a 
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simulation analyst runs a traditional simulation using the lower parameters of 𝜆 and 𝜇. In 

this scenario, the arrival rate 𝜆 is the mean and the standard deviation of the arrival rate 

that is exponentially distributed. This higher arrival rate 𝜆 generates smaller and less 

dispersed inter-arrival times when compared to the lower rate 𝜆. Therefore, in the 

traditional sense, a worst-case scenario with respect to the average waiting time in queue 

is estimated.  

On the other hand, running a traditional simulation experiment using the upper 

parameters of the bank example, 𝜆 and 𝜇, estimates the best-case scenario w.r.t. the 

average waiting time in queue, given as 𝑤𝑙. In this scenario, the event list is created based 

on inter-arrival times that are generated from an exponential distribution with a smaller 

rate 𝜆. Therefore, the resulted service start time represents the best-case scenario with 

respect to the average performance measures in the traditional simulation. The lack of 

capturing the input uncertainties in the traditional simulation assumes that the only use of 

the lower arrival rate estimates a best-case scenario w.r.t. performance measures in the 

context of queueing systems. Analogously, the use of the upper arrival rate estimates the 

worst-case scenario. Figure  4-2 demonstrates the best- and worst- case scenarios in the 

traditional simulation. 
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Figure  4-2: Best- and worst-case scenarios in the traditional sense 

In the view of the IBS, the interval parameters assume that any parameter value 

enclosed within the interval parameter (i.e. λ ∈ [λ, λ]) is valid and credible to estimate an 

expected scenario, even the lower and the upper parameters. The IBS analyst does not 

read the best and worst-case scenarios in the traditional manner. The best and worst-case 

scenarios in the IBS are judged based on the yielded uncertainties in the estimated results. 

In other words, if the uncertainty of performance measures given as wid(w) = �w − w� 

is greater, this reports a worst-case scenario. On the contrary, as the width measure 

decreases, this estimates a best-case scenario.  

In the IBS lower-based sorting, if there is no disorder encountered in the lower 

arrival times, the upper bound of performance measures estimate will be the same as 𝑤𝑢 

in the traditional simulation, i.e. 𝑤 = 𝑤𝑢. However, when there is a disorder in the upper 

arrival times caused by case 6 in Figure  4-1, this disorder tends to increase the 

performance measure of interest at the lower bound 𝑤, i.e. 𝑤 > 𝑤𝑙. The increase in the 

lower bound estimate is due to the disorder caused by case 6. The disorder is a source of 
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variability that tends to increase the estimated performance measure than its expected 

value, 𝑤𝑙. The increase in the lower performance measure reduces the width of the 

interval performance measures and this estimate is assessed as the best-case scenario of 

the IBS because the uncertainty reduces. 

However, when the analyst face an imprecise service rate given as [𝜇, 𝜇], a dual 

operator could be used for adding the service time to the lower service-start time in order 

to estimate the best-case scenario w.r.t. the other performance measures of interest. For 

instance, a service time, given as a proper interval [𝑠𝑖 , 𝑠𝑖], represents an imprecise service 

time of entity (i). If the IBS follows the lower-based sorting and the service-start time of 

entity (i) is given as [𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖], then the worst-case and best-case sojourn time can be as 

in Eq.(27) and Eq.(28), 

�𝑡𝑖 , 𝑡𝑖� = �𝑑𝑖 ,𝑑𝑖� − [𝑎𝑖 ,𝑎𝑖] (27) 
 

�𝑡𝑖 , 𝑡𝑖� = �𝑑𝑖 ,𝑑𝑖� − 𝑑𝑢𝑎𝑙��𝑎𝑖 ,𝑎𝑖�� (28) 
 

respectively. With the interval addition operation as shown in Eq.(27), the lower bound of 

sojourn time is derived by subtracting the upper bound of arrival time from the lower 

bound of departure time. The upper bound is calculated from the opposite bounds. 

Therefore, Eq.(27) estimates an imprecise worst-case scenario with respect to sojourn 

time, whereas Eq.(28) gives the best-case estimations.  

In summary, if the simulation analyst is interested in a best-case scenario, lower-

based sorting should be adopted. Moreover, a dual operator can be used as appropriate to 

estimate an imprecise best-case scenario w.r.t. the performance measures of interest. 
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4.2.2 Upper Bound Approach to Advance Simulation Clock 

A second possible approach is to handle the simulation based on the events latest 

possible times. If the upper-based sorting is followed, the IBS event list is composed of 

the cases 1, 3, and 5 for any two subsequent events as in Figure  4-1. When compared to 

the lower-based sorting, it seems that the only difference in the event list is cases 5 and 6 

for the lower and the upper bounds, respectively. However, the obtained sequences in the 

event list based on either bound are not the same. For instance, the first event placed in 

the event list might not be the same if the lower-based sorting was used over the upper-

based or vice-versa. Thus, all next scheduled events generate two different sequences for 

any of the two bounds based sorting approaches. 

Cases 1 and 3 occur in a similar aspect within the lower-based and the upper-

based sorting. The relationships between two events occur as in cases 1 and 3 are 

discussed in Section 4.2.1. Clearly, there is no disorder arises at any bound, i.e. (𝑎𝑖 <

𝑎𝑖+1)⋀(𝑎𝑖 < 𝑎𝑖+1). However, in case 5, interval �𝑎𝑖 ,𝑎𝑖� is associated with interval 

�𝑎𝑖+1, 𝑎𝑖+1� in an inclusion relationship “⊂” defined as 

�𝑎𝑖 ,𝑎𝑖� ⊂ �𝑎𝑖+1,𝑎𝑖+1�  ⇔ (𝑎𝑖 > 𝑎𝑖+1)⋀(𝑎𝑖 < 𝑎𝑖+1)  (29) 

In this case, entity (𝑖) that is placed ahead in the event list has a lower arrival time 

that is larger than of the succeeding entity (𝑖 + 1), i.e. �𝑎𝑖 > 𝑎𝑖+1�. Therefore, the 

entities are not served according to the FIFO basis at their lower bounds. The disorder 

arises from case 5 as the lower bound increases the expected value of upper bound of 

waiting time  𝑤 from the traditional simulation with upper parameter values (arrival rate 

=𝜆 and service rate =𝜇), i.e. 𝑤 > 𝑤𝑢. Under this, there are no disorders at the upper 



62 
 

bound and the resulted lower waiting time is equal to the yielded waiting time from the 

traditional simulation with the lower parameters (arrival rate =𝜆 and service rate =𝜇), i.e. 

𝑤 > 𝑤𝑙. That is, given the upper-based sorting approach, the imprecise estimate of the 

IBS have an interval width that is greater than the difference between the traditional 

simulation estimates with lower and upper parameters, i.e. 𝑤𝑖𝑑(𝑤) = �𝑤 − 𝑤� > (𝑤𝑢 −

𝑤𝑙). This greater uncertainty in the estimates provides a worst-case scenario with respect 

to waiting time in system. With this in mind, the dual operator could be used in interval 

arithmetic for the performance measures to estimate their imprecise worst-case scenario. 

The difference between the lower-based and the upper-based sorting are 

organized in Figure  4-3 as a nested hierarchy. In this graphical illustration, we refer to the 

traditional simulation estimates by 𝑤𝑙 and 𝑤𝑢 as illustrated in Figure  4-2. Because of this 

lack of modeling uncertainties in traditional simulation, these estimates are levied as the 

minimum and maximum waiting time in queue. By performing the traditional simulation, 

the analyst is in essence checking the extreme values of the waiting time in queue as 

indicated using the green horizontal bar in Figure  4-3. 

Under this, the lower-based sorting in the IBS of queueing systems estimates an 

upper waiting time as 𝑤 = 𝑤𝑢. Yet, the modeled uncertainties causes a disorder at the 

lower bound that increases its waiting time from the minimum waiting time estimated 

from the traditional simulation, i.e. 𝑤 > 𝑤𝑙. This disorder is encountered due to the 

occurrence of case 6 (refer to Figure  4-1) in the event-list. Moreover, the lower-based 

sorting produces a more conservative estimate than the traditional extremes values and is 

considered a best-case scenario of the IBS. The best-case scenario is displayed in Figure 

 4-3 using a horizontal blue bar that is range is tighter than the green one. 
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On the other hand, the IBS upper-based sorting confounds the upper waiting time 

from the maximum waiting time obtained from the traditional simulation, i.e. 𝑤 > 𝑤𝑢. 

More formally, the interval bounds here [𝑤,𝑤] are wider than the traditional simulation 

range of estimates, i.e. �𝑤 − 𝑤� > (𝑤𝑢 − 𝑤𝑙). This disorder is resulted because of the 

occurrence of case 5 (refer to Figure  4-1) in the event list. The over estimation of the 

interval performance measures characterizes the upper-based sorting as an approach to 

estimate the worst-case scenario of queuing systems. The red horizontal bar represents 

the interval estimation of the worst-case scenario whose range is wider than the green 

bar. Finally, we mention the use of dual operator to estimate the best- and worst-case 

scenarios w.r.t. the other performance measures than the waiting time in queue.  
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Figure  4-3: Lower-based vs. Upper-based Event List Sorting in the IBS 

This shows that the explicit and simultaneous consideration of uncertainty and 

variability in simulation yields reliable simulation results in one run which can improve 

the decision making process. More specific to the context of queueing systems, we 
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differentiate between the two sorting approaches as follows. An upper-based sorting is 

preferred over a lower-based sorting if the worst-case scenario is of interest. On the other 

hand, the lower-based sorting is favorable to estimate the best-case scenario w.r.t 

imprecise performance measures. This difference is revealed because smaller arrival rate 

with smaller variability estimates higher values of the performance measures, on the 

other hand, larger arrival rate with larger variability results into smaller values of the 

performance measures in the queueing systems. Moreover, the above illustration 

demonstrates how this fact imposes the modeling of the best- and worst-case scenarios in 

the IBS. 

4.2.3 Time Sampled Approach to Advance Simulation Clock 

A third proposed approach to advance the clock is based on sampled instances 

from the interval times. With the assumption that the interval times are uniformly 

distributed, the entities are sorted based on its sample time. Consequently, each 

simulation event is attributed with two time formats, an interval time [𝑡𝑖 , 𝑡𝑖] and a real-

valued time 𝑡𝑖~𝑈�𝑡𝑖 , 𝑡𝑖�. These sampled values 𝑡𝑖′𝑠 are used to sort the event in the event 

list. As a result, the events may occur in different sequences because of the extra uniform 

sampling procedure adopted to prioritize the events. 

Based on the sampling time approach, the probability of advancing interval 

[𝑎𝑖 , 𝑎𝑖] before interval �𝑎𝑖+1,𝑎𝑖+1� is studied for the six cases in Figure  4-1. The three 

factors that have an influence on advancing interval [𝑎𝑖 , 𝑎𝑖] ahead of �𝑎𝑖+1, 𝑎𝑖+1� in 

simulation are: 

1. The overlapping case between the two intervals, 
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2. The uncertainty associated within the intervals, i.e. intervals’ widths. For 

example, the uncertainty associated within the interval of [𝑎𝑖 ,𝑎𝑖] is quantified as 

𝑤𝑖𝑑(𝑎𝑖) = �𝑎𝑖 − 𝑎𝑖�. 

3. The intersection period between the intervals if overlapped.  

The probability of advancing interval [𝑎𝑖 ,𝑎𝑖] ahead of �𝑎𝑖+1,𝑎𝑖+1� for all cases in Figure 

 4-1, i.e. probability of FIFO, is studied below. 

A ratio distribution (Golberg, 1984) is applied here to find the desired probability 

of FIFO as explained above. This distribution is essentially constructed from the ratios of 

two uniformly random variables. Primarily, we examine the probability of advancing 

event 𝑋 ahead of event 𝑌, whereas the density functions of the events occurrence times 

are 𝑓𝑇𝑥(𝑡𝑥) and 𝑓𝑇𝑦(𝑡𝑦), respectively. Suppose, 𝑓𝑇𝑥(𝑡𝑥) and 𝑓𝑇𝑦(𝑡𝑦) are two continuous 

uniform distribution functions. In addition, the distribution functions have the same 

parameters, where the minimum value is 𝑙 and the maximum is 𝑘 and moreover, 𝑙, 𝑘 ≥ 0. 

Therefore, the occurrence time of the events are sampled as 𝑡𝑥~𝑈(𝑙,𝑘) and 𝑡𝑦~𝑈(𝑙, 𝑘). 

Then, the ratio of the random variables is 𝑈 = 𝑇𝑥 𝑇𝑦⁄  which pdf is  

𝑓𝑢(𝑢) =

⎩
⎪
⎨

⎪
⎧ 1

2(𝑘 − 𝑙)2
�𝑘2 −

𝑙2

𝑢2
� ,   

𝑙
𝑘
≤ 𝑢 < 1

1
2(𝑘 − 𝑙)2

�
𝑘2

𝑢2
−𝑙2� ,   1 ≤ 𝑢 ≤

𝑘
𝑙 ⎭
⎪
⎬

⎪
⎫

 (30) 

The derivation of Eq.(30) is explained as follows. First, the cumulative function of the 

variable 𝑈 given by 𝐹𝑈(𝑢) = 𝑃{𝑈 ≤ 𝑢} can be expressed as:  

𝑃{𝑈 ≤ 𝑢} = �𝑓𝑇𝑥(𝑡𝑥)
𝐺

𝑓𝑇𝑦�𝑡𝑦�𝑑𝑡𝑥𝑑𝑡𝑦 



66 
 

where 𝐺 = ��𝑡𝑦, 𝑡𝑥�: 𝑡𝑥 𝑡𝑦 ≤ 𝑢⁄ �. Then 𝐺 = 𝐺1 ∪ 𝐺2, where 𝐺1 = ��𝑡𝑦, 𝑡𝑥�: 𝑡𝑥 ≤

𝑢𝑡𝑦, 𝑡𝑥 ≤ 1 (𝑘 − 𝑙)⁄ � and 𝐺2 = ��𝑡𝑦, 𝑡𝑥�: 𝑡𝑥 ≤ 𝑢𝑡𝑦, 𝑡𝑥 > 1 (𝑘 − 𝑙)⁄ �. Thus,  

𝑃{𝑈 ≤ 𝑢} = �𝑓𝑇𝑥(𝑡𝑥)
𝐺1

𝑓𝑇𝑦�𝑡𝑦�𝑑𝑡𝑥𝑑𝑡𝑦 + �𝑓𝑇𝑥(𝑡𝑥)
𝐺2

𝑓𝑇𝑦�𝑡𝑦�𝑑𝑡𝑥𝑑𝑡𝑦 (31) 

We evaluate Eq.(31) for (𝑙 𝑘⁄ ≤ 𝑢 ≤ 1) and for (1 ≤ 𝑢 ≤ 𝑘/𝑙). The regions 𝐺1 and 𝐺2 

are shown in Figure  4-4.  
 

 

Figure  4-4: Integration region for calculating the distribution of 𝑇𝑥 𝑇𝑦⁄  

First, the evaluation is over ( 𝑙
𝑘
≤ 𝑢 < 1). The double integration gives 
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and the derivation of the cumulative density function with respect to 𝑢 gives the 

probability density function as 

 𝑓𝑢(𝑢) =
𝜕𝐹
𝜕𝑢

= �
1

(𝑘 − 𝑙)2
�
𝑘2𝑢

2
− 𝑙𝑘 +
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2𝑢
��

′
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�
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2
−
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2𝑢2
� (33) 

Second, the evaluation is over (1 ≤ 𝑢 ≤ 𝑘/𝑙), which results in 

l k

l

k
ty = tx/u

tx~U(l,k)
ty~U(l,k)
U=Tx/Ty

1/(k-l)

1/(k-l)
G2

G1
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𝐹𝑢(𝑢) = 1 − �
1

(𝑘 − 𝑙)2
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𝑙𝑢 𝑙
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1
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𝑘2

2𝑢 − 𝑙𝑘 +
𝑙2𝑢
2 � (34) 

 

Similarly, the derivation of the above cumulative density function gives 

𝑓𝑢(𝑢) =
𝜕𝐹
𝜕𝑢
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Hence, the probability distribution function of u can be summarized as 

𝑓𝑢(𝑢) =

⎩
⎪
⎨

⎪
⎧ 1

2(𝑘 − 𝑙)2
�𝑘2 −

𝑙2
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𝑘
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⎪
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⎪
⎫

 (36) 

From Eq.(36), we notice that advancing 𝑋 ahead of 𝑌 has equal probability to 

advancing 𝑌 prior to 𝑋. This observation is because the ratio of their occurrence instants 

is equal to one-half. i.e. 𝑃(𝑢 < 1) = 0.5. Eq.(36) is used to calculate the probability of 

advancing entity (𝑖) with an arrival time [𝑎𝑖 ,𝑎𝑖] ahead of entity (𝑖 + 1) with an arrival 

time as [𝑎𝑖+1, 𝑎𝑖+1] for all the cases as in Table  4-1, where 𝑎𝑖~𝑈�𝑎𝑖 ,𝑎𝑖� and 

𝑎𝑖+1~𝑈�𝑎𝑖+1,𝑎𝑖+1�. 

 

TABLE  4-1 
THE PROBABILITY OF ADVANCING INTERVAL [𝑎𝑖 ,𝑎𝑖] PRIOR TO INTERVAL [𝑎𝑖+1,𝑎𝑖+1] FOR 

THE SIX CASES IN FIGURE  4-1 
Cases 𝑷(𝒂𝒊 𝒂𝒊+𝟏⁄ < 1) 

1 1 
2 0 
3 1 − 1 2⁄ × �𝑎𝑖 − 𝑎𝑖+1� �𝑎𝑖 − 𝑎𝑖�� × �𝑎𝑖 − 𝑎𝑖+1� �𝑎𝑖+1 − 𝑎𝑖+1��  
4 1 2⁄ × �𝑎𝑖+1 − 𝑎𝑖� �𝑎𝑖 − 𝑎𝑖�� × �𝑎𝑖+1 − 𝑎𝑖� �𝑎𝑖+1 − 𝑎𝑖+1��  
5 1 2⁄ × �𝑎𝑖 − 𝑎𝑖� �𝑎𝑖+1 − 𝑎𝑖+1�� + (𝑎𝑖+1 − 𝑎𝑖) �𝑎𝑖+1 − 𝑎𝑖+1�⁄  
6 1 2⁄ × �𝑎𝑖+1 − 𝑎𝑖+1� �𝑎𝑖 − 𝑎𝑖�� + (𝑎𝑖+1 − 𝑎𝑖) �𝑎𝑖 − 𝑎𝑖�⁄  
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Table  4-1 demonstrates that this sampled time approach may result in various 

sequences of the entities in the event list. When an overlapping occurs between the 

arrival times, the sampling approach can result in multiple sequences. As an example, 

Figure  4-5 shows 4 possible sequences that can be obtained for the same entities if the 

uniform sampling approach is applied. The figure highlights entity number 2 for 

illustration purposes. The same entity replaces different positions in the event list based 

on its sampled instance w.r.t. the other entities. This is due to uncertainty modeling in 

simulation. 

 

 

Figure  4-5: 4 different sequences of the first 10 customers in an [M]/[M]/1 system based 
on the uniform sampled approach 

The time sampled approach to advance the simulation clock does not follow the 

FIFO basis at either the lower or the upper events occurrence times. However, it follows 

the FIFO discipline based on the sampled instances from the uniform distribution. All 

entities reserve a place in the event list according to the sampled instant from the interval 

times.  
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4.2.3.1 Comparison between SOMC and the IBS Uniform Sampled 
Approach 

If we run the IBS using this clock advancement approach, the event list is created 

based on real variates that are uniformly sampled. Hence, the IBS estimates here are real-

point values as compared to the two previous approaches and may be complementary to 

the SOMC. Used in conjunction with SOMC, it provides real estimates of performance 

measures accounting for the total uncertainty.  

In SOMC (Vose, 2000), an analyst uses a probability distribution to model 

distributions’ parameters, i.e. 𝑋~exp (Uniform(𝑎, 𝑏)). For each run, the analyst samples 

a parameter value from its distribution, i.e. 𝜆 = 𝑎 + 𝑢(𝑏 − 𝑎) where 𝑢~Uniform(0,1). 

Consequently, each run is based on one single value of the parameter. Therefore, the 

SOMC simulation claims by definition that there is no uncertainty involved in a single 

run. In simpler words, the analyst is forced to either eliminate the imprecision or ignore 

it. Moreover, SOMC can lead to a high computational burden due to the number of 

iterations needed to achieve a solution which is as close as possible to the complete 

solution. Often, a Monte Carlo analyst is not aware of the number of replications required 

to achieve a certain level of robustness. This opens them up to significant criticism 

(Tucker & Ferson, 2003). 

In this approach, the IBS analyst asks for only the minimum and maximum values 

of distribution’s parameters represented as intervals, i.e. 𝑋~exp��𝜆, 𝜆��. In the IBS run, 

the lower and the upper bounds of the input distributions are generated. These bounds 

enclose all SOMC distributions resulted from parameter sampling. Regardless, the IBS, 

following this clock advancement approach, is executed based on uniformly sampled 
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instances from the lower and the upper bounds. Therefore, each simulation run is not 

based on a single parameter value but every random variate throughout a single run is 

generated from a different parameter, i.e. 𝜆~Uniform�𝜆, 𝜆�.  

In addition, by not expressing the imprecision in the simulation results using this 

uniform sampling approach, we still need to run the IBS multiple times as opposed to the 

lower and the upper-based sorting. In uniform sampling approach of the IBS, we still do 

not provide an answer to the number of replications needed. However, the imprecise 

input distributions used in the IBS signal a certain level of system uncertainty by its 

parameters’ widths. This can be a potential topic of future research to relate the 

uncertainty in the input parameters with the required number of IBS replications to 

achieve a certain measure of robustness. When the imprecision is large, it dictates larger 

number of replications to be constructed, and vice versa. 

The differences between the IBS with the uniform sampling approach and the 

SOMC simulation mechanisms are shown in Figure  4-8. 
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Figure  4-6: IBS with uniformly sampled approach to advance the simulation clock vs. 
SOMC 

The uncertainty in the SOMC is propagated only across the different runs as a 

single parameter value is used to run one SOMC replication. The variability is 

represented in all the replications using the distribution functions as illustrated in the right 

diagram of Figure  4-7In the IBS, the variability and the uncertainty are modeled in each 

replication and across them. The uncertainty is modeled in the two directions because 

different values of the parameters are used to run a single IBS run. The explicit inclusion 

of uncertainty in a single run is obvious as each sample is observed from a different 

parameter value. Moreover, the variability is also modeled by the statistical distributions 

for the different replications. On the other hand, the variability is modeled by a different 

distribution at each IBS run. The uniform sampling approach produces a new distribution 

which is unnecessarily same as the input distribution. The developed distributions are 
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also enclosed within the lower and the upper bounds as shown in the left diagram of 

Figure  4-7. 

 

  

Figure  4-7: SOMC replications vs. IBS uniform sampled approach enclosed within the 
IBS bounds 

More formally, the IBS bounds shown in the right diagram of Figure  4-7 enclose 

precise cdf’s obtained from the SOMC runs. On the other hand, the IBS bounds enclose 

imprecise cdf’s obtained from the IBS runs as demonstrated in the left diagram of Figure 

 4-7. If we think of the IBS uniform sampling approach and SOMC as drivers to reliable 

decision making, which approach would we prefer to adopt? Because the uncertainty in 

the IBS is explicitly modeled in each run and across the different runs, thus, the IBS is 

considered more reliable than the SOMC. 

The question that arises here: is whether running two traditional simulation 

experiments using the lower and the upper parameters at each run estimates the best and 

worst-case scenario of the performance measures of interest. As a consequence, we 

estimate the performance measures using an easy and traditional approach. We answer 

this question by referring to our main objective of developing the IBS. The goal is to 
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model the input uncertainties in each simulation run and ultimately estimate the best and 

the worst-case scenarios. Simply, running a traditional simulation using the extreme 

bounds does not propagate the uncertainty component in the simulation. Our intention of 

running the DES is to account for the input uncertainties in each single run. 

4.3 Output Analysis 

The outputs of the interval-based simulation mechanism are also intervals. 

Appropriate statistical measures must be developed to help interpret simulation results as 

well as to design and analyze simulation experiments to support decision making.  

The interval variance defined in Section 2.3.2 to measure data dispersion is 

computationally expensive and impractical in a simulation with hundreds of thousands 

samples. We investigate new measures that serve the purpose of measuring simulation 

variances and uncertainties and at the same time are easy to compute. Preliminary 

research proposed three measures: (1) Data disparity, (2) Data Range, and (3) 

Nonspecificity, as follows. 

4.3.1 Data Disparity 

Data Disparity measures the variability of the data from its mean. Suppose that we 

have 𝑛 random intervals �𝑥𝑖 , 𝑥𝑖�(𝑖 = 1, … ,𝑛). The mean [𝜇, 𝜇] is calculated as in Eq.(1). 

Data disparity, which measures the dispersion of the interval data away from the mean, is 

calculated as 𝐷 = ∑ 𝑑𝑖2𝑛
𝑖 (𝑛 − 1)⁄ , where 𝑑𝑖  is the maximum dispersion of the ith interval 

�𝑥𝑖 , 𝑥𝑖� and calculated in six different ways, depending on how �𝑥𝑖 , 𝑥𝑖� is located w.r.t. the 
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mean, as illustrated in Figure  4-8. The computation of data disparity D requires a linear 

execution time 𝑂(𝑛). 

 

Figure  4-8: Six cases of data disparity 𝑑𝑖 

4.3.2 Data Range 

Data Range is to measure the level of uncertainty in estimations, which is 

calculated as the width of interval, 𝑟𝑖 = 𝑤𝑖𝑑��𝑥𝑖 , 𝑥𝑖�� = �𝑥𝑖 − 𝑥𝑖� for (𝑖 = 1, … ,𝑛). The 

data range for a collection of random intervals can be calculated as either mean 𝑟 =

(1 𝑛⁄ )∑ 𝑟𝑖𝑛
𝑖=1 , medium, or mode of all widths.  

4.3.3 Nonspecificity  

Nonspecificity is also used to measure the level of uncertainty. Similar to the 

extended Hartley measure (Klir, 2006), it is calculated as 𝑠𝑖 = log (1 + 𝑤𝑖𝑑([𝑥𝑖 , 𝑥𝑖])) for 

the interval [𝑥𝑖 , 𝑥𝑖]. The collected nonspecificity is 𝑆 = ∑ log (1 + 𝑤𝑖𝑑([𝑥𝑖 , 𝑥𝑖]))𝑛
𝑖=1 .  

The above described measures are easy to implement to assess interval data 

dispersion with respect to variability and uncertainty. Future research is needed to 

investigate these measures as explained in Chapter 6. 
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4.4 IBS Implementation using JSim 

As our testbed, a library of Java-based interval DES toolkits, JSim, has been 

developed. The testbed is used to demonstrate the proposed new reliable simulation. The 

implementation of JSim involves all DES components in a next-event time-advance 

approach programmed in Java. 

The following components are developed in JSim package to execute the IBS: 

• Source Object: An object that generates entities in a system based on interval 

distributions. For instance, an entity (𝑖) arrives to the system at time [𝑎𝑖 ,𝑎𝑖]. 

• Client Object: An object that represents an entity generated in a system. They 

are created at time [𝑎𝑖 ,𝑎𝑖], served for an interval time of [𝑠𝑖 , 𝑠𝑖], and finally 

disposed at time [𝑑𝑖 ,𝑑𝑖]. These objects can be modified as convenient during 

the simulation. 

• Server Object: A station that serves entities in a system during the simulation. 

Service times are based on interval distributions. As an example, station (𝑗) 

provides a service to entity (𝑖) for an interval time of [𝑠𝑖𝑗 , 𝑠𝑖𝑗]. 

• Sink Object: An object that represents the exit of a system that disposes entity 

(𝑖) after its service ends at time [𝑑𝑖 ,𝑑𝑖]. 

• Simulation Object: This object determines the simulated system features. For 

example, the number of Sources, Servers, and Sinks is specified in this object. 

In addition, the statistical distributions of random variables are identified here. 

In this object, the simulation clock is initiated at time [0,0] and along with the 

clock initiation,  the event list to handle the simulation is created. This event 
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list contains the interval times of the events and is modeled in JSim as an 

object called Calendar which is essentially a priority queue. In this chapter, 

we discussed three possible approaches to the interval events in the Calendar. 

In brief, the three approaches can be based on: 

1) Lower event time: the events are sorted here based on the earliest possible 

time of occurrence, i.e. 𝑎𝑖. 

2) Upper event time: conversely, the events are sorted in the event list based 

on their latest possible time of occurrence, i.e. 𝑎𝑖. 

3) Uniform sampled event time: lastly, a suggested approach is based on a 

uniformly sampled time from the interval events, assuming that the 

interval time is uniformly distributed, i.e. 𝑎~𝑈(𝑎𝑖 ,𝑎𝑖). 

The three proposed approaches can be implemented in JSim by changing the 

calendar prioritization rule as desired. JSim package is considered the basic platform to 

execute the IBS. Any extension to new objects can be built and added to the package. 

Object-oriented languages, like Java, are flexible to allow for customized models of 

different applications. 

A bank example shown in Figure  4-9 is an illustration of modeling in JSim. It is 

modeled by one Source, one Server, and one Sink. In the simulation class, the inter-

arrival and service times are defined as exponential distributions with interval parameters. 

In addition, a new Calendar is generated and is set to time [0,0]. Figure  4-10 shows a 

screen shot of [M]/[M]/1 implementation in JSim package using NetBeans Java editor. 



77 
 

 

Figure  4-9: [M]/[M]/1 Bank Example Overview 

<<create>>+BankSimulation():BankSimulation
+getCalendar():Calendar
+getSource():BankSource
+getStopTime():float
+setStopTime(newTime:float):void
+getStatus():int
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<<create>>+BankPane():BankPane
+run():void
+main(arg:String[]):void

#controlPane:JPanel
#settingPane:JPanel
#viewPane:JPanel
#buttonStart:JButton
#buttonStats:JButton
#buttonStop:JButton
#tfStopTime:JTextFile
#btnSet:JButton
-thread: Thread=null

BankPane

~bankSim

~bankSource

<<create>>+BankSource(calendar:Calendar, InterArrivalTime:IConRandom):BankSource
+initialize():void
+onEvent(evt:SimulationEvent):void
+setInterArrivalTime(random:IConRandom):void
-scheduleArrival():void

~idCounter:int

BankSource

<<create>>+BankClient(timeOfArrival:float):BankClient

BankClient

~teller

<<create>>+BankServer(calendar:Calendar, serviceTime:IConRandom):BankServer
+onEvent(evt:SimulationEvent):void
#scheduleDeparture(client:EntityClient):void

~queueID:int

BankServer

~bankSink

<<create>>+BankSinkcalendar():BankSink
+onEvent(evt:SimulationEvent):void

~name:String
-ID:int

BankSink

Bank JSim Overview

~bankClient
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Figure  4-10: Screen shot from [M]/[M]/1 Implementation in NetBeans 

 

4.5 The [M]/[M]/1 example in the IBS 

The objective of this section is to formulate [M]/[M]/1 and illustrate the IBS 

mechanism using this example. 

4.5.1 The automaton Model for [M]/[M]/1 

The automaton model for this system is outlined as following: 

• The set of events is: 𝔼 = ��𝑎,𝑎�, �𝑎,𝑑�, �𝑑,𝑎�, �𝑑,𝑑�, �𝑎,∅�, {∅,𝑎}, �𝑑,∅�, �∅,𝑑��, 

where 𝑎 and 𝑎 denote an arrival event based on the lower and upper inter-arrival 

bounds, respectively, and where 𝑑 and 𝑑 denote a departure event based on the 
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lower and upper departure bounds, respectively. And the symbol 𝜙 is used to 

indicate a void event occurred either at the lower or the upper bound. We define 

�𝑥, 𝑥�|𝑥𝜖 ℤ, 𝑥 𝜖 ℤ to represent a generalized discrete interval. A generalized interval, 

as mentioned earlier, is not constrained by 𝑥 ≤ 𝑥 any more. 

• The state space is 𝒮 = �{0,0}, {0,1}, {1,0}, {1,2}, … {3,2}, … � which represents the 

number of customers in the queue based on the simulation of the lower and the 

upper bounds. 

• The set of feasible events is defined as Γ−1: 𝒮 ↦ 𝔼. The different 

Γ��𝑥, 𝑥�� = ��𝑎, 𝑎�, �𝑎,𝑑�, �𝑑, 𝑎�, �𝑑,𝑑�, �𝑎,∅�, {∅, 𝑎}, �𝑑,∅�, �∅,𝑑�� ∀ ��𝑥, 𝑥�𝜖�𝑋,𝑋�: 𝑥 > 0 𝑎𝑛𝑑 𝑥 >

0 � and Γ({0,0}) = �𝑎,∅�⋁{𝑎,𝑎}⋁{∅,𝑎}, where the symbol ∨ is used to represent the 

logical disjunction (or). 

• The state transition function 𝑓:𝒮 × 𝔼 ↦  𝒮   has eight possible state 

transitions:  

(1) 𝑓��𝑥, 𝑥�, �𝑎,𝑎�� = �𝑥 + 1, 𝑥 + 1� (5) 𝑓��𝑥, 𝑥�, �𝑎,𝑑�� = {𝑥 + 1, 𝑥 − 1} 

(2) 𝑓��𝑥, 𝑥�, �𝑑,𝑎�� = {𝑥 − 1, 𝑥 + 1} (6) f��x, x�, �d, d�� = {x − 1, x − 1} 

(3) 𝑓��𝑥, 𝑥�, �𝑎,∅�� = �𝑥 + 1, 𝑥� (7) 𝑓��𝑥, 𝑥�, {∅,𝑎}� = {𝑥, 𝑥 − 1} 

(4) 𝑓��𝑥, 𝑥�, �𝑑,∅�� = �𝑥 − 1, 𝑥� (8) 𝑓��𝑥, 𝑥�, �∅,𝑑�� = {𝑥, 𝑥 − 1} 

 

A state transition diagram for this system is shown in Figure  4-11. Note that the 

state space of this model is infinite (but countable). The hand simulation of the IBS for 

this example is discussed in the following section. 
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Figure  4-11: [M]/[M]/1 queueing system state transition diagram 

4.5.2 Hand Simulation for [M]/[M]/1 

In this section, we illustrate the IBS with an example of [M]/[M]/1. The purpose 

of this example is to show the execution of the IBS using a hand simulation, interpret the 

interval attributes and performance measures to verify completeness and soundness of 

numerical estimations, and estimate interval performance measures. 

Example: Consider an operation of a single bank teller with an [M]/[M]/1 queue with the 

interval arrival rate of �𝜆, 𝜆� = [3,4] customers per hour and the interval service rate is 

�𝜇, 𝜇� = [5,5] customers per hour. Here the service rate is precise. The bank opens its 

doors at 9 A.M. and closes at 5 P.M., but it stays open until all customers at 5 P.M. have 

been served. The objective of the single-server queueing simulation is to estimate the 

expected interval steady-state sojourn time [𝑡, 𝑡] (i.e., time spent in the system).  
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For a stable system, the interval arrival rate is to be partially less than the interval 

service rate, i.e. �𝜆, 𝜆� ≺ [𝜇, 𝜇]. The interval service-start time for entity (𝑖) is defined as 

in Eq.(23) and the interval departure time �𝑑𝑖 ,𝑑𝑖� is calculated as 

�𝑑𝑖 ,𝑑𝑖� = �𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖] + [𝑠𝑖 , 𝑠𝑖� (37) 

where �𝑠𝑖 , 𝑠𝑖� is the interval service time of entity (𝑖). The interval arithmetic is used to 

calculate the sojourn time performance measure of entity (𝑖) �𝑡𝑖 , 𝑡𝑖� as 

�𝑡𝑖 , 𝑡𝑖� = �𝑑𝑖 ,𝑑𝑖� − �𝑎𝑖 ,𝑎𝑖� (38) 

In Eq.(38), if the resulting lower bound is negative, it is set to the minimum service time 

associated with entity (𝑖). We assume that the minimum possible time in the system is 

the time needed to complete the service. 

Table  4-2 represents the hand simulation of the above example. Note that the 

simulation ends when the departure time upper bound 𝑑𝑖 is approximately equal to 480 

minutes, assuming that the simulation’s start time is [0,0]. The entity id 𝑖 is given as in 

the first column. The event list formed by the lower and the upper-based sorting is 

similar. This is due to the existence of one Source generating the entities to the system. 

However, for more complex systems, the difference in the lower and upper based sorting 

is more obvious. The second and the third columns represent interval random variates of 

the arrival and service times, respectively. These random variates are generated as 

discussed in Section 3.2. Columns four, five and six represent the intervals of the service-

start times, the departure times, and the sojourn times obtained from simulation, 

respectively.  
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TABLE  4-2 
THE IBS HAND SIMULATION FOR THE [M]/[M]/1 EXAMPLE 

Entity (𝒊) �𝒂𝒊,𝒂𝒊� (𝒎𝒊𝒏) �𝒔𝒊, 𝒔𝒊� (𝒎𝒊𝒏) �𝒔𝒔𝒕𝒊, 𝒔𝒔𝒕𝒊� (𝒎𝒊𝒏) �𝒅𝒊,𝒅𝒊� (𝒎𝒊𝒏) �𝒕𝒊, 𝒕𝒊� (𝒎𝒊𝒏) 

1 [15.82,21.09] [5.73,5.73] [15.82,21.09] [21.54,26.82] [5.73,11.00] 

2 [30.72,40.96] [73.85,73.85] [30.72,40.96] [104.57,114.81] [73.85,84.09] 

3 [61.00,81.33] [10.78,10.78] [104.57,104.57] [115.35,115.35] [34.02,54.35] 

4 [111.80,149.07] [4.80,4.80] [115.35,149.07] [120.15,153.87] [4.80,42.07] 

5 [121.77,162.36] [18.96,18.96] [121.77,162.36] [140.73,181.33] [18.96,59.55] 

6 [139.83,186.45] [14.15,14.15] [140.73,186.45] [154.89,200.60] [14.15,60.77] 

7 [141.64,188.85] [58.77,58.77] [154.89,188.85] [213.66,247.62] [58.77,105.98] 

8 [147.14,196.19] [28.61,28.61] [213.66,213.66] [242.27,242.27] [46.08,95.13] 

9 [164.27,219.03] [6.83,6.83] [242.27,242.27] [249.09,249.09] [30.06,84.82] 

10 [172.57,230.09] [12.49,12.49] [249.09,249.09] [261.59,261.59] [31.50,89.02] 

11 [181.87,242.49] [0.04,0.04] [261.59,261.59] [261.62,261.62] [19.13,79.75] 

12 [186.55,248.73] [3.81,3.81] [261.62,261.62] [265.43,265.43] [16.70,78.88] 

13 [228.16,304.21] [0.42,0.42] [265.43,304.21] [265.85,304.63] [0.42,76.47] 

14 [231.05,308.07] [18.01,18.01] [265.85,308.07] [283.86,326.08] [18.01,95.03] 

15 [232.17,309.56] [4.94,4.94] [283.86,309.56] [288.80,314.50] [4.94,82.33] 

16 [272.98,363.98] [4.69,4.69] [288.80,363.98] [293.49,368.67] [4.69,95.69] 

17 [288.20,384.27] [13.04,13.04] [293.49,384.27] [306.54,397.31] [13.04,109.11] 

18 [288.82,385.09] [1.80,1.80] [306.54,385.09] [308.33,386.89] [1.80,98.07] 

19 [294.51,392.67] [16.91,16.91] [308.33,392.67] [325.25,409.59] [16.91,115.08] 

20 [297.82,397.09] [3.07,3.07] [325.25,397.09] [328.32,400.16] [3.07,102.35] 

21 [312.91,417.22] [9.80,9.80] [328.32,417.22] [338.12,427.02] [9.80,114.11] 

22 [320.08,426.78] [0.77,0.77] [338.12,426.78] [338.89,427.54] [0.77,107.46] 

23 [384.85,513.13] [7.23,7.23] [384.85,513.13] [392.08,520.37] [7.23,135.52] 
 White cells are randomly generated values from Eq.(15) 
 Grey cells are calculated from Eqs.(23) (37)(38) respectively 

 

The intervals of the entity attributes (i.e. arrival time, service time, and service-

start time) and the performance measures (i.e. sojourn time) in the simulation are solely 

proper intervals. Based on Eq.(37), the quantified proposition for entity (𝑖)  

�∀𝑠𝑠𝑡𝑖 ∈ �𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖���∀𝑠𝑖 ∈ �𝑠𝑖 , 𝑠𝑖 ���∃𝑑𝑖 ∈ �𝑑𝑖 ,𝑑𝑖��(𝑑𝑖 = 𝑠𝑠𝑡𝑖 + 𝑠𝑖) (39) 

is true. From Eq.(38), the following quantified proposition for entity (𝑖)  

�∀𝑑𝑖 ∈ �𝑑𝑖 ,𝑑𝑖���∀𝑎𝑖 ∈ �𝑎𝑖 ,𝑎𝑖���∃𝑡𝑖 ∈ �𝑡𝑖 , 𝑡𝑖 ��(𝑡𝑖 = 𝑑𝑖 − 𝑎𝑖) (40) 

is also true. From Eq.(39) and Eq.(40) the combined quantified proposition  
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�∀𝑠𝑠𝑡𝑖 ∈ �𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖���∀𝑠𝑖 ∈ �𝑠𝑖 , 𝑠𝑖  ���∀𝑎𝑖 ∈ �𝑎𝑖 , 𝑎𝑖���∃𝑑𝑖 ∈ �𝑑𝑖 ,𝑑𝑖���∃𝑡𝑖 ∈ �𝑡𝑖 , 𝑡𝑖  ��(𝑡𝑖 = 𝑠𝑠𝑡𝑖 + 𝑠𝑖 − 𝑎𝑖) (41) 

is entailed. Therefore, the logic interpretation given in Eq.(41) helps to verify that the 

uncertainty estimation for the [M]/[M]/1 system is complete. That is, if the traditional 

simulation is used to simulate the M/M/1 system with any parameter values within the 

intervals, 𝜆 ∈ [𝜆, 𝜆] and 𝜇 ∈ [𝜇, 𝜇], the resulted time in system for any entity, 𝑡𝑖, is always 

bounded by the IBS interval solution, i.e. 𝑡𝑖 ∈ �𝑡𝑖 , 𝑡𝑖 �. If we are interested in the average 

time in system for the 𝑛 entities, the interval average time in system is calculated as in 

Eq.(1). 

For two entities (𝑖) and (𝑖 + 1), the average of time in system �𝑡, 𝑡� =

��𝑡𝑖 + 𝑡𝑖+1�/2, �𝑡𝑖 + 𝑡𝑖+1�/2� is interpreted as 

�∀𝑡𝑖 ∈ �𝑡𝑖 , 𝑡𝑖���∀𝑡𝑖+1 ∈ �𝑡𝑖+1, 𝑡𝑖+1 ���∃𝑡 ∈ �𝑡, 𝑡��(𝑡 = (𝑡𝑖 + 𝑡𝑖+1)/2) (42) 

Combining Eq.(42) with Eq.(41), we can assert that the average value estimate is complete 

for two entities. This can be easily extended to the average estimate of 𝑛 entities as in 

Eq.(1). Therefore, the estimate from the traditional simulation of average time in system 𝑡 

is always bounded by the interval estimate if the arrival and service rates are bounded in 

their associated intervals. For this example, the average interval time in system is 

�𝑡, 𝑡� =  [0.31,1.67]  hours. 

In this example, if we calculate a different sojourn time performance measure 

�𝑡′𝑖 , 𝑡′𝑖� of entity (𝑖) using the dual operator as in 

�𝑡′𝑖 , 𝑡′𝑖� = �𝑑𝑖 ,𝑑𝑖� − 𝑑𝑢𝑎𝑙�𝑎𝑖 ,𝑎𝑖� (43) 
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This solution will be sound but not necessarily complete. The dual operator in Eq.(43) is 

introduced in the Kaucher arithmetic. Compared to the semi-group formed by the 

classical set-based intervals, generalized intervals form a group. Therefore, the addition 

of the interval arrival time and the interval sojourn time calculated based on Eq.(43) is 

always equal to the interval departure time as in  

�𝑎𝑖 ,𝑎𝑖� + �𝑡′𝑖 , 𝑡′𝑖� = �𝑑𝑖 ,𝑑𝑖� (44) 

whereas �𝑡𝑖 , 𝑡𝑖� calculated from Eq.(38) does not have this property. Eq.(43) is interpreted 

as 

�∀𝑎𝑖 ∈ �𝑎𝑖 ,𝑎𝑖�� �∀𝑡𝑖 ∈ �𝑡′𝑖 , 𝑡′𝑖�� �∃𝑑𝑖 ∈ �𝑑𝑖 ,𝑑𝑖��(𝑎𝑖 + 𝑡𝑖 = 𝑑𝑖) (45) 

Eq.(37) can also be interpreted as 

�∀𝑑𝑖 ∈ �𝑑𝑖 ,𝑑𝑖���∃𝑠𝑠𝑡𝑖 ∈ �𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖���∃𝑠𝑖 ∈ �𝑠𝑖 , 𝑠𝑖  ��(𝑑𝑖 = 𝑠𝑠𝑡𝑖 + 𝑠𝑖) (46) 

since all �𝑑𝑖 ,𝑑𝑖�’s, �𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖�’s and �𝑠𝑖 , 𝑠𝑖  � are proper intervals. From Eq.(45) and Eq.(46), 

the combined quantified proposition is  

�∀𝑡𝑖 ∈ �𝑡′𝑖 , 𝑡
′
𝑖  �� �∀𝑎𝑖 ∈ �𝑎𝑖 ,𝑎𝑖���∃𝑠𝑠𝑡𝑖 ∈ �𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖���∃𝑠𝑖 ∈ �𝑠𝑖 , 𝑠𝑖  ���∃𝑑𝑖 ∈ �𝑑𝑖 ,𝑑𝑖��(𝑡𝑖 = 𝑠𝑠𝑡𝑖 + 𝑠𝑖 − 𝑎𝑖) (47) 

for entity (𝑖). The interpretation verifies that �𝑡′𝑖 , 𝑡′𝑖� is a sound solution. In this numerical 

example, the average of the sound solutions for sojourn times based on Eq.(1) is �𝑡′, 𝑡′� =

 [0.55,0.72]  hours, which is tighter than the complete solution. However, the average is 

just a complete estimate of the sound individual sojourn times for all entities. 
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CHAPTER 5:  
AN INTERVAL-BASED METAMODELING APPROACH TO 
SIMULATE MATERIAL HANDLING IN SEMICONDUCTOR 

WAFER FABS 

This chapter discusses an interval-based metamodel for Automated Material 

Handling Simulation (AMHS) in comparison to traditional simulation models that are 

based on a detailed description of AMHS operations. The metamodel is based on the IBS 

in which the statistical distribution parameters in simulation are intervals instead of 

precise real numbers. The remainder of this chapter is organized as follows: Section 5.1 

introduces the semiconductor manufacturing, description of the automated handling 

system and its modeling in JSim is illustrated in Section 5.2, and Section 5.3 summarizes 

its simulation inputs and outputs. Section 5.4 represents the metamodel validation by 

testing how its outputs closely resemble the output data of the detailed simulation. In 

addition, we compare the results of JSim metamodel to the AutoMod metamodel. 

5.1 Semiconductor Manufacturing 

Semiconductor technology, used in most modern electronics, is the building block 

of our information technology. The semiconductor industry is a vital contributor to the 

world economy, with $248.6 billion in sales worldwide in 2008, as reported by the 

Semiconductor Industry Association (SIA) pressroom (SIA report, 2009). The transition 

from 200mm to 300mm, and the potential transition to 450mm wafer fabrication is a key 

element of continuing productivity gains in semiconductor device manufacturing and is 

driving fabs towards the full automation of material flow. Automated Material Handling 
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Systems (AMHS’s) are responsible for moving materials between production equipment 

and storage units to complete the processing of the wafers. 

Constructing a 300mm fab costs $2-3 billion (Jones, 2003), while a 450mm fab is 

projected to cost $10 billion (LaPedus, 2009). The AMHS represents 3 to 5% of the total 

fab cost (Arzt & Bulcke, 1999). For the AMHS to have acceptable Return on Investment 

(ROI) and provide the expected support to the production equipment, efficient design and 

operational strategies must be investigated and tested in the design and re-design stages 

of the factory. An improperly designed or operated AMHS may introduce lot delays 

(increasing manufacturing cycle times) or cause tool idle time (reducing throughput or 

requiring excess capacity).  

In recent years, particular attention has been given to the development of efficient 

design and operational strategies for wafer fabs. These efficient strategies must target 

increasing the throughput of the AMHS substantially with reduced delivery times. 

Further, the AMHS needs to be flexible and scalable to achieve the demands of the ever-

changing semiconductor wafer fab.  

Estimating AMHS performance in wafer fabs is difficult, because of the 

complexity of the systems. The International Technology Roadmap for Semiconductors 

(ITRS, 2007) characterizes the AMHS as having several vehicles, operating on a network 

with loops, intersections, spurs, and shortcuts, serving many different pick-up/drop-off 

stations. The movement requests appear to be random, and although they exhibit some 

temporal correlations, these correlations are not strong enough to permit precise 

scheduling of the AMHS resources.  
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A typical 300mm AMHS has a spine layout configuration, as illustrated in Figure 

 5-1. Most wafer fabs use this bay layout (Cardarelli & Pelagagge, 1995), where each bay 

contains a group of similar process tools. A spine layout consists of a central material 

handling spine (interbay) and loops branching on both sides (intrabays) to serve 

production equipment (tools) in the bays. Automated storage units, referred to as 

stockers, are used to provide temporary buffering for work-in-process.  

 

 

Figure  5-1: An AMHS in a spine layout - one interbay and 8 intrabay systems (based on 
ITRS 2005) 

Almost all existing 300mm AMHS’s are based on Overhead Hoist Vehicles 

(OHV) – space efficient vehicles traveling suspended on tracks above the main fab floor. 

The efficiency of an OHV-based AMHS is highly dependent on the vehicles’ 

characteristics and control mechanism (i.e., speed, acceleration/deceleration, dispatching 

rules, etc.). An AMHS with a small number of vehicles will cause long delays for lots 

waiting to be transported. Clearly, longer wait times imply longer delivery times. On the 

other hand, an excess of vehicles can cause traffic congestion in the interbay and intrabay 
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systems because each of these units will frequently block other transporters that are 

traveling on the same path. As a result, delivery times increase significantly due to the 

longer delays that wafers experience while traveling in these highly congested systems. 

Interaction between fab design (e.g., where to locate tools) and AMHS design 

(e.g. track configuration, fleet size, etc.) can have significant impacts on fab performance. 

Thus, the number of design alternatives for the AMHS is vast. Relying solely on discrete 

event simulation to navigate the AMHS design space means a commitment to a lengthy 

and expensive process, which may limit the range and number of alternatives that can be 

considered in the early stages of fab design. Simulation is ineffective as a decision 

support tool in the early phase of system design, where many configurations need to be 

considered. Our metamodeling approach, proposed and tested, is to simultaneously 

estimate accurate performance measures with shorter simulation time and incorporate 

input uncertainties in its estimations. 

5.2 AMHS Metamodel based on the IBS 

In the AMHS, sources of uncertainties could be due to vehicle congestion and 

blocking, vehicle and equipment breakdowns, and insufficient sample data to estimate 

systems random variables such as inter-arrival and service times. In other words, 

modeling these uncertainties in AMHS gives more reliable simulation results as their 

completeness and soundness with respect to uncertainties can be verified. 

AMHS metamodel is an abstraction of the detailed simulation model. In our 

implementation, we represent the exact process routes by a number of move requests and 

their routing probability obtained from the detailed simulation. The general layout of the 
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example used to represent the AMHS is composed of 24 machines; 48 stations (24 

loading and 24 unloading stations). This layout is based on a 300mm virtual 

semiconductor fabrication facility developed and published by International SEMATECH 

(SEMATECH, 2001). The vehicles travel on a uni-directional closed-loop at a constant 

speed of 3ft/sec. The product family modeled is SEMATECH’s 300mm aluminum 

process flow for 180nm technology. Such technology nodes contain six metal layers and 

21 masks. For this single product family, ten products are continuously released into the 

process. The release rate is 20,000 wafers per month (wpm). The processing route 

consists of approximately 316 operations (i.e. steps). In addition, there are 60 different 

workstations and about 300 tools. Wafers travel in carriers (lots) that hold 25 units. The 

300mm Wafer Fab Model has 24 bays arranged using a spine layout configuration similar 

to the layout previously shown in Figure  5-1. We will only model the central aisle, also 

referred to as the interbay AMHS that transfers the wafers between the 24 bays. A 

schematic of the interbay system is shown in Figure  5-2. 

1323

2424

111

111

Vehicles: 8 or 10

Pick up

Drop off1

Bay Stocker 
(Storage)

Interbay System

 

Figure  5-2: Schematic of the Modeled Interbay Systemc 
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The software used for detailed simulation is AutoMod 11.1. In order to obtain 

steady-state estimates, we start with an empty system and warm it up until it reaches 

steady state as indicated by the steady level of work-in-process in the system. After the 

warm-up period, all the appropriate statistics are collected. We refer to the results 

obtained from this simulation as “Detailed Results” because this simulation model 

explicitly models the wafers movement between the different bays, and these are 

assumed to be accurate estimates.  

The IBS metamodel is implemented in JSim. A Source object is used to represent 

the bays that generate the Entities (group of wafers, also referred to as lots) with 

determined inter-arrival times. A Server is used to characterize the vehicles that transfer 

Entities in the interbay system. Finally, exits in the system are represented using a Sink to 

dispose an entity upon the end of its service time. Figure  5-3 illustrates the object 

oriented modeling for AMHS in JSim. More practically, Figure  5-4 shows the 

implementation of the metamodel in JSim using NetBeans Java editor. 

Essentially, the metamodel does not explicitly model the wafers flow through 

each bay in its process route. Instead, details concerning the processing of wafers are 

implicitly represented by the number of move requests received by the AMHS. These 

moves are summarized in the metamodel as “From-To” matrices such as the one shown 

in Table B-4 of Appendix B, which describes the rate of moves between two different 

bays of the fab. The From-To matrices are generated from the production volume and the 

process route of the products in SEMATECH’s model. The metamodel results are 

referred to as “IBS Metamodel Results”. 
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Figure  5-3: Object oriented modeling for AMHS implemented in JSim 

 

 

Figure  5-4: Screen shot of AMHS interval-based metatmodel implementation in JSim  
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5.3 Metamodel Simulation Process 

5.3.1 Interval Input Random Variates 

In this AMHS system, it is assumed that we do not have enough information to be 

certain about the parameters of the inter-arrival times for the bays. Only 1000 sample-

points from the “Detailed Simulation” are collected to fit an exponential distribution with 

real-valued parameter 𝛽 using the maximum likelihood estimator (MLE) for each bay, as 

in Table B-1 of Appendix B. Based on the obtained value from the MLE, the proposed 

interval-parameterization technique in Section 3.2 is used to find the interval mean of the 

exponential distributions. The order 𝑟 is selected based on the obtained ratios of 𝛽 𝛽⁄  and 

𝛽 𝛽�  at orders  𝑟 = 1,2, … 1000, illustrated in Figure  5-5a and 5-5b. 

 

 

Figure  5-5a Ratio of 𝛽 𝛽⁄  with order 𝑟 

 

Figure 5-5b Ratio of 𝛽 𝛽�  with order 𝑟 

Due to the narrow width of the cdf bounds, i.e. the cdf curves become flatter at 

those bounds, it becomes more difficult to bound the real-valued variable at small and 

very large orders. If the interval parameter obtained at these orders is used, we tend to 

estimate a complete solution that includes all possible occurrences at all orders. For 

instance, the minimum of the lower bounds 𝛽’s, and the maximum of the upper bounds 
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𝛽’s give the worst-case estimations. The ratios for the lower and the upper parameters to 

the real-valued mean are approximately the same for middle orders. The simulation 

analyst can choose the interval parameter associated with a particular (𝑟) based on the 

desired level of enclosure. In our implementation, we use order 𝑟 = 100 with a 

confidence level of 𝛼 = 0.1 to estimate the interval-parameters needed in simulation.  

The obtained ratios of 𝛽/𝛽 and 𝛽/𝛽 are 0.8506 and 1.1831, respectively. Hence, 

we multiply these ratios by the real-valued mean obtained from the MLE for each bay to 

find the interval mean. For example, the real-valued average inter-arrival time obtained 

for the first bay is 𝛽 = 2347.40 seconds. Hence, the corresponding interval mean at 

𝑟 = 100 is �𝛽,𝛽� = [0.8506𝛽, 1.1831𝛽] = [1996.70,2777.21]. Table B-1 in Appendix 

B presents the inter-arrival times of entities of the 24 bays with the real-valued 

parameters and the associated intervals. Because order 𝑟 = 100 is selected out of 

𝑛 = 1000, at least 90% enclosure of the ordered real-valued random variates between 

their corresponding interval variates is guaranteed. Moreover, a probability of at least 

(1 − 𝛼) = 90% is guaranteed to enclose the real-valued variate between the bounds of 

interval variate at each order. For instance, if we run these bounds 𝑛 times, we are 

confident that at least 𝑛(1 − 𝛼) times the interval variates enclose the real variates 

generated from the exponential distribution exp(𝛽).  

The obtained intervals for the inter-arrival times in Table B-1 are used to run the 

metamodel to enclose the detailed simulation results. Note that no entities are generated 

from bays 6 and 23. Additionally, service times are assumed to be constant to transfer 

entities between the bays. Table B-2 in Appendix lists the total service times, which are 
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the summations of the empty vehicle travel times from the vehicle location to the load 

location, and the loading times used in this simulation. The From-To routing probabilities 

matrix is also listed in Table B-3 of Appendix. 

5.3.2 Metamodel Simulation Results 

For this metamodel, we study two dispatching rules to serve the entities, 1) oldest 

load closest vehicle (OLCV), and 2) closest load closest vehicle (CLCV). The OLCV 

dispatching rule ensures that waiting entities are served based on a FIFO principle while 

selecting the closest idle vehicle to serve the entities. Similarly, the CLCV dispatching 

rule selects the closest vehicle to serve an entity. However, it serves the closest waiting 

entity when a vehicle becomes idle. The two scenarios are simulated varying the fleet 

size between 8 and 10 vehicles.  

In the metamodel, entities are generated with interval arrival times, i.e. [𝑎𝑖 ,𝑎𝑖] for 

entity (𝑖). We decide the sequence of serving entities based on the upper bounds of their 

interval arrival times 𝑎𝑖, i.e. the latest time the entities arrive at the system. The upper-

based sorting estimates the worst-case scenario of the response time to move requests. 

From the IBS metamodel, we are interested in calculating the interval response 

time to move requests. The response time to a move request, i.e. the waiting time in the 

queue, is the sum of the waiting time until a vehicle becomes idle and the travel time of 

empty vehicle to the load location. In addition, we study the enclosure of these intervals 

to the real-valued response time to move requests obtained from the detailed simulation. 

The interval response time to move requests is now calculated as 
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�𝑤𝑖 ,𝑤𝑖� = �𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖� − 𝑑𝑢𝑎𝑙�𝑎𝑖 , 𝑎𝑖� (48) 

Eq.(48) gives a range estimate to the waiting time of the entities to be served. The 

dual operator is used to estimate a sound solution to the response time to move requests 

in comparison with the complete solution that results from the interval arithmetic without 

using the dual operator as in Eq.(49). The solution provided by Eq. (48) is a sound 

solution that does not include impossible solutions. Hence, some real-valued solutions 

may be out of the calculated bounds from Eq. (48). 

But they all are bounded by the complete solution from 

�𝑤𝑖 ,𝑤𝑖� = �𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖� − �𝑎𝑖 ,𝑎𝑖� (49) 

However, the complete solution usually overestimates and gives every wide 

bounds. In this IBS metamodel, we use Eq.(48) for calculation. Assume that entity (𝑖) 

interval arrival time is given as [12.34,17.64] and the interval service-start time is given 

as [18.45,25.65] second. If Eq.(48) is used to estimate the interval response time, the 

solution is [6.11,8.01] second and its interpretation is 

(∀𝑎𝑖 ∈ [12.34,17.64])(∀𝑤𝑖 ∈ [6.11,8.01]]) (∃𝑠𝑠𝑡𝑖 ∈ [18.45,25.65])(𝑠𝑠𝑡𝑖 − 𝑎𝑖 = 𝑤𝑖) (50) 

However, if Eq.(49) is used to calculate the interval response time, the complete 

solution is [0.81, 13.31] second and interpreted as follows 

(∀𝑎𝑖 ∈ [12.34,17.64])(∀𝑠𝑠𝑡𝑖 ∈ [18.45,25.65])(∃ 𝑤𝑖 ∈ [0.81,13.31])( 𝑠𝑠𝑡𝑖 − 𝑎𝑖 = 𝑤𝑖) (51) 

Moreover, we represent the variation in the interval response time resulted by 

calculating the standard deviations for the lower bounds 𝑤𝑖’s. In addition, the vehicles’ 

utilization is measured by the percentage of time the vehicle is loaded, travels with 

entities, and unloaded. In the IBS metamodel, the vehicles’ average utilizations are given 
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as real-valued estimates. The average utilization are calculated as the percentage of time 

the vehicles travel to serve an entity, regardless of the entity arrives at its lower bound 𝑎𝑖, 

or its upper bound 𝑎𝑖. 

Such models are valuable to early stages of design because it allows the designer 

to experiment with different design strategies for the number of vehicles and the flow 

path layout. Increasing the number of vehicles has the potential to reduce the expected 

response time to move requests, which is directly related to the production cycle time of 

the wafers. Reducing the production cycle time is always a priority for fabs because of 

the short life span of these types of products. However, there is an optimal number of 

vehicles to install, beyond which the improvement in response time is marginal and may 

not be justifiable financially. Fab designers benefit from the metamodel as it provides fast 

answers to different design scenarios. The importance of monitoring the standard 

deviation of response times is two-fold: first, inconsistent response times translate to 

inconsistent delivery times to the end customer, an undesirable and expensive situation as 

increased variability is directly related to increased levels of safety stocks. Second, from 

simple queueing formulas, we know that increased variability propagates through a 

manufacturing line and increases the work-in-process and the queueing delays at 

subsequent stages. 

In the JSim implemention of the IBS metamodel, we excecuted 𝑛 = 5 

independent replications for both OLCV and CLCV scenarios. The number of 

replications was selected so that the confidence intervals of the simulation outputs have a 

half-width to mean ratio of less than 5%. Each has a length of 𝑚 = 200 days. 

Conservatively, we chose a warm-up period of 𝑙 = 100 days to reach the steady-state. 
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The next two sections summarize the simulation results. The performance measures 

include the interval time to move request [𝑤𝑖 ,𝑤𝑖], the standard deviation of the lower 

bounds 𝑠(𝑤𝑖), and the average utilization of the vehicles 𝜌, with respect to the two 

dispatching rules:  

5.3.2.1 Oldest Load Closest Vehicle Rule 

First, we present the results obtained from the OLCV dispatching rule with the 

simulation of 8 and 10 vehicles to transfer entities. The simulation results of the average 

response time using 8 vehicles are shown in Figure  5-6. We compare the lower and upper 

bounds obtained from the IBS with the detailed simulation results obtained from 

AutoMod. 

 

 

Figure  5-6: Average response times to move requests for OLCV – 8 Vehicles 

The lower and the upper estimates of the interval results enclose the detailed 

simulation results. Thus the uncertainties associated with the inter-arrival times of the 

entities at the bays are incorporated. For instance, we report the response time for bay 1 

as [76.35,131.33] second as opposed to the detailed real-valued simulations that only 
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give an estimate of 81.64 second. The interval estimations of the performance measures 

are considered more reliable as it provides a range of solutions that enclose the detailed 

simulation results incorporating uncertainties in the inter-arrival times. The gap between 

the interval bounds and the detailed simulation results is due to modeling the uncertainty 

component in simulation, which is expected and desired. From the results, we notice that 

the differences between the bounds and the detailed simulation results are consistent for 

the different bays in the system.  

One might ask how these intervals differ from the standard confidence intervals. 

We answer this concern by referring to these traditional methods as statistical measures 

that incorporate only the variability component in their estimates. For instance, the 

traditional confidence interval limits represent a lower and upper bounds of the estimates 

based on a marginal error in the readings with a certain level of confidence. The interval 

limits are calculated as the mean value of the outputs of multiple simulation runs +/- a 

quantity that represents the standard deviation in these outputs. The standard deviation is 

attained within these readings because of the different random number streams used in 

the simulation runs. Given that all simulation runs use a fixed value of the parameters, the 

interpretation of this interval is that the average mean of the performance measure is 

included between these interval limits with a certain level of confidence. They do not 

represent the uncertainty in their bounds. However, our interval estimates incorporate the 

variability and the uncertainty components explicitly in each single simulation run. The 

input distributions with imprecise parameters provide interval estimates to the 

performance measures of interest from each simulation run. Because the uncertainty is 

propagated in the simulation runs, our intervals are not a result of running multiple 
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simulation runs. Instead, they are obtained from running the IBS with imprecise 

parameters where uncertainty is incorporated within one single run. In addition, in 

traditional simulation output analysis, confidence intervals are indicators of the 

confounded effect of variability and uncertainty. In IBS, the effects of the two 

components are quantified separately and can be treated in different ways in decision 

making. Therefore, the IBS intervals results are considered more reliable than the 

traditional confidence intervals. 

Furthermore, the standard deviations of the lower bound response times are 

collected and compared with those from the detailed simulation. Figure  5-7 depicts the 

difference in the standard deviations for the detailed and IBS metamodel with 8 vehicles. 

The standard deviations from the detailed simulation are larger than the ones obtained 

from the IBS metamodel. However, they both follow the same pattern for different bays. 

However, they both follow the same pattern for different bays. The lower standard 

deviation of the IBS metamodel is less than that from the detailed simulation model 

because it is calculated from the lower response times. Because of the equal values of 

mean and standard deviation in an exponential distribution, the lower response times 

resulted from the simulation of entities arriving at the system have a lower variability.  

In addition, the average utilization of the 8 vehicles is reported as 56.66% for the 

detailed simulation, and 48.70% for the IBS metamodel. The difference is because the 

vehicle traveling times in the IBS metamodel, are averages of the actual ones in the 

detailed model without variations.  
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Figure  5-7: Standard deviation of response time to move requests for OLCV – 8 
Vehicles 

Figure  5-8 presents the response times to move requests with 10 vehicles. In this 

setting, the system becomes more saturated with vehicles and the response time decreases 

as the availability of the vehicles increases. The increase in availability of the vehicles 

reduces the uncertainty in the response times to move requests. In other words, the 

response times to move requests in such scenarios are less uncertain because there are 

more vehicles to serve the entities whether they arrive at their lower or upper arrival 

times. Therefore, the differences between the response times from the detailed simulation 

and the lower or upper bounds from the metamodel are small. The response times of the 

detailed simulation for all bays except bays 1, 8, 11, 14 and 24 are enclosed by the 

corresponding intervals from the IBS metamodel. When order r=100 was selected, we 

were aiming a 10% of enclosure for each bay separately not for all the bays together. This 

is interpreted as follows: the intervals means at each bay includes at least 90% of real-

point means obtained from traditional simulation. Again, the lack of complete enclosure 

using 10 vehicles in simulation is because the system is more saturated with vehicles than 

it is needed. 
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Figure  5-8: Response time to move requests for OLCV – 10 Vehicles 

The standard deviations associated with the response times using 10 vehicles are 

illustrated in Figure  5-9. The standard deviations for response times in the detailed 

simulations are slightly greater than the standard deviations of lower bounds from the 

IBS metamodel. Again, both estimates follow the same pattern. The utilization of the 10 

vehicles from the detailed simulation is given as 43.38% down to 39.94% for IBS 

metamodel. 

 

 

Figure  5-9: Standard Deviation in Response time to move requests for OLCV – 
10 Vehicles 
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5.3.2.2 Closest Load Closest Vehicle Rule 

We also model the AMHS using the CLCV dispatching rule for 8 and 10 vehicles. 

Figure  5-10 presents the average response times for 8 vehicles and the standard deviation 

of the response times for each bay. The average response times obtained from the 

detailed simulation are well-enclosed between the lower and the upper bounds obtained 

from the IBS metamodel. 

 

 

Figure  5-10: Response time to move requests for CLCV – 8 Vehicles 

 

 

Figure  5-11: Standard Deviation in Response time to move requests for CLCV – 8 
Vehicles 

 

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e,

 se
c.

Bay

Average Response Times:
CLCV- 8 Vehicles

Metamodel IBS Lower Estimates
Detailed Sim
Metamodel IBS Upper Estimates

50

70

90

110

130

1 3 5 7 9 11 13 15 17 19 21 23

St
de

v 
in

 R
es

po
ns

e 
T

im
es

, s
ec

.

Bay

Stdev in Response Times: 
CLCV- 8 Vehicles

Metamodel IBS Lower Estimates

Detailed Sim



103 
 

Figure  5-11 compares the standard deviations of the lower bounds from the 

metamodel and the ones from the detailed simulation. The average utilization of the 

vehicles for this scenario is reported as 54.60% for the detailed simulation and as 

48.26% for the IBS metamodel.  

As for 10 vehicles, the simulation results are summarized in Figure  5-12 and 

Figure  5-13. The average response times obtained from the detailed simulation model are 

not well enclosed within the bounds of IBS metamodel. As mentioned above, the reason 

is due to the increased number of vehicles. Hence, the average response time is 

comprised mostly of travel times of empty vehicles to the waiting entities. Vehicles are 

mostly available when a request is issued. In addition, the standard deviations of the two 

simulations are quite close to each other with at most 16.28% of relative differences. The 

average utilizations of vehicles are 41.47% for the detailed simulation and 35.62% for 

IBS metamodel. There is no relationship noticed between the selected dispatching rule 

and the enclosure of the IBS results to the detailed simulations outputs. The enclosure of 

the IBS to the detailed simulation is shown for most of the bays regardless of the 

dispatching rule. 

 

 

Figure  5-12: Response time to move requests for CLCV – 10 Vehicles 
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Figure  5-13: Standard Deviation in Response time to move requests for CLCV – 10 
Vehicles 

In summary, the IBS metamodel offers interval estimations for average response 

times enclosing the detailed simulations with certain level of confidence. Moreover, the 

interval estimations model input uncertainties in the interarrival times of entities. The 

input uncertainties come from unknown dependency between bays, machine breakdown, 

and vehicle congestion. The standard deviations obtained from lower bounds follow the 

same pattern as the detailed simulation variations. However, the IBS standard deviations 

are less than the corresponding results obtained from the detailed simulations. The 

vehicles’ utilizations calculated from IBS are also smaller than the detailed simulation 

estimates.  

The simulation time based on the metamodel is significantly reduced. On a dual-

processor workstation, one run of the IBS model takes less than 2 minutes, whereas the 

detailed simulation requires 30 minutes on average. 
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5.4 Validation of the JSim Metamodel 

In this Section, we compare JSim metamodel’s results to the AutoMod model of 

the SEMATECH virtual fab when both models are using from-to matrices rather than the 

detailed process flow of the products. The objective of this analysis is to validate our 

metamodel with respect to the detailed simulation when using precise parameters for the 

inter-arrival times. In addition, this analysis compares the JSim metamodel to the 

AutoMod metamodel. The motivation for this is that often in the literature, for the 

purpose of modeling the material handling systems, from-to matrices are used rather than 

an explicit representation of the production system.  

We run the metamodel using AutoMod and its results are referred to as 

“AutoMod Metamodel Results”. Moreover, we use the interval-based JSim platform 

replacing the interval parameters with real-point parameters and compare the results. A 

number of independent replications 𝑛 = 5 are executed for the two metamodels and for 

the dispatching rules, OLCV and CLCV. Each replication has a length of 𝑚 = 200 days, 

and a warm-up period of 𝑙 = 100 days to reach the steady-state. 

We assume that the detailed simulation results are desired threshold which we 

compare the metamodel results to. Let 𝜇 be the average output of the detailed simulation 

results, which is the acceptable surrogate for actual performance. Let  𝑋 be the average 

output of the AutoMod and the IBS metamodels results. We use the relative error to assess the 

dispersion between the detailed and the metamodel results. The relative error is 

calculated as the absolute difference in the statistics collected 𝑋 and 𝜇, i.e. 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = (𝑋−𝜇)
𝜇

× 100%. The following sections display the relative error of the 

two dispatching rules mentioned above. 

5.4.1 Oldest Load Closest Vehicle Rule 

Figure  5-14 depicts the relative error in the average response time of AutoMod 

metamodel and IBS metamodel with respect to the detailed simulation for OLCV with 8 

vehicles.  

 

 

Figure  5-14: Relative Error in Average Response time to move requests for 
OLCV – 8 Vehicles 

The relative error given by IBS metamodel is always less than the associated error 

reported from the AutoMod metamodel. Hence, IBS metamodel results are closer to the 
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input parameters is considered more reliable than the Automod metamodel. Figure  5-15 

studies the relative error in the standard deviations in response times for the two 
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Figure  5-15: Relative Error in Standard Deviations in Response time to move requests for  

OLCV – 8 Vehicles 

The relative errors in the standard deviations given by the metamodels are quite 
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Finally, the relative errors in the average utilization for the two metamodels with respect 
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Figure  5-16: Relative Error in Average Response time to move requests for 
OLCV – 10 Vehicles 

 

 

Figure  5-17: Relative Error in Standard Deviations in Response time to move requests for 
OLCV – 10 Vehicles 
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dispatching rule, we notice that the IBS metamodel performed better than the AutoMod 

metamodel in terms of the average response times.  

5.4.2 Closest Load Closest Vehicle Rule 

The same validation analyses are performed for the closest load closest vehicle 

rule using 8 and 10 vehicles to transfer entities. Figure  5-18 shows the relative error in 

the average response time for the CLCV rule using 8 vehicles as the fleet size. IBS 

metamodel offers better results than AutoMod metamodel with respect to average 

response times. As shown in Figure  5-19, the errors standard deviations in response times 

resulted from metamodels with respect to detailed simulation are almost equal to each 

other. 

 

Figure  5-18: Relative Error in Average Response time to move requests for CLCV – 8 
Vehicles 
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Figure  5-19: Relative Error in Standard Deviations in Response time to move requests for 
CLCV – 8 Vehicles 

As a final performance measure, the error in the average utilization is calculated 

as 7.95% and 8.17% for AutoMod and IBS metamodels, respectively, with respect to the 

detailed simulation. Finally, we present the validation analysis for the CLCV dispatching 

rule using 10 vehicles, and Figure  5-20 represents the relative error in the average 

response time for this scenario. Additionally, IBS metamodel performs better than the 

AutoMod metamodel for this CLCV dispatching rule.  

 

 

Figure  5-20: Relative Error in Average Response time to move requests for 
CLCV – 8 Vehicles 
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The relative errors in the standard deviation resulted for this scenario using 

AutoMod and IBS metamodels are shown in Figure  5-21. We can notice that the relative 

errors in the standard deviations using either metamodel are equal with respect to the 

detailed simulation. Additionally, the relative error in the average utilization comparing 

the metamodels to the detailed simulation is reported as 9.17% for AutoMod metamodel 

down to 5.15% running IBS metamodel. In this scenario,The IBS metamodel wins over 

the Automod metamodel with respect to the vehicles utilization. 

 

 

Figure  5-21: Relative Error in Standard Deviations in Response time to move requests for 
CLCV – 10 Vehicles 
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CHAPTER 6:  
SUMMARY AND FUTURE RESEARCH WORK 

6.1 Summary 

Uncertainty quantification in simulation notably increases the robustness of the 

DES to support decision making. The work presented in this dissertation exploits the 

interval-based simulation to address the total uncertainty in simulation. In practice, 

particularly for new designs of queueing systems without data, simulation analysts 

usually have to turn to an ad hoc choice of the parameter values. Moreover, they usually 

choose larger or smaller parameters than necessary to avoid design failure. This 

frequently results in costly designs. In the IBS, the simulation analysts do not need to 

resort to an ad hoc approach to determine a precise value of the parameters. Conversely, 

the incompletely known values are modeled imprecisely using intervals. This approach 

results into imprecise simulation events accounting for the uncertainty in the system and 

driving to a more reliable and less costly solution compared to the traditional practices. 

Here, we propose a new framework of DES to model input uncertainties in 

simulation where: 

1) Statistical distributions with interval input parameters are used to represent the 

uncertainties, i.e. exp ([𝜆, 𝜆]). Consequently, lower and upper bounds are built to 

enclose the real-valued distributions. The interval parameters are used as an attempt 

to wrap all the uncertainty factors in the system. The IBS can be viewed as a 

generalized DES which allows the modeling of both precise and imprecise 

distributions. For example, if the process owners are certain about their service rate to 
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be distributed as exp (𝜇). This complete knowledge in the system transforms the 

imprecise probability into a precise one and is modeled in the IBS as exp ([𝜇, 𝜇]). 

2) An interval parameterization technique is developed to enclose all real-valued 

distributions with a certain level of confidence. A concrete way to model this problem 

is based on order statistics sampling distributions. This technique has been 

implemented on single parameter distributions, i.e. exponential distribution, as well as 

on multiple parameter distributions, i.e. normal distribution. The parameterization 

technique can be applied to any distribution with a known form.  

3) A simulation robustness measure is studied to find the number of replication needed 

to run the IBS for a given interval parameters to enclose all real-valued distributions 

with a certain level of confidence. The robustness measure is derived for the 

exponential, normal, and triangular distribution which is also based on order statistics 

sampling distribution. The robustness measure is applicable to any distribution with a 

known form. 

4) An interval variate generation technique is explained based on inverse transform for 

single and multiple parameter distributions. The exponential distribution is used to 

illustrate the method regarding single parameter distributions. On the other hand, 

multiple parameter distributions generate 2# 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 possible combinations that 

generate multiple random variates at each order. The interval variate is built based on 

the minimum and the maximum values of the random variates. The normal and 

triangular distributions are used to demonstrate the idea. 

5) A new interval-based simulation clock is investigated and three approaches to 

advance the simulation clock in the IBS are proposed. With these proposed 
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approaches demonstrated, it is essential that the analyst understands the system and 

defines the problem properly before selecting the clock advancement approach. Table 

 6-1 compares the three proposed approaches. 

 

TABLE  6-1: COMPARISON OF THE THREE PROPOSED APPROACHES TO ADVANCE THE 
SIMULATION CLOCK IN THE IBS 

Difference Lower-based 
Sorting 

Upper-based 
Sorting 

Uniformly Sampled-
based Sorting 

Sorting Criteria Earliest possible 
occurrence time, 

i.e. 𝑎𝑖 . 

Latest possible 
occurrence time, 

i.e. 𝑎𝑖. 

Uniformly sampled 
occurrence time, i.e. 
𝑎𝑖~Uniform(𝑎𝑖 ,𝑎𝑖) 

Scenario 
estimated 

Imprecise best-case 
scenario 

Imprecise worst-
case scenario 

Average-case scenarios 

Simulation 
Results 

Interval form Interval form Real-valued results as 
opposed SOMC 

 

The formulation of the lower and upper-based sorting allows us to recognize an 

imprecise best and worst case scenarios w.r.t. performance measures of interest, 

respectively. Whereas, the uniformly sampling approach represents a middle ground 

between the extreme scenarios and provides real-valued estimates that yet account for 

input uncertainties. 

6) Because the data is now represented as intervals, the analyst cannot use the statistical 

measures in the traditional sense. Instead, new statistical measures of variability and 

uncertainty are required. Three dispersion statistical measures are proposed to 

quantify the variability and the uncertainty of interval data in a simple approach and 

less computational time. Three proposed measures are data disparity, data range, and 

nonspecificity. 
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7) Most simulation analysts are familiar with real-valued analysis, but many have not 

been formally exposed to the competing interpretation of imprecise probabilities. We 

provided the logical interpretation of the hand simulation results for the [M]/[M]/1 

example. The philosophical arguments for the logical interpretations can be quite 

passionate to verify their soundness and completeness.  

8) The IBS is implemented to address the automated material handling simulation. This 

example shows that the IBS is applicable to broader class of problem than the 

[M]/[M]/1 queueing systems. We propose an AMHS metamodel based on the IBS to 

simulate a 300m wafer fab. The parameters of probability distributions for the inter-

arrival times in the simulation are intervals instead of traditional precise numbers. We 

implement the metamodel in JSim. The obtained interval estimates to the mean 

response time are considered more reliable compared to the real-valued estimates, 

since it incorporates the total uncertainty in simulation. Experimental comparisons 

indicate that the IBS metamodel performs very well for estimating the average and 

standard deviation of response times at each bay. They are critical performance 

measures when evaluating the AMHS. Our numerical results also show that the 

metamodel enclosure of the detailed simulation results deteriorates as the servers 

(vehicles in this case) are under-utilized. This is expected because as the AMHS 

becomes less congested, variability in its performance reduces and the advantage of 

interval performance measures becomes less obvious. 

9) We also validate the JSim metamodel with precise input parameters by assessing the 

relative error between its results and the detailed simulation. We also conclude that 
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the JSim metamodel gives better results than the AutoMod simulation outputs when 

they are compared to the detailed simulation results. 

6.2 Future Work 

Some potential future research work to extend the interval-based simulation 

involves: 

1) Input Analysis:  

a. Statistical distribution fitting and parameterization: optimization 

procedures are potential for research on the completeness and soundness 

in selecting distributions types and parameters. 

b. Empirical distribution functions with interval parameters could be 

investigated as input distributions in the IBS. 

c. Interval variate methods as acceptance rejection method could be 

employed with interval parameters. 

2) Simulation Clock: The three proposed approaches to advance the simulation clock could 

be analyzed in a rigorous and quantitative manner to verify its simulation results. Based 

on the adopted approach to handle the events, generalized intervals (i.e. proper and 

improper) of the simulation results can be obtained. Such results should be properly 

explored and interpreted to study their effects on the decision making process. 

Other approaches for event handling could be based on the intervals length, based on 

intervals overlapping cases, or even a simple id based on a certain criteria. Each approach 

estimates different best and worst-case scenarios. The IBS analyst selects the appropriate 

approach based on the target application. 
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3) Output Analysis: New statistics for interval data incorporating the total uncertainties are 

to be developed to help support robust decision making. Further research is needed to 

study the dispersion associated with the interval data obtained from the IBS. Studying the 

properties (subadditivity, range, continuity, expansibility, monotonicity, etc.) of the 

proposed measures is necessary to support decision making. For the AMHS proposed 

metamodel, we use the standard deviation of lower bounds to measure the dispersion of 

intervals. An interval-based statistics will be more reliable. This can help us to 

understand more simulation details thus support robust decision making in layout 

selection.  

Moreover, the confidence level measures w.r.t. uncertainty similar to confidence interval 

w.r.t. variability is an area of research. It could be based on the data disparity D and the 

variance of data range 𝑅 = (∑ (𝑟𝑖 − 𝑟)2𝑛
𝑖=1 ) (𝑛 − 1)⁄ . The new confidence level measures 

are useful in alternative systems comparisons based on the total uncertainty.  

4) Improper intervals: Introducing improper intervals in the IBS provides richer 

interpretations for the simulation results. Improper intervals can be used to reduce output 

uncertainties. For the AMHS meatmodel, improper intervals could be used to model 

possible buffers in the system that can reduce request time to move requests. For 

example, if an entity (𝑖) service-start time is given as a �𝑠𝑠𝑡𝑖 , 𝑠𝑠𝑡𝑖� = [4,5] and its service 

time is given as proper interval of �𝑠𝑖 , 𝑠𝑖� = [2,3] then the entity’s departure time �𝑑𝑖 ,𝑑𝑖� 

is calculated as  

�𝑑𝑖 ,𝑑𝑖� = [4,5] + [2,3] = [6,8] 
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The uncertainty of the entity’s departure time can be quantified to be equal to 𝑤𝑖𝑑(𝑑𝑖) =

|8 − 6| = 2. However, if the service time is given an improper interval of �𝑠𝑖 , 𝑠𝑖� = [3,2] 

as buffer that serves faster than in normal conditions then the entity’s departure time is 

calculated as  

�𝑑𝑖 ,𝑑𝑖� = [4,5] + [3,2] = [7,7] 

The uncertainty within this departure time is calculated as 𝑤𝑖𝑑(𝑑𝑖) = |7 − 7| = 0. Thus 

the uncertainty is reduced. More research is required to investigate improper intervals in 

the IBS as an uncertainty reduction technique. 
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APPENDIX A CALCULATION OF THE IBS REPLICATION 

LENGTH NEEDED FOR AN EXPONENTIAL DISTRIBUTION 
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The replication length as a robustness measure is performed for an exponential 

distribution with interval ratio of �β β⁄ ,β β� � as [0.9,1.1], [0.8,1.2] , and [0.6,1.4], and 

the results are summarized in Tables A-1, A-2 and A-3, respectively.  

 

TABLE A-1: �Β Β⁄ , Β Β⁄ � = [0.9,1.1] 

 
 
 

r α=0.1 
1 >1030 max(p)=0.271 
2 >1030 max(p)=0.300 
3 >1030 max(p)=0.317 
4 >1030 max(p)=0.330 
5 >1030 max(p)=0.342 
6 >1030 max(p)=0.352 
7 >1030 max(p)=0.362 
8 >1030 max(p)=0.371 
9 >1030 max(p)=0.379 
10 >1030 max(p)=0.387 
20 >1030 max(p)=0.452 
30 >1030 max(p)=0.501 
40 >1030 max(p)=0.542 
50 >1030 max(p)=0.578 
60 >1030 max(p)=0.609 
70 >1030 max(p)=0.638 
80 >1030 max(p)=0.664 
90 >1030  max(p)=0.687 

100 >1030 max(p)=0.708 
110 >1030 max(p)=0.728 
120 >1030 max(p)=0.746 
130 >1030 max(p)=0.762 
140 >1030 max(p)=0.777 
150 >1030 max(p)=0.792 
160 >1030 max(p)=0.804 
170 >1030max(p)=0.817 
180 >1030 max(p)=0.828 
190 >1030 max(p)=0.838 
200 >1030 max(p)=0.848 
250 >1030 max(p)=0.888 
300        433 
350 418 
400 448 
450 488 
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TABLE A-2: �Β Β⁄ , Β Β⁄ � = [0.8,1.2]  

 
 

TABLE A-3: �Β Β⁄ , Β Β⁄ � = [0.6,1.4] 

 

r α=0.1 α=0.05 
1 >1030  max(p)=0.306 >1030 max(p)=0.306 
2 >1030 max(p)=0.360 >1030 max(P)=0.360 
3 >1030 max(p)=0.395 >1030 max(p)=0.395 
4 >1030 max(p)=0.424 >1030 max(p)=0.424 
5 >1030 max(p)=0.448 >1030max(p)=0.448 
6 >1030  max(p)=0.470 >1030max(p)=0.470 
7 >1030 max(p)=0.491 >1030 max(p)=0.491 
8 >1030 max(p)=0.509 >1030max(p)=0.509 
9 >1030 max(p)=0.526 >1030max(p)=0.526 

10 >1030 max(p)=0.542 >1030max(p)=0.542 
20 >1030 max(p)=0.666 >1030max(p)=0.666 
30 >1030 max(p)=0.748 >1030max(p)=0.748 
40 >1030 max(p)=0.806 >1030 max(p)=0.806 
50 >1030max(p)=0.849 >1030 max(p)=0.849 
60 >1030 max(p)=0.882 >1030 max(p)=0.882 
70 143 >1030 max(p)=0.906 
80 105 >1030 max(p)=0.926 
90 106 >1030  max(p)=0.940 

100 112 273 
110 120 161 
120 129 152 
130 138 154 
140 147 160 

r α=0.1 α=0.05 
1 >1030  max(p)=0.396 >1030  max(p)=0.396 
2 >1030  max(p)=0.506 >1030  max(p)=0.506 
3 >1030  max(p)=0.577 >1030  max(p)=0.577 
4 >1030  max(p)=0.631 >1030  max(p)=0.631 
5 >1030  max(p)=0.675 >1030  max(p)=0.675 
6 >1030  max(p)=0.712 >1030  max(p)=0.712 
7 >1030  max(p)=0.743 >1030  max(p)=0.743 
8 >1030  max(p)=0.769 >1030  max(p)=0.769 
9 >1030  max(p)=0.792 >1030  max(p)=0.792 

10 >1030  max(p)=0.811 >1030  max(p)=0.811 
20 29 >1030  max(p)=0.920 
30 32 46 
40 42 45 
50 51 53 
60 61 62 
70 71 72 
80 81 82 
90 91 91 
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TABLE B-1: INTER-ARRIVAL TIMES REAL-VALUED EXPONENTIAL MEANS AND INTERVALS 
(SEC.) 

Bay Real-valued Mean (sec.) Interval Mean (sec.) 
1 2347.40 [1996.70,2777.21] 
2 2002.39 [1703.23,2369.03] 
3 1164.78 [990.76,1378.05] 
4 1270.86 [1080.99,1503.55] 
5 1170.68 [995.78,1385.03] 
6 0 [0,0] 
7 2345.79 [1995.33,2775.31] 
8 303.92 [258.51,359.56] 
9 3496.66 [2974.26,4136.89] 
10 563.48 [479.29,666.65] 
11 881.46 [749.77,1042.85] 
12 1280.50 [1089.19,1514.96] 
13 1407.37 [1197.11,1665.06] 
14 1401.75 [1192.33,1658.42] 
15 1396.91 [1188.21,1652.69] 
16 2332.05 [1983.64,2759.05] 
17 2331.11 [1982.84,2757.94] 
18 2791.37 [2374.34,3302.47] 
19 4675.92 [3977.33,5532.08] 
20 7061.44 [6006.46,8354.39] 
21 1993.41 [1695.60,2358.41] 
22 2327.75 [1979.98,2753.96] 
23 0 [0,0] 
24 1759.17 [1496.35,2081.28] 
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TABLE B-2: TOTAL TRAVEL, LOADING AND UNLOADING TIMES NEEDED TO TRANSFER 
ENTITIES BETWEEN THE BAYS (SEC.) 

  To / Bay 

  1 2 3 4 5 6 7 8 9 10 11 12 

Fr
om

 / 
B

ay
 

1 0.00 318.25 14.49 304.91 27.81 297.31 41.10 284.06 54.44 270.65 67.76 257.33 

2 21.08 0.00 34.40 324.82 47.72 317.21 61.01 619.92 74.35 593.12 187.40 277.24 

3 325.12 304.92 0.00 291.58 14.48 283.98 27.77 553.15 41.11 257.32 54.43 244.00 

4 34.48 14.27 47.80 0.00 61.11 330.61 74.41 646.66 87.75 619.86 101.07 290.64 

5 311.76 291.56 661.88 278.21 0.00 270.61 14.41 257.36 27.75 499.68 41.07 230.64 

6 0.00 22.01 55.54 8.67 68.85 0.00 82.15 325.10 95.49 311.69 108.81 298.38 

7 298.44 278.24 311.76 264.90 661.95 257.29 0.00 244.04 14.43 230.64 27.75 217.32 

8 55.53 35.33 149.41 55.91 82.17 14.39 95.47 0.00 229.39 661.77 122.13 635.16 

9 285.10 264.90 608.59 251.56 311.74 243.95 325.03 230.70 0.00 217.29 14.41 203.98 

10 149.56 48.72 82.24 35.38 95.56 27.77 229.50 14.52 122.19 0.00 282.84 661.95 

11 271.76 251.56 285.08 238.22 608.61 230.61 635.23 217.36 325.03 419.73 0.00 393.11 

12 82.22 62.01 95.54 109.32 108.85 41.07 122.15 67.41 135.49 14.41 309.45 0.00 

13 258.42 238.22 271.74 224.88 285.06 217.27 298.35 204.02 311.69 393.04 325.01 177.30 

14 95.60 162.83 108.92 0.00 122.24 54.45 135.53 41.20 148.88 27.80 336.23 14.48 

15 245.06 0.00 258.38 211.51 271.69 203.91 284.99 393.16 298.33 177.25 311.65 163.93 

16 108.87 88.67 122.19 75.33 282.82 67.73 0.00 54.48 0.00 41.07 0.00 27.75 

17 231.76 211.56 245.08 198.22 258.40 190.61 271.69 366.50 285.03 163.95 298.35 150.64 

18 127.86 227.53 141.18 94.32 154.50 86.71 167.79 73.46 0.00 0.00 194.45 46.74 

19 218.40 198.19 231.72 184.85 245.04 177.25 258.33 339.79 271.67 313.00 284.99 137.27 

20 135.56 242.74 148.88 102.01 162.19 94.41 175.49 81.16 188.83 67.75 416.13 54.43 

21 205.08 184.88 218.40 171.54 231.72 163.93 245.01 313.11 258.35 286.32 271.67 123.96 

22 148.90 128.69 162.22 242.72 362.91 107.75 188.83 94.50 202.17 81.09 215.49 67.77 

23 191.72 171.51 205.04 158.17 218.35 150.57 231.65 137.32 244.99 123.91 258.31 110.59 

24 167.89 147.68 374.37 134.34 401.06 126.74 207.82 113.49 454.35 100.08 481.01 86.76 
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  To / Bay 

  13 14 15 16 17 18 19 20 21 22 23 24 
Fr

om
 / 

B
ay

 

1 173.97 243.94 94.42 230.67 107.78 211.50 121.12 203.99 134.49 190.60 147.87 171.44 

2 0.00 263.85 114.33 250.58 127.69 231.41 141.03 223.90 154.40 210.51 167.78 191.35 

3 67.77 230.61 174.00 217.34 94.45 198.17 107.79 190.66 121.16 177.27 134.54 158.11 

4 114.41 277.25 127.73 263.98 141.09 244.81 154.43 237.30 167.79 223.91 181.18 204.75 

5 54.41 217.25 67.73 203.98 81.09 184.81 94.43 177.30 107.79 163.91 121.18 144.75 

6 122.15 284.99 135.47 271.72 148.83 252.55 162.17 245.04 175.53 231.65 188.92 212.49 

7 41.09 203.93 54.41 190.66 67.77 171.49 81.11 163.98 94.48 150.59 107.86 131.43 

8 135.47 608.39 309.41 581.84 336.07 543.68 175.49 258.35 188.85 501.75 202.24 225.81 

9 27.75 190.59 41.07 177.32 54.43 158.15 67.77 150.64 81.14 137.25 94.52 118.09 

10 309.52 635.18 162.17 608.64 175.53 279.25 188.87 555.27 202.24 258.35 215.62 490.40 

11 40.68 366.34 27.73 163.98 41.09 144.81 120.72 137.30 67.79 123.91 81.18 221.56 

12 162.15 324.99 175.47 311.72 188.83 292.55 202.17 285.03 215.53 271.65 228.92 517.01 

13 0.00 163.91 14.39 150.64 27.75 131.47 94.04 123.96 54.45 110.57 67.84 91.41 

14 175.53 0.00 188.85 325.10 202.21 305.93 215.56 298.42 469.63 285.03 242.30 265.88 

15 324.99 150.55 0.00 137.27 40.66 118.10 67.36 110.59 41.09 97.21 54.48 78.05 

16 188.81 14.36 202.12 0.00 215.49 319.21 228.83 311.69 242.19 298.31 255.58 570.33 

17 311.69 137.25 325.01 123.98 0.00 104.81 14.43 97.30 27.80 83.91 41.18 64.75 

18 207.79 33.35 221.11 20.08 234.47 0.00 247.82 330.68 261.18 317.29 274.56 298.14 

19 0.00 123.89 311.65 110.62 325.01 91.45 0.00 83.93 14.43 70.55 27.82 51.39 

20 215.49 41.05 228.81 27.77 242.17 8.60 255.51 0.00 268.87 324.99 282.26 305.83 

21 285.01 110.57 298.33 97.30 311.69 78.13 325.03 70.62 0.00 57.23 0.00 38.07 

22 228.83 54.39 242.15 41.11 255.51 21.94 268.85 14.43 282.21 0.00 295.60 319.17 

23 271.65 97.21 284.97 83.93 298.33 64.77 311.67 57.25 325.03 43.87 0.00 24.71 

24 247.82 73.38 261.14 60.10 274.50 40.93 287.84 33.42 301.20 20.04 314.59 0.00 
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TABLE B-3: EMPTY TRAVEL TIME BETWEEN THE BAYS (SEC.) 
  To / Bay 
  1 2 3 4 5 6 7 8 9 10 11 12 

Fr
om

 / 
Ba

y 

1 0.00 318.25 14.49 304.91 27.81 297.31 41.10 284.06 54.44 270.65 67.76 257.33 

2 21.08 0.00 34.40 324.82 47.72 317.21 61.01 303.96 74.35 290.56 87.67 277.24 

3 325.12 304.92 0.00 291.58 14.48 283.98 27.77 270.73 41.11 257.32 54.43 244.00 

4 34.48 14.27 47.80 0.00 61.11 330.61 74.41 317.36 87.75 303.95 101.07 290.64 

5 311.76 291.56 325.08 278.21 0.00 270.61 14.41 257.36 27.75 243.95 41.07 230.64 

6 0.00 22.01 55.54 8.67 68.85 0.00 82.15 325.10 95.49 311.69 108.81 298.38 
7 298.44 278.24 311.76 264.90 325.08 257.29 0.00 244.04 14.43 230.64 27.75 217.32 

8 55.53 35.33 68.85 21.99 82.17 14.39 95.47 0.00 108.81 325.01 122.13 311.69 

9 285.10 264.90 298.42 251.56 311.74 243.95 325.03 230.70 0.00 217.29 14.41 203.98 

10 68.92 48.72 82.24 35.38 95.56 27.77 108.85 14.52 122.19 0.00 135.51 325.08 

11 271.76 251.56 285.08 238.22 298.40 230.61 311.69 217.36 325.03 203.95 0.00 190.64 

12 82.22 62.01 95.54 48.67 108.85 41.07 122.15 27.82 135.49 14.41 148.81 0.00 

13 258.42 238.22 271.74 224.88 285.06 217.27 298.35 204.02 311.69 190.61 325.01 177.30 

14 95.60 75.40 108.92 0.00 122.24 54.45 135.53 41.20 148.88 27.80 162.19 14.48 

15 245.06 0.00 258.38 211.51 271.69 203.91 284.99 190.66 298.33 177.25 311.65 163.93 

16 108.87 88.67 122.19 75.33 135.51 67.73 0.00 54.48 0.00 41.07 0.00 27.75 

17 231.76 211.56 245.08 198.22 258.40 190.61 271.69 177.36 285.03 163.95 298.35 150.64 

18 127.86 107.66 141.18 94.32 154.50 86.71 167.79 73.46 0.00 0.00 194.45 46.74 

19 218.40 198.19 231.72 184.85 245.04 177.25 258.33 164.00 271.67 150.59 284.99 137.27 

20 135.56 115.35 148.88 102.01 162.19 94.41 175.49 81.16 188.83 67.75 202.15 54.43 

21 205.08 184.88 218.40 171.54 231.72 163.93 245.01 150.68 258.35 137.27 271.67 123.96 

22 148.90 128.69 162.22 115.35 175.53 107.75 188.83 94.50 202.17 81.09 215.49 67.77 

23 191.72 171.51 205.04 158.17 218.35 150.57 231.65 137.32 244.99 123.91 258.31 110.59 

24 167.89 147.68 181.21 134.34 194.52 126.74 207.82 113.49 221.16 100.08 234.48 86.76 
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  To / Bay 
  13 14 15 16 17 18 19 20 21 22 23 24 

Fr
om

 / 
Ba

y 

1 81.10 243.94 94.42 230.67 107.78 211.50 121.12 203.99 134.49 190.60 147.87 171.44 

2 0.00 263.85 114.33 250.58 127.69 231.41 141.03 223.90 154.40 210.51 167.78 191.35 

3 67.77 230.61 81.09 217.34 94.45 198.17 107.79 190.66 121.16 177.27 134.54 158.11 

4 114.41 277.25 127.73 263.98 141.09 244.81 154.43 237.30 167.79 223.91 181.18 204.75 

5 54.41 217.25 67.73 203.98 81.09 184.81 94.43 177.30 107.79 163.91 121.18 144.75 

6 122.15 284.99 135.47 271.72 148.83 252.55 162.17 245.04 175.53 231.65 188.92 212.49 

7 41.09 203.93 54.41 190.66 67.77 171.49 81.11 163.98 94.48 150.59 107.86 131.43 

8 135.47 298.31 148.78 285.03 162.15 265.87 175.49 258.35 188.85 244.97 202.24 225.81 

9 27.75 190.59 41.07 177.32 54.43 158.15 67.77 150.64 81.14 137.25 94.52 118.09 

10 148.85 311.69 162.17 298.42 175.53 279.25 188.87 271.74 202.24 258.35 215.62 239.19 

11 14.41 177.25 27.73 163.98 41.09 144.81 54.43 137.30 67.79 123.91 81.18 104.75 

12 162.15 324.99 175.47 311.72 188.83 292.55 202.17 285.03 215.53 271.65 228.92 252.49 

13 0.00 163.91 14.39 150.64 27.75 131.47 41.09 123.96 54.45 110.57 67.84 91.41 

14 175.53 0.00 188.85 325.10 202.21 305.93 215.56 298.42 228.92 285.03 242.30 265.88 

15 324.99 150.55 0.00 137.27 14.39 118.10 27.73 110.59 41.09 97.21 54.48 78.05 

16 188.81 14.36 202.12 0.00 215.49 319.21 228.83 311.69 242.19 298.31 255.58 279.15 

17 311.69 137.25 325.01 123.98 0.00 104.81 14.43 97.30 27.80 83.91 41.18 64.75 

18 207.79 33.35 221.11 20.08 234.47 0.00 247.82 330.68 261.18 317.29 274.56 298.14 

19 0.00 123.89 311.65 110.62 325.01 91.45 0.00 83.93 14.43 70.55 27.82 51.39 

20 215.49 41.05 228.81 27.77 242.17 8.60 255.51 0.00 268.87 324.99 282.26 305.83 

21 285.01 110.57 298.33 97.30 311.69 78.13 325.03 70.62 0.00 57.23 0.00 38.07 

22 228.83 54.39 242.15 41.11 255.51 21.94 268.85 14.43 282.21 0.00 295.60 319.17 

23 271.65 97.21 284.97 83.93 298.33 64.77 311.67 57.25 325.03 43.87 0.00 24.71 

24 247.82 73.38 261.14 60.10 274.50 40.93 287.84 33.42 301.20 20.04 314.59 0.00 
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TABLE B-4: FROM-TO ROUTING PROBABILITIES MATRIX. 
  Destination Bay 
  Routing Probability 

So
ur

ce
 B

ay
 

1 13           
1           

2 8 10 11         
0.72 0.14 0.14         

3 8 15          
0.92 0.08          

4 8 10          
0.91 0.09          

5 3 10          
0.25 0.75          

6            
           

7 5           
1           

8 3 4 9 10 12 14 15 16 17 18 22 
0.07 0.11 0.04 0.02 0.02 0.15 0.2 0.11 0.04 0.11 0.13 

9 3           
1           

10 1 7 11 12 13 14 16 20 24   
0.24 0.12 0.04 0.24 0.12 0.08 0.04 0.08 0.04   

11 5           
0.13           

12 4 8 11 24        
0.09 0.09 0.73 0.09        

13 10 19          
0.9 0.1          

14 2 11 21         
0.1 0.2 0.7         

15 8 17 19         
0.5 0.4 0.1         

16 5 24          
0.33 0.67          

17 8           
1           

18 2           
1           

19 8 10          
0.67 0.33          

20 2 11          
0.5 0.5          

21 8 10          
0.86 0.14          

22 4 5          
0.83 0.17          

23            
           

24 3 5 9 11        
0.25 0.12 0.25 0.38        
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