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SUMMARY 

Nearly every decision must be made with a degree of uncertainty regarding the 

outcome. Decision making based on modeling and simulation predictions needs to 

incorporate and aggregate uncertain evidence. To validate multiscale simulation models, 

it may be necessary to consider evidence collected at a length scale that is different from 

the one at which a model predicts. In addition, traditional methods of uncertainty analysis 

do not distinguish between two types of uncertainty: uncertainty due to inherently 

random inputs, and uncertainty due to lack of information about the inputs. This thesis 

examines and applies a Bayesian approach for model parameter validation that uses 

generalized interval probability to separate these two types of uncertainty. A generalized 

interval Bayes’ rule (GIBR) is used to combine the evidence and update belief in the 

validity of parameters. The sensitivity of completeness and soundness for interval range 

estimation in GIBR is investigated. Several approaches to represent complete ignorance 

of probabilities’ values are tested. The result from the GIBR method is verified using 

Monte Carlo simulations. The method is first applied to validate the parameter set for a 

molecular dynamics simulation of defect formation due to radiation. Evidence is supplied 

by the comparison with physical experiments. Because the simulation includes variables 

whose effects are not directly observable, an expanded form of GIBR is implemented to 

incorporate the uncertainty associated with measurement in belief update. In a second 

example, the proposed method is applied to combining the evidence from two models of 

crystal plasticity at different length scales.  
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CHAPTER 1: INTRODUCTION 

1.1: Aleatory and Epistemic Uncertainty 

Uncertainty is an inevitable component of almost every decision. When 

uncertainty can be measured and documented, decisions can be made with a better 

understanding of the risks and benefits. With a better record of what was understood 

beforehand, the second-guessing effects of “20/20 hindsight” can also be reduced. Many 

methods exist for uncertainty quantification. A recent development uses generalized 

interval probabilities to simultaneously represent both aleatory and epistemic uncertainty. 

This thesis focuses on using an expanded form of Generalized Interval Bayes’ Rule to 

combine and update generalized interval probabilities. 

Aleatory and epistemic uncertainty represent two very different causes of 

uncertainty. Uncertainty is described as aleatory when it is due to random variations—

that is, no amount of careful measurement, of further study, or of increased data 

collection could decrease the amount of uncertainty. Radioactive decay of an atom is one 

example of a process with obvious aleatory uncertainty. No matter how much 

information is gathered on an atom, the only prediction that can be made of its decay will 

be probabilistic and uncertain. 

On the other hand, uncertainty is described as epistemic when it is due to a lack of 

knowledge. When different methods of measurement lead to different values and it is not 

known which one is more accurate, that is epistemic uncertainty.  

To a certain extent, the delineation of aleatory versus epistemic uncertainty can be 

dependent on the scope of the research at hand. For instance, if a study is looking at the 

entire population of humpback whales, then the current weight of whales in the study will 

be represented by a range of weights. This uncertainty is aleatory, because variations due 

to individual eating habits, genetics, and other conditions lead to differences in the actual 
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weight from whale to whale. On the other hand, if another study has a scope limited to a 

single, specific whale, then that whale has one true value for its weight at any given time. 

The whale’s weight may still be represented by a range, but this is because of inherent 

difficulties in putting a humpback whale on a scale. In this case, the uncertainty of the 

whale’s weight is epistemic, because gathering more information about the whale could 

reduce the uncertainty. 

Modeling and simulation is a field in which sources of epistemic uncertainty 

abound. The very essence of modeling is approximation for the sake of efficiency, but 

every approximation made corresponds to a loss of information and an increase in 

epistemic uncertainty. Nonlinear relationships that are linearized, structures that are 

simplified, and physical laws that are idealized are some broad categories of epistemic 

uncertainty sources present in models. Without these approximations, models may 

become impractical to use, but the uncertainty should be identified and quantified for the 

models to be used responsibly. 

Problems can arise when aleatory and epistemic uncertainty are left unseparated. 

For instance, if the variation within a system is aleatory but is mistakenly categorized as 

epistemic, time and money may be wasted trying to reduce irreducible error. On the other 

hand, if a process is designed to accommodate a huge range of inputs where a much 

smaller range would have sufficed if only further study had been done, it is again a waste 

of resources. Understanding the sources of uncertainty allows for more informed decision 

making, and for better allocation of time, money, and other resources. 

1.2: Problem Statement 

Epistemic uncertainty may arise when there are multiple versions of models 

available that describe the same phenomenon, several calculation paths that lead to the 

estimation of the same quantity, or different beliefs about the same subject from experts. 

Without further evidence, there is no way to judge which model/path/belief is more 
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correct. Of course, it is rare to have values and relationships that are absolutely certain 

within any model or calculation path, and so each model or path will lead not to a 

definitive value, but rather to a probability. This represents the aleatory uncertainty of the 

calculation. 

Traditionally, sensitivity analysis is performed to assess the impact of epistemic 

uncertainty for modeling and simulation. By changing the input parameters of a model, 

the variation of the output is obtained. Various methods such as statistical global 

sensitivity analysis, local sensitivity analysis, Monte Carlo sampling, etc. have been 

developed. However, extensive computations are required in these methods. This 

prohibits the wide applications in large-scale simulations where each run of simulation is 

already costly, and repetitive runs of simulation with different combinations of input 

parameters should be avoided. 

In order to find efficient alternatives to sensitivity analysis to quantify epistemic 

uncertainty, in this thesis, generalized interval probabilities are used to represent the two 

components of uncertainty. Experimental results are used to update the simulation results 

in a generalized interval formulation of Bayes’ Rule. Where the experimental results and 

the simulation results are on different scales of measurement, Generalized Interval Bayes’ 

Rule is expanded to incorporate intermediate links between the prior probability and the 

updating information. This result is then verified with Monte Carlo simulations. This 

gives a better understanding of the completeness and soundness of the Generalized 

Interval Bayes’ Rule.  

Uncertainty quantification is significant in any scientific field, where complete 

certainty is the exception rather than the rule. This thesis examines uncertainty 

quantification in the face of extremely high levels of uncertainty in the context of 

materials science problems, including material degradation under radiation and material 

property prediction based on crystalline orientation. The principles demonstrated can be 

applied in any field that must make calculations in spite of uncertain input. 



 

4 

 

Manufacturing applications are an ideal venue for interval analysis, as tolerances provide 

a natural interval. The expanded form of Generalized Interval Bayes’ Rule follows the 

same form as a Generalized Hidden Markov Model, further increasing the potential 

applicability of this method by allowing the interval approach to be used in fields where 

measurable results are not directly available for the forces that create them. 

Determining the intervals to use in generalized interval probability theory requires 

both careful calculation of the probability ranges and careful consideration of interval 

modality (proper vs. improper intervals). The assignment of interval modality requires 

the application of domain-specific knowledge, and is based on the rules of logical 

interpretation: intervals whose epistemic uncertainty is critical to the analysis will 

typically be considered focal and given a proper modality, whereas less critical intervals 

may be considered non-focal and given an improper modality. It will be demonstrated 

that the choice of modality can greatly affect the result of a GIBR update. Despite the 

caution needed in those steps, the computational expense is considerably very low 

compared with many other methods. GIBR has not previously been verified by 

comparison with other methods; this thesis aims to verify examples of GIBR using Monte 

Carlo simulations, thus allowing future researchers to better know how to employ this 

new, efficient approach. 

1.3: Research Approach 

Problems have been selected from the intersection of materials science and 

mechanical engineering. The examples used in Chapter 4 and Chapter 5 are from the field 

of computational materials design; in these examples, predictions based on computational 

material models are updated based on their comparison with physical experiments. GIBR 

was applied in the simplest form when possible. When the model results and the 

experimental results were in different domains of scale or were otherwise initially 

incompatible, an expanded form of GIBR was employed to allow them to link. 
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Mathematically, Bayes’ Rule predicts a conditional probability (𝑃(𝐴|𝐵)) based on 

the independent probabilities of the input events (𝑃(𝐴) and 𝑃(𝐵)) and on the reversed 

conditional probability (𝑃(𝐵|𝐴)). Practically, Bayes’ Rule is a method of combining 

evidence to update one’s belief from a prior probability or likelihood based on the 

addition of new information or evidence. The intent of Generalized Interval Bayes’ Rule 

is to predict a range for the conditional probability when the precise value of the input 

probabilities is unknown. It does not assume any distribution or specific value of the 

quantities represented by each interval; it simply states that the true value should be 

somewhere within the bounds of the interval.  

1.4: Generalized Intervals 

Interval analysis (Sainz, et al., 2014) stems from what are now referred to as 

“classical intervals.” A classical interval represents a set of real numbers with a pair of 

lower and upper bounds. They may be used whenever it is impractical or impossible to do 

so with a single real number, including: 

 When truncation errors prevent the representation of the precise number,  

 When an exact value is unknown, but bounding values can be determined, 

and 

 When an exact value may vary during the context of the problem. 

Classical interval analysis focuses on providing what may be termed a “worst-

case” analysis of a problem: if two inputs, each with an upper and lower bound, are 

combined by some operation, classical interval analysis represents the full range of 

possible results—in other words, classical intervals provide a complete solution. A 

further description of the arithmetic used in this analysis is given in §2.2.1. Intervals can 

be used to simultaneously represent and separate aleatory and epistemic uncertainty in a 

compact, readable form. When an interval is populated with probabilities, it is termed an 

“imprecise probability.” An arbitrary example is the interval [0.50,0.75]. The epistemic 
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uncertainty is represented by the width of the interval, or 0.75 − 0.50 = 0.25. The 

aleatory uncertainty is represented by the values of the interval endpoints, as both 0.50 

and 0.75. Using this interval, there is anywhere from a 50% chance to a 75% chance of 

the event described by this interval occurring. Further study may lead to a reduction in 

epistemic uncertainty: just a few more measurements may give the interval [0.68,0.75], 

and a nearly infinite number of further measurements may lead to the point interval 

[0.72,0.72] and the elimination of all epistemic uncertainty. 

Generalized intervals are not designed to provide the same complete solution that 

classical intervals give. Rather, generalized intervals are intended to give a sound solution 

to an interval problem—while the calculated interval may not cover all possible 

combinations of real values from the input intervals, all the real values within the bounds 

of the calculated interval should be obtainable by some combination of real values from 

within the input intervals. 

Generalized intervals differ from traditional intervals primarily in that they allow 

the upper bound to precede the lower bound within the interval. This, in turn, allows for 

simpler mathematical operations that are reversible. For instance, traditional intervals 

allow the interval [2,3] but not the interval [3,2]. Both are acceptable as generalized 

intervals. According to traditional interval analysis, [2,3] + [3,4] = [5,7], but [5,7] −

[3,4] ≠ [2,3]. Instead, [5,7] − [3,4] = [1,4]. Generalized intervals introduce the dual 

operator in order to make mathematical operations reversible. The dual operator simply 

switches the location of the upper and lower bounds of an interval—thus 𝑑𝑢𝑎𝑙[𝑥, 𝑥] =

[𝑥, 𝑥], and 𝑑𝑢𝑎𝑙[𝑥, 𝑥] = [𝑥, 𝑥]. Using generalized intervals, [2,3] + [3,4] = [5,7] is still 

true, as is [5,7] − 𝑑𝑢𝑎𝑙[3,4] = [2,3]. A more complete description of mathematical 

operators for generalized intervals is given in §3.2.2. 

Other methods of quantifying epistemic uncertainty have been developed. Perhaps 

the most common method is to view epistemic uncertainty probabilistically and to work 
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with it indistinguishably from aleatory uncertainty. Dempster-Shafer theory was 

developed to separate the two types of uncertainty, and also uses an interval—in this 

case, one bound of the interval is given by the evidence for an event (the belief in the 

event), while the other bound is given by one minus the evidence against an event (the 

plausibility of the even); and the width of the interval is the ambiguity that remains given 

the current evidence. More methods are discussed in §2.1. 

1.5: New Contributions 

This thesis is the first to make extensive use of Monte Carlo simulations in an 

attempt to verify the completeness and soundness of Generalized Interval Bayes’ Rule. 

Because interval analysis is a natural choice when uncertainty is large, there are often 

instances of great uncertainty, including complete ignorance, present in GIBR equations. 

This thesis demonstrates how the Logic Coherence Constraint should be used when 

enough information is present, but demonstrates that if the LCC is enforced in a total 

ignorance situation, the result is far from a complete answer. For instance, the decision to 

represent an even of unknown probability as [0,1] or as [1,0] can significantly affect the 

posterior probability, but in many instances it is a subjective choice. Moreover, when 

more than two mutually disjoint events are subject to complete ignorance, choosing [0,1] 

for one event and [1,0] for the second event forces all remaining events to have a 

probability of [0,0] when the LCC is employed. This misleadingly implies perfect 

knowledge that the event is impossible. In response to these challenges, this thesis 

introduces a convention for dealing with complete uncertainty by selectively ignoring the 

LCC. This allows researchers to avoid making subjective decisions that may greatly 

affect the outcome of the analysis. 

This thesis represents the first application of the Generalized Interval Bayes’ Rule 

to cross-scale validation. The approach is demonstrated in Chapter 4 with interval-valued 

equations, but the intervals may be narrowed until they reach real values, and thus the 
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cross-scale validation approach demonstrated may be applied to the real-valued Bayes’ 

Rule as well. 

This thesis also employs a new approach to model aggregation: using Generalized 

Interval Bayes’ Rule to update the belief obtained from one model with the evidence 

from another model. This, too, is equally applicable to a real-valued Bayesian update 

when the intervals are degenerated into real-valued probabilities. A model validation and 

comparison scheme based on Kullback-Leibler divergence is developed with interval 

probability. 

In the course of working with large equations that use intervals, it became 

necessary to find a more compact method of writing the equations. This thesis employs a 

matrix-based method of representing large interval calculations (first shown in §3.5.2). 

The matrix method not only makes the equations more compact, but it also makes it 

easier to recognize when intervals representing mutually disjoint events do or do not 

conform to the Logic Coherence Constraint. 
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CHAPTER 2: LITERATURE REVIEW 

2.1: Uncertainty Quantification Methods 

Many methods have been devised to measure and predict uncertainty in analyses. 

Indeed, one perspective is that the term “uncertainty quantification” could actually 

encompass the whole field of statistics (O'Hagan, 2013). As such, one of the most 

familiar forms of uncertainty quantification is simply the expression of the probability of 

an event. However, many other methods have been devised to measure, express, and 

predict uncertainty. 

2.1.1: Sensitivity Analysis 

In a general sense, uncertainty quantification seeks to find the degree to which a 

system output is uncertain based on the uncertainty of all of its inputs. Sensitivity 

analysis may be seen as a more specific form of this study, as it seeks to determine the 

degree to which the uncertainty in a system output is dependent on the uncertainty in 

each specific input (Helton, Johnson, Sallaberry, & Storlie, 2006). Many sensitivity 

analysis methods are based on the derivative of one variable with respect to another; this 

is perhaps the most basic definition of sensitivity, but the technique only provides a 

useful measurement of the sensitivity at the point where the derivative is taken. 

Extrapolation around this point is possible, but only for linear systems, and thus this type 

of sensitivity analysis may be referred to as local sensitivity analysis (Saltelli, et al., 

2008). Systems with large amounts of uncertainty, however, cannot be properly analyzed 

with local sensitivity analysis techniques, and so global techniques should be employed. 

Global sensitivity analysis (Weirs, et al., 2012) identifies or assumes distributions and 

ranges for each of the inputs, samples repeatedly from the inputs, and records and 

compares the corresponding outputs. It can be computationally expensive, and methods 

are sought to decrease the required sampling. 
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Adjoint sensitivity analysis (Errico, 1997) is, in some sense, the reverse of typical 

sensitivity analysis (Sandu, Daescu, & Carmichael, 2003). Traditional sensitivity analysis 

varies a single input parameter at a single point by use of a derivative, and must be done 

repeatedly in different locations and for different input parameters in order to have a good 

general idea of the model behavior, but it can be effective if the number of inputs is 

relatively few. By contrast, adjoint sensitivity analysis perturbs multiple inputs at once by 

use of a gradient, and can reveal the sensitivity of the output to various inputs relative to 

one another. It is particularly advantageous when a few outputs are influenced by a large 

number of inputs (Cao, Li, Petzold, & Serban, 2003). 

2.1.2: Bayesian Model Averaging 

Bayesian Model Averaging (Hoeting, Madigan, Raftery, & Volinsky, 1999) 

(Chick, 1999) eliminates or reduces model form uncertainty by combining multiple 

models. A classical approach commonly underestimates the uncertainty about which 

distribution is correct, does not quantify the probability that a chosen distribution actually 

is the best fit, and it does not provide any guidance as to which model to select when 

several may work. These challenges are eliminated by Bayesian Model Averaging. 

Rather than forcing the analyst to pick any specific “best fit” model, all of the models that 

can fit the data are identified, and then it combines the outcomes of the models using a 

form of Bayes’ rule. Through this process, Bayesian Model Averaging provides both a 

better prediction of system behavior and a better idea of the existing uncertainty than any 

single model could. Prior and posterior probability distributions must be calculated for 

each model, making BMA not only computationally expensive, but also potentially very 

difficult from a reasoning and record-keeping standpoint. While reducing model form 

uncertainty does take out a major source of epistemic uncertainty, Bayesian Model 

Averaging does not separate aleatory and epistemic uncertainty in any explicit manner. 



 

11 

 

2.1.3: Robust Bayesian Analysis 

Uncertainty quantification is applied to Bayes’ Rule in yet another form in Robust 

Bayesian Analysis (Berger J. O., 1994) (Pericchi & Walley, 1991) (Walley, 1991). This 

interval-based method used in one of two ways: either with an interval expanded from a 

single point or with a broader interval when no more specific data about the prior 

probabilities is available. The first circumstance reveals how sensitive the Bayes’ Rule 

output is to uncertain inputs—whether or not the Bayesian calculation is robust to 

variation. The second circumstance is termed “near-ignorance” for obvious reasons. 

Robust Bayesian Analysis builds on the foundation of providing actual and specific 

distributions for the prior probability inputs, and improves on that foundation by 

providing enough variety in the inputs to encompass the unknown true value of the prior 

distribution. This is necessary because the so-called “noninformative prior” distribution is 

actually a precise distribution, often a uniform distribution, that seeks to convey the lack 

of knowledge about the actual distribution. Unfortunately, the noninformative prior tends 

to be too informative, biasing the later results. 

One common method for performing sensitivity analysis on prior is ε-

contamination (Moreno & Pericchi, 1993) (Berger & Berliner, 1986), wherein the base 

prior 𝜋0 is combined with some contamination 𝑞 by an error 𝜀. The distribution of priors 

is thus described as Γ = (1 − 𝜀)𝜋0 + 𝜀 ∙ 𝑞. As 𝑞 is a member of some class of priors, the 

choice of 𝑞 allows the ε-contamination method to be used for both extremely wide and 

extremely narrow implementations of Robust Bayesian Analysis. 

2.1.4: Design-of-Experiments (DOE) 

Carefully designed experiments (Lawson & Erjavec, 2001) allow the effects and 

interactions of several input variables to be measured in an efficient, repeatable manner 

that avoids bias and should expose or minimize the effects of hidden variables. It seeks an 

efficient method of forming a response surface based on varying levels of the inputs. 
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Repeating experimental runs can give a good idea of aleatory uncertainty, but epistemic 

uncertainty is not typically part of the analysis. DOE can also be used as a form of 

sensitivity analysis, based on the way that the inputs are chosen. 

2.1.5: Resampling 

Sampling-based methods are often used for analysis and prediction. Where a 

sufficient quantity of data is not available for analysis, resampling (Barton & Schruben, 

Resampling methods, 2001) can be used to analyze the distribution generated and 

improve prediction. Three methods considered are: 

 Direct resampling, which requires taking new data for each analysis, 

 Bootstrapping (Babu & Rao, 1993), which samples with replacement from 

the original data sample, and 

 Randomizing EDFs, which involves randomly changing the increments of 

the empirical distribution function (EDF) for resampling (Barton & 

Schruben, Uniform and bootstrap resampling, 1993).  

These methods can provide good descriptive and predictive results with plentiful 

data, but they can fall short when high uncertainty is present, i.e. with missing or 

conflicting data. 

An older method is jackknife resampling (Efron, 1982). This method provides an 

estimate of the bias of a statistic by repeatedly calculating the statistic with one 

observation removed from the total sample. These repeated statistics are compared to the 

same statistic for the total population, and the average of these comparisons converges 

toward the bias. A similar method may be employed to estimate the variance. The 

jackknife method can be applied to many situations, but is typically not the most efficient 

method for most situations. 
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2.1.6: Monte Carlo simulations 

Monte Carlo simulation may be used to show the aleatory uncertainty of a system 

with a known distribution. However, if the distribution form is known, but the exact 

parameters are not, then second-order Monte Carlo simulation (Swiler, Paez, Mayes, & 

Eldred, 2009) can be used to find both the aleatory and the epistemic uncertainty of the 

system. The lack of knowledge about the nature of the distribution is reflected in the 

range of values sampled for the distribution parameters—the outer loop of the Monte 

Carlo simulation. For each outer loop of the Monte Carlo simulation, an inner loop 

simulation is run, giving an output distribution and showing the aleatory uncertainty of 

the system, just as in first-order Monte Carlo simulation. When all of the resulting 

distributions are plotted together, the separation between them shows the epistemic 

uncertainty of the system output. 

2.1.7: Polynomial Chaos 

Polynomial chaos (O'Hagan, 2013) (Ghanem & Spanos, 2003) (Xiu & 

Karniadakis, 2002) approximates a distribution by a multi-step process: a polynomial is 

created to approximate the cumulative distribution function’s inverse transform. Then 

another polynomial (or set of polynomials) is used to generate numbers that can be fed 

into that mapping function. Polynomial chaos is thus a ‘stochastic’ version of a surrogate 

model, whose purpose is to predict behavior of an otherwise unmeasurable output. 

2.1.8: Dempster-Shafer Theory 

A long-standing method of measuring and expressing epistemic uncertainty is 

Dempster-Shafer theory (Dempster, 1967) (Shafer, 1976). Evidence for a proposition is 

bounded by a belief and a plausibility, where belief is defined as all of the evidence in 

support of the proposition, and plausibility is defined as one minus all of the evidence 

contrary to that proposition. Belief is always less than (or equal to) plausibility. 

Dempster-Shafer theory gives a clear way to organize all of the evidence related to a 
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subject under study. It is a basic building block upon which many other methods of 

dealing with uncertainty are founded. 

2.1.9: Fuzzy Sets and Clouds 

A set is a group defined by some sort of inclusion criteria. A random set 

(Molchanov, 2005), as the name implies, is a set whose inclusion criteria is based upon 

one or more random variables. A group of random sets may be used to examine some 

behavior because the family of all sets is typically too large for examination. In the 

classical sense a number must be either completely included or completely excluded from 

a set, but a fuzzy set (Möller & Beer, 2004) allows values to be included by degrees. The 

degree of inclusion is determined by an inclusion criterion in the form of a function 

whose output may be any value between zero and one, where one represents full 

inclusion and zero represents complete exclusion. A cloud (Neumaier, 2004), on the other 

hand, takes on the form of an envelope of probability distributions that encompass the 

unknown actual distribution. Its structure is more complex than a generalized interval 

probability, and it sits between a precise distribution and a fuzzy set in terms of 

information contained.  

2.1.10: Interval Probability Methods 

Interval probability may be regarded as an attempt to generalize classical 

probabilities (Weichselberger, 2000). As such, classical probabilities should be consistent 

with interval probabilities and should be expressible as a special case of interval 

probability. Weichselberger described three axioms of interval probability that 

correspond to Kolmogorov’s three axioms of classical probability. Intervals that follow 

Weichselberger’s first two axioms were termed R-probabilities, while intervals that also 

followed the third axiom were termed F-probabilities. 

The probability box (or p-box ) (Ferson, Kreinovich, Ginzburg, Myers, & Sentz, 

2002) consists of a pair of non-decreasing functions that envelope the actual probability 
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distribution, much like a cloud. The enveloping functions can be smooth or discretized. A 

line parallel to the cumulative probability axis on a plotted p-box can be used to find an 

interval of probabilities associated with an event. Lines plotted perpendicular to the 

cumulative probability axis can be used to generate a Dempster-Shafer structure that 

represents the Dempster-Shafer theory interpretation of the p-box data. Interval 

probabilities are a special case of p-boxes. 

A credal network (Cozman, 2000) (de Cooman, Hermans, Antonucci, & Zaffalon, 

2010) is a visual model that combines a Bayesian network with imprecise probability. It 

uses a multiple input/multiple output directed tree to update beliefs according to a 

specific algorithm. While most credal networks are based on strong independence 

between each set within the network, credal networks based on epistemic irrelevance 

allow for much weaker connection between sets, and can better express greater amounts 

of uncertainty. 

2.2: Generalized Interval Probabilities 

Generalized intervals are an outgrowth of classical intervals. Imprecise 

probabilities are one specific application of generalized intervals. 

2.2.1: Classical Intervals 

In the classical sense, an interval (Moore, 1966) is the set of real numbers 

bounded by an upper and a lower bound. Classical interval arithmetic is simply defined 

as: 

[𝑎, 𝑏] ∗ [𝑐, 𝑑] = {𝑥 ∗ 𝑦|𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑} 

where the symbol * represents one of the four standard arithmetic symbols for 

addition, subtraction, multiplication, and division. One necessary caveat is that if 

0 ∈ [𝑐, 𝑑], then [𝑎, 𝑏]/[𝑐, 𝑑] is undefined.  
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2.2.2: Generalized Intervals 

Classical intervals (as discussed in §1.4) are fairly well-known, but generalized 

intervals are not as commonly used. The mathematics of generalized intervals were first 

defined in (Kaucher, 1980), where generalized intervals were described as occupying the 

“extended interval space 𝕀ℝ.” Many notations exist for representing generalized 

intervals: (Wang, Generalized interval form, 2008) refers to the generalized interval 

space as 𝕂ℝ, with 𝕀ℝ containing proper intervals and 𝕀ℝ containing improper intervals, 

while (Shary, Algebraic approach, 1996) refers to classical intervals as Iℝ and to 

generalized intervals as 𝕀ℝ. Other naming conventions are also used. Within this thesis, 

all intervals used are generalized intervals. 

While a classical interval refers to a set of real numbers, a generalized interval is 

defined by two bounding numbers, with no assumptions about numbers occupying the 

space between them. In a proper generalized interval, the lesser of the two bounds 

precedes the greater, whereas for an improper interval this is reversed. [1,2], [−2,1], and 

[−𝑒, 𝜋] are all proper intervals, while [2,1], [−2,−3], and [
1

2
,
1

3
] are all improper 

intervals. In classical intervals, improper intervals are invalid and cannot be used. 

Because the terms lower bound and upper bound (frequently used to delineate the two 

bounds in classical intervals) imply a less than or greater than relationship, they cannot 

be used to delineate the first or second bounding number of a generalized interval. 

Instead, the under-bar and over-bar accent marks are used: a generalized interval 𝒙 has 

the bounds [𝑥, 𝑥], where 𝑥 ≤ 𝑥 for a proper interval and 𝑥 ≥ 𝑥 for an improper interval. 

For notation in this thesis, a bolded term refers to an interval. 

The modality of an interval (proper versus improper) has an effect on the 

interpretation of the interval as well (Börner, Bulatov, Jeavons, & Krokhin, 2003) (Hu & 

Wang, Sensitivity analysis, 2013) (Batarseh, 2010). Proper intervals are associated with 

the for all (∀) quantifier, whereas improper intervals are associated with the existential 
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(∃) quantifier. For instance, the equation [1,2] + [3,2] = [4,4] may be interpreted as, “for 

all values within the interval [1,2], there exists a value within the interval [3,2] such that 

the result is within the interval [4,4] (or equal to 4).” A point interval, such as [4,4], is 

considered both proper and improper. Within the context of Generalized Interval Bayes’ 

Rule, intervals that are critical to the analysis are typically associated with the for all 

quantifier, and thus will be proper. They may also be termed focal. Other intervals that 

are deemed less important may be associated with the existential quantifier, and are thus 

improper or non-focal. 

This ability to use intervals with reversed bounds leads to the necessity of several 

operators that deal specifically with forcing certain behaviors from the bounds of an 

interval. Using the interval 𝒙 = [𝑥, 𝑥] as an example, they include: 

𝑝𝑟𝑜(𝒙) = [min(𝑥, 𝑥) ,max(𝑥, 𝑥)] 

𝑖𝑚𝑝(𝒙) = [max(𝑥, 𝑥) ,min(𝑥, 𝑥)] 

𝑑𝑢𝑎𝑙(𝒙) = [𝑥, 𝑥] 

For the sake of comparing intervals, the following relationships are also defined 

for the generalized intervals 𝒙 = [𝑥, 𝑥] and 𝒚 = [𝑦, 𝑦]: 

𝒙 < 𝒚 ⇔ (𝑥 < 𝑦)⋀ (𝑥 < 𝑦)⋀(𝑥 < 𝑦) 

𝒙 ≺ 𝒚 ⇔ (𝑥 < 𝑦)⋀ (𝑥 > 𝑦)⋀(𝑥 < 𝑦) 

𝒙 ⊂ 𝒚 ⇔ (𝑥 > 𝑦)⋀(𝑥 < 𝑦) 

The >, ≻, and ⊃ relationships easily follow from these. Other operators have been 

developed for use with generalized intervals, but as not all are used in the scope of this 

thesis, they are not detailed here. More comprehensive lists of operators and relationships 

can be found in (Dimitrova, Markov, & Popova, 1992) and (Gardeñes, et al., 2001). 

Generalized intervals use the Kaucher arithmetic as defined in (Kaucher, 1980). It is 

important to note that Kaucher used the symbol 𝒙 to indicate switching the bounds of a 
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generalized interval, while this thesis uses 𝑑𝑢𝑎𝑙(𝒙) for the same purpose; in this thesis, 

the symbol 𝑥 indicates the second bounding number of the interval 𝒙. 

The power of the Kaucher arithmetic is demonstrated by the completeness of 

equations already mentioned in Chapter 1—specifically, if generalized intervals 𝒂 + 𝒃 =

𝒄, then 𝒄 − 𝑑𝑢𝑎𝑙(𝒃) = 𝒂.  

(Gardeñes, et al., 2001) points out that real numbers, as a system, have a 

significant shortcoming: there is no way to properly represent their infinite precision with 

the finite capabilities of a computer. Classical intervals are a natural method for 

overcoming that, because while a specific number may not be able to be definitively 

stored in a system, values greater than and less than the number can be identified and 

stored. The shortcomings of the classical interval system come when the existence and 

the “for all” proposition are confused—the two have very different meanings. Another 

shortcoming comes when an interval is subjected to “inner rounding” (rounding up the 

lower value and rounding down the greater value), which may result in an improper 

interval. Gardeñes proposes that this be solved by the use of modal intervals, which allow 

improper intervals and which specify the existence versus “for all” qualifiers. 

2.2.3: Intervals as Imprecise Probabilities 

Interval analysis has some important characteristics where high uncertainties are 

involved. Consider the following case: an independent variable is known to be distributed 

between an upper and lower bound, but the actual distribution is unknown. Traditional 

analysis methods often assume a uniform distribution in this instance. If this is done, then 

as subsequent information is added to the model, the model approaches the true 

distribution asymptotically. The original guess of a uniform distribution continues to 

influence the model and pull it away from the true value. If the cumulative distribution 

function of the initial assumption, the subsequent updates, and the true value are plotted 

together as in Figure 1, the bias introduced by the initial assumption becomes apparent. It 
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causes low probabilities to be overestimated, and high probabilities to be underestimated. 

This is reasonable, but the effects can persist through many updates. 

 

Figure 1: The initial assumption of a uniform distribution where no distribution is known heavily influences 

later updates. 

If the lack of knowledge is represented with an interval, then as subsequent 

information is added to the model, the model can be incrementally narrowed around the 

actual distribution. The interval can approach the data asymptotically, but can do so from 

both sides, and the increasingly specific intervals should always contain the actual 

distribution. This is illustrated with the cumulative distribution functions shown in Figure 

2. While the traditional approach of assuming a uniform distribution introduces a strong 

bias to further analysis, an interval approach avoids a bias by allowing any and all values 

within the interval to be included in the analysis. 
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Figure 2: When no distribution is known, an interval can represent the lack of knowledge without introducing 

bias. Further information updates serve to draw the interval closer to the true value. 

Many things can contribute to a lack of knowledge in modeling and simulation 

situations. Data may be missing to inform parameters or other model inputs. Data from 

different sources may conflict, forcing researchers to choose one data set over another 

and thus lose information. When hard numbers are not available, expert elicitation may 

likewise lead to conflicting values, but in this case the conflict is not in data but in the 

beliefs or opinions of different experts. Models are constructed based on available data, 

but experiments often examine only one or two variables, leaving dependency and 

interaction between parameters unknown. And as with all data, errors in measurement 

and errors due to round-off and truncation can be sources of epistemic uncertainty. These 

sources of epistemic uncertainty are discussed greater detail in (Walley, 1991). 
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CHAPTER 3: GENERAL METHODOLOGY 

3.1: Generalized Interval Probability 

General Interval Probability uses intervals to simultaneously represent two types 

of uncertainty in a compact form. Uncertainty due to random variations, herein referred 

to as aleatory uncertainty, is represented by the numeric value of the upper and lower 

bounds of the interval. Uncertainty due to missing information, or epistemic uncertainty, 

is represented by the width of the interval. For instance, the chance of rain in the forecast 

may be represented by the interval [0.40,0.50], meaning “a 40 to 50% chance of rain.” 

Here, the epistemic uncertainty is 10%—the width of the interval. As more weather-

related information becomes available, the epistemic uncertainty may be reduced, and the 

interval may become a point interval, such as [0.42,0.42]. However, no amount of added 

information will change the inherent randomness of the weather (aleatory uncertainty), 

and thus the prediction cannot be made more certain than 42% until the weather actually 

arrives. 

To a certain extent, categorizing error as aleatory or epistemic may be dependent 

upon the scope of work. The height of a stand of trees may be between five and six 

meters, and if the scope of work must include the whole stand, then a variable 

representing tree height will be have a large component of aleatory uncertainty. However, 

if the scope of work involves only a single tree, then any uncertainty about its height is 

due to a lack of knowledge about that specific tree and may therefore be regarded as 

epistemic uncertainty. As can be observed in this example, a major source of epistemic 

uncertainty is measurement error. As such, one of the primary methods for reducing 

epistemic uncertainty is improving measurement techniques. Changing the scope of one’s 

work, on the other hand, can result in the re-categorization of one type of uncertainty to 
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the other type. In every case, the researcher must determine if the relative cost is worth 

the reduction of uncertainty. 

3.2: Arithmetic Conventions 

3.2.1: Classical Interval Arithmetic 

In order to realize the “worst-case” range of possible results with varying inputs, 

classical intervals use the following arithmetic rules: 

For two intervals 𝒙 = [𝑥1, 𝑥2] and 𝒚 = [𝑦1, 𝑦2], where 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2, 

𝒙 + 𝒚 = [𝑥1 + 𝑦1, 𝑥2 + 𝑦2] 

𝒙 − 𝒚 = [𝑥1 − 𝑦2, 𝑥2 − 𝑦1] 

𝒙 × 𝒚 = [min(𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, 𝑥2𝑦2) ,max(𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, 𝑥2𝑦2)] 

𝒙 ÷ 𝒚 = [min (
𝑥1
𝑦1
,
𝑥1
𝑦2
,
𝑥2
𝑦1
,
𝑥2
𝑦2
) ,max (

𝑥1
𝑦1
,
𝑥1
𝑦2
,
𝑥2
𝑦1
,
𝑥2
𝑦2
)] , 0 ∉ 𝒚 

These relationships are the backbone of interval analysis, but they have several 

shortcomings. One major drawback is that operations are not reversible. If 𝒂 + 𝒃 = 𝒄, 

then unless 𝒃 = [0,0], 𝒄 − 𝒃 ≠ 𝒂. Similar examples can be made for other operations. 

Another major drawback is that many algebraic formulations have no solution. Unless 

𝒂 = [0,0], there is no interval 𝒙 for which 𝒂 + 𝒙 = [0,0]. Many other examples can be 

given for any of the four basic algebraic operations listed. 

A further drawback is not as easily seen and so may prove to be more insidious. 

Sainz et al., in the first chapter of Modal Interval Analysis, point out the dangers of trying 

to simply switch from a real-valued equation to an interval valued equation (Sainz, et al., 

2014). Specifically, three formulations of an equation are presented, all of which produce 

an identical result for simple, real inputs. When the values are replaced with intervals, the 

equations do not produce the same results, and none of the three actually predicts the full 

potential interval that may be found in the results. 
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3.2.2: Generalized Interval Arithmetic 

The Kaucher arithmetic is repeated here for completeness, as shown in (Gardeñes, 

et al., 2001). For two intervals 𝒙 = [𝑥, 𝑥] and 𝒚 = [𝑦, 𝑦]: 

𝒙 + 𝒚 = [𝑥 + 𝑦, 𝑥 + 𝑦] 

𝒙 − 𝒚 = [𝑥 − 𝑦, 𝑥 − 𝑦] 

𝒙 × 𝒚 =

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 if 𝑥 ≥ 0, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑦 ≥ 0, then [𝑥𝑦, �̅��̅�]

if 𝑥 ≥ 0, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑦 < 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 ≥ 0, 𝑥 ≥ 0, 𝑦 < 0, 𝑦 ≥ 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 ≥ 0, 𝑥 ≥ 0, 𝑦 < 0, 𝑦 < 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 ≥ 0, 𝑥 < 0, 𝑦 ≥ 0, 𝑦 ≥ 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 ≥ 0, 𝑥 < 0, 𝑦 ≥ 0, 𝑦 < 0, then [max (𝑥𝑦, 𝑥𝑦) ,min (𝑥𝑦, 𝑥𝑦)]

if 𝑥 ≥ 0, 𝑥 < 0, 𝑦 < 0, 𝑦 ≥ 0, then [0,0]

if 𝑥 ≥ 0, 𝑥 < 0, 𝑦 < 0, 𝑦 < 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 < 0, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑦 ≥ 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 < 0, 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑦 < 0, then [0,0]

if 𝑥 < 0, 𝑥 ≥ 0, 𝑦 < 0, 𝑦 ≥ 0, then [max (𝑥𝑦, 𝑥𝑦) ,min (𝑥𝑦, 𝑥𝑦)]

if 𝑥 < 0, 𝑥 ≥ 0, 𝑦 < 0, 𝑦 < 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 < 0, 𝑥 < 0, 𝑦 ≥ 0, 𝑦 ≥ 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 < 0, 𝑥 < 0, 𝑦 ≥ 0, 𝑦 < 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 < 0, 𝑥 < 0, 𝑦 < 0, 𝑦 ≥ 0, then [𝑥𝑦, 𝑥𝑦]

if 𝑥 < 0, 𝑥 < 0, 𝑦 < 0, 𝑦 < 0, then [𝑥𝑦, 𝑥𝑦] }
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𝒙

𝒚
=

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 if 𝑥 ≥ 0, 𝑥 ≥ 0, 𝑦 > 0, 𝑦 > 0, then [

𝑥
𝑦⁄
, 𝑥 𝑦⁄ ]

if 𝑥 ≥ 0, 𝑥 ≥ 0, 𝑦 < 0, 𝑦 < 0, then [𝑥
𝑦⁄
,
𝑥
𝑦⁄ ]

if 𝑥 ≥ 0, 𝑥 < 0, 𝑦 > 0, 𝑦 > 0, then [
𝑥
𝑦⁄
, 𝑥
𝑦⁄
]

if 𝑥 ≥ 0, 𝑥 < 0, 𝑦 < 0, 𝑦 < 0, then [𝑥 𝑦⁄ ,
𝑥
𝑦⁄ ]

if 𝑥 < 0, 𝑥 ≥ 0, 𝑦 > 0, 𝑦 > 0, then [
𝑥
𝑦⁄ , 𝑥 𝑦⁄ ]

if 𝑥 < 0, 𝑥 ≥ 0, 𝑦 < 0, 𝑦 < 0, then [𝑥
𝑦⁄
,
𝑥
𝑦⁄
]

if 𝑥 < 0, 𝑥 < 0, 𝑦 > 0, 𝑦 > 0, then [
𝑥
𝑦⁄ , 𝑥

𝑦⁄
]

if 𝑥 < 0, 𝑥 < 0, 𝑦 < 0, 𝑦 < 0, then [𝑥 𝑦⁄ ,
𝑥
𝑦⁄
]
}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

As with classical interval analysis, 𝒙 𝒚⁄  is undefined when 0 is between the 

bounds of 𝒚. 

When dealing with imprecise probabilities expressed as intervals, all interval 

values are between zero and one, greatly simplifying calculations. The Kaucher 

arithmetic for this special case is simply: 

𝒙 + 𝒚 = [𝑥 + 𝑦, 𝑥 + 𝑦] , 𝒙 × 𝒚 = [𝑥𝑦, 𝑥�̅�] 

𝒙 − 𝒚 = [𝑥 − 𝑦, 𝑥 − 𝑦] ,
𝒙

𝒚
= [

𝑥
𝑦⁄
, 𝑥 𝑦⁄ ] 

With the Kaucher arithmetic, completeness of expression is only available 

through the use of the dual operator, as was discussed in Chapter 1. However, this 

completeness can be expressed in multiple ways. Four equations demonstrate this for the 

case of addition and subtraction: 
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𝒂 − 𝒃 = 𝒄 𝒂 = 𝒄 + 𝑑𝑢𝑎𝑙(𝒃)

𝒂 − 𝑑𝑢𝑎𝑙(𝒃) = 𝒄′ 𝒂 = 𝒄′ + 𝒃
 

Similarly, for multiplication and division: 

𝒙

𝒚
= 𝒛 𝒙 = 𝒛 × 𝑑𝑢𝑎𝑙(𝒚)

𝒙

𝑑𝑢𝑎𝑙(𝒚)
= 𝒛′ 𝒙 = 𝒛′ × 𝒚

 

In either case, the arithmetic is complete. For the formulations of GIBR given in 

this thesis, the dual operator has been applied whenever division or subtraction is 

enacted—the reasons for this are discussed in §3.3. When following this convention, the 

Kaucher arithmetic can be expressed as: 

𝒙 + 𝒚 = [𝑥 + 𝑦, 𝑥 + 𝑦] , 𝒙 × 𝒚 = [𝑥𝑦, �̅��̅�] 

𝒙 − 𝑑𝑢𝑎𝑙(𝒚) = [𝑥 − 𝑦, 𝑥 − 𝑦] ,
𝒙

𝑑𝑢𝑎𝑙(𝒚)
= [

𝑥
𝑦⁄ , 𝑥

𝑦⁄
] 

By following this convention, the arithmetic is greatly simplified. Indeed, every 

formula can simply be broken up into two real-valued versions of itself: one using all of 

the bounds 𝑥, and the other using all of the other bounds 𝑥. 

3.3: Bayesian Updating 

Bayes’ Rule (Bayes & Price, 1763) is well-known, and forms the basis for a large 

body of probability theory, including Dempster-Shafer theory (see §2.1.8), Jeffrey’s Rule 

of Conditioning (Diaconis & Zabell, 1986), Bayesian Model Averaging (§2.1.2), and 

Robust Bayesian Analysis(§2.1.3). Bayes’ Rule may be simply represented by the 

following equation: 

𝑃(𝐸|𝐴) =
𝑃(𝐴|𝐸) ∙ 𝑃(𝐸)

𝑃(𝐴)
 

It is tempting to change this to a generalized interval equation simply by replacing 

each quantity with an interval, giving the equation: 
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𝑷(𝐸|𝐴) =
𝑷(𝐴|𝐸) ∙ 𝑷(𝐸)

𝑷(𝐴)
 

When the bounds of the intervals in question are between 0 and 1, both classical 

interval arithmetic and the Kaucher arithmetic calculate the results of this equation 

identically: the lower bound in this case is calculated as 𝑷(𝐸|𝐴) =
𝑃(𝐴|𝐸)∙𝑃(𝐸)

𝑃(𝐴)
, and the 

upper bound is calculated as 𝑷(𝐸|𝐴) =
𝑃(𝐴|𝐸)∙𝑃(𝐸)

𝑃(𝐴)
. This gives a true “worst-case” 

analysis, meaning that any for any real values within the intervals 𝑷(𝐴|𝐸), 𝑷(𝐸), and 

𝑷(𝐴), the real value of the fraction 
𝑃(𝐴|𝐸)∙𝑃(𝐸)

𝑃(𝐴)
 will be within the interval 𝑷(𝐸|𝐴). This 

may also be referred to as a “complete solution.” However, this worst-case analysis gives 

intervals that are far too wide to be useful, and frequently provides an upper bound with 

an impossible probability greater than 100%. 

A more useful version of Bayes’ theorem for intervals can be derived by returning 

to the derivation of Bayes’ theorem, which starts with the statement that 𝑃(𝐸|𝐴) ∙

𝑃(𝐴) = 𝑃(𝐴|𝐸) ∙ 𝑃(𝐸). If the real-valued probabilities are replaced with generalized 

intervals at this step, then solving for 𝑷(𝐸|𝐴) gives the formulas: 

𝑷(𝐸|𝐴) ∙ 𝑷(𝐴) = 𝑷(𝐴|𝐸) ∙ 𝑷(𝐸) 

𝑷(𝐸|𝐴) =
𝑷(𝐴|𝐸) ∙ 𝑷(𝐸)

𝑑𝑢𝑎𝑙(𝑷(𝐴))
 

The advantageous formulation of the second equation allows the calculation of 

the updated interval to be done as two separate real-valued calculations, because 

𝑷(𝐸|𝐴) =
𝑃(𝐴|𝐸)∙𝑃(𝐸)

𝑃(𝐴)
, and 𝑷(𝐸|𝐴) =

𝑃(𝐴|𝐸)∙𝑃(𝐸)

𝑃(𝐴)
. De-coupling the bounds of each interval 

for calculation greatly increases the computational simplicity because most 

computational tools are set up to use real values rather than intervals, and any of these 

may then be used for posterior probability calculation. By its very definition, this 

equation should not be expected to provide a posterior probability that encompasses all 
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the results that may be produced by the full range of values within the input intervals—it 

will not give a complete solution. However, it should always provide a “sound” solution, 

meaning that all values within the posterior interval may be obtained by a combination of 

some values within the input intervals. It is desirable for this sound solution to provide a 

good idea of the location of the likely results of a real-valued equation, either by being 

centered within the complete solution’s boundaries, or by containing a high proportion of 

the results that might occur using the range of inputs offered in the equation. 

If Ei is one of a set of n mutually disjoint events such that ∑ 𝑃(𝐸𝑗)
𝑛
𝑗=1 = 1, then 

the real-valued denominator can be generalized as 𝑃(𝐴) = ∑ 𝑃(𝐴|𝐸𝑗) ∙ 𝑃(𝐸𝑗)
𝑛
𝑗=1 . This 

may be familiar as a form of Jeffrey’s Rule (Diaconis & Zabell, 1986), which is yet 

another expansion of Bayes’ Rule. Applying this to the interval-valued Bayesian update, 

if Ei is one of a set of n mutually disjoint events such that ∑ 𝑷(𝐸𝑗)
𝑛
𝑗=1 = [1,1], then the 

equation becomes: 

 
𝑷(𝐸𝑖|𝐴) =

𝑷(𝐴|𝐸𝑖) ∙ 𝑷(𝐸𝑖)

∑ 𝑑𝑢𝑎𝑙 (𝑷(𝐴|𝐸𝑗)) ∙ 𝑑𝑢𝑎𝑙 (𝑷(𝐸𝑗))
𝑛
𝑗=1

 ( 1 ) 

Equation ( 1 ) is hereafter referred to as Generalized Interval Bayes’ Rule, or 

GIBR. The requirement that a set of interval-valued mutually disjoint events should add 

up to [1,1] is referred to as the Logic Coherence Constraint, or LCC. 

3.4: Expanding GIBR for cross-scale work. 

In multiscale modeling, evidence used for validation may well be found in a 

different scale than that of the model’s output. As such, it is necessary to have an 

approach that allows evidence to be applied across scales. An equation that allows this to 

take place is derived here, starting with a basic rule of conditional probability: 

𝑃(𝐸|𝐴) ∙ 𝑃(𝐴) = 𝑃(𝐴|𝐸) ∙ 𝑃(𝐸) 

In this case, let E represent the focal event, and let A represent the evidence that 

can be gathered to validate E. In order to incorporate the multiple scales that may be 
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found in a model or in its related evidence, the event E is replaced with the combination 

of events (𝐵 ∩ 𝐶). C is considered to be the new focal event, while B is some link 

between the scales of A and C: 

𝑃(𝐵 ∩ 𝐶|𝐴) ∙ 𝑃(𝐴) = 𝑃(𝐴|𝐵 ∩ 𝐶) ∙ 𝑃(𝐵 ∩ 𝐶) 

Another basic rule of probability, 𝑃(𝐵 ∩ 𝐶) = 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶), can be applied: 

𝑃(𝐵 ∩ 𝐶|𝐴) ∙ 𝑃(𝐴) = 𝑃(𝐴|𝐵 ∩ 𝐶) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶) 

Assuming conditional independence of A and C based on B, the equation 

becomes: 

𝑃(𝐵 ∩ 𝐶|𝐴) ∙ 𝑃(𝐴) = 𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶) 

Assuming conditional independence of B and C based on A further changes the 

equation to: 

𝑃(𝐵|𝐴) ∙ 𝑃(𝐶|𝐴) ∙ 𝑃(𝐴) = 𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶) 

From Bayes’ Rule, 𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵)∙𝑃(𝐵)

𝑃(𝐴)
. Substituting this in gives: 

𝑃(𝐴|𝐵) ∙ 𝑃(𝐵)

𝑃(𝐴)
∙ 𝑃(𝐶|𝐴) ∙ 𝑃(𝐴) = 𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶) 

This can then be simplified to: 

𝑃(𝐶|𝐴) ∙ 𝑃(𝐴|𝐵) ∙ 𝑃(𝐵) = 𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶) 

If all possible values of C are considered, then 𝑃(𝐵) can be related to 𝑃(𝐵|𝐶) ∙

𝑃(𝐶). Specifically, 𝑃(𝐵) = ∫(𝑃(𝐵|𝐶) ∙ 𝑃(𝐶))𝑑𝐶. This allows the equation to be re-

written as: 

𝑃(𝐶|𝐴) ∙ 𝑃(𝐴|𝐵) ∙ ∫(𝑃(𝐵|𝐶) ∙ 𝑃(𝐶))𝑑𝐶 = 𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶) 

Without a loss of generality, both sides of the equation can be integrated over all 

possible values of B. This is necessary because B represents a hidden link between A and 

C, and the desired outcome is the relationship between A and C, rather than the link 

between B and either A or C. That integration gives the following equation: 
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∫(𝑃(𝐶|𝐴) ∙ 𝑃(𝐴|𝐵) ∙ ∫(𝑃(𝐵|𝐶) ∙ 𝑃(𝐶))𝑑𝐶)𝑑𝐵 = ∫(𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶))𝑑𝐵 

Some rearrangement of the terms in the equation gives the following useful form: 

𝑃(𝐶|𝐴) =
∫𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶)𝑑𝐵 ∙ 𝑃(𝐶)

∫∫𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶)𝑑𝐵 𝑑𝐶
 

This “probability chain” form may be used when the prior probability and the 

update cannot be directly connected. If one of the links in the chain represents a hidden 

variable, then this form may be used to represent a Hidden Markov Model (MacDonald 

& Zucchini, 1997). The steps of the previous derivation can be expanded to incorporate 

further degrees of separation between the model and the evidence, resulting in what can 

be thought of as a longer “chain” of probabilities: 

 
𝑃(𝐷|𝐴) =

∫∫𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶|𝐷)𝑑𝐵 𝑑𝐶 ∙ 𝑃(𝐷)

∫∫∫𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶|𝐷) ∙ 𝑃(𝐷)𝑑𝐵 𝑑𝐶 𝑑𝐷
 ( 2 ) 

In either case, converting the equations for use with generalized intervals is a 

simple matter, involving applying the dual operator to the denominator and denoting that 

the probabilities are each intervals. The generalized interval versions of the previous 

equations can be used to represent a Generalized Hidden Markov Model (Wang, 

Multiscale uncertainty quantification, 2011), and are given as equations ( 3 ) and ( 4 ): 

 
𝑷(𝐶|𝐴) =

∫𝑷(𝐴|𝐵) ∙ 𝑷(𝐵|𝐶)𝑑𝐵 ∙ 𝑷(𝐶)

𝑑𝑢𝑎𝑙(∫ ∫𝑷(𝐴|𝐵) ∙ 𝑷(𝐵|𝐶) ∙ 𝑷(𝐶)𝑑𝐵 𝑑𝐶)
 ( 3 ) 

 

 
𝑷(𝐷|𝐴) =

∫∫𝑷(𝐴|𝐵) ∙ 𝑷(𝐵|𝐶) ∙ 𝑷(𝐶|𝐷)𝑑𝐵 𝑑𝐶 ∙ 𝑷(𝐷)

𝑑𝑢𝑎𝑙(∫ ∫∫𝑷(𝐴|𝐵) ∙ 𝑷(𝐵|𝐶) ∙ 𝑷(𝐶|𝐷) ∙ 𝑷(𝐷)𝑑𝐵 𝑑𝐶 𝑑𝐷)
 ( 4 ) 

3.5: A numerical example of the method 

3.5.1: An example of integration by summation 

For illustrative purposes, a purely mathematical example is given here without 

regard for a specific physical meaning. For this first example, the variables α, β, δ, and γ 
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are used, where γ represents some model that is being validated, α represents evidence 

related to the model, and β and δ are the links between them. The equation that is 

employed is: 

𝑷(𝛾|𝛼) =
∫∫𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛿) ∙ 𝑷(𝛿|𝛾)𝑑𝛿 𝑑𝛽 ∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙 ∫∫ ∫𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛿) ∙ 𝑷(𝛿|𝛾) ∙ 𝑷(𝛾)𝑑𝛿 𝑑𝛽 𝑑𝛾
 ( 5 ) 

True integration is often infeasible or even impossible for many applications, but 

an approximation of integration can be achieved with a summation. If equation ( 5 ) is 

integrated by breaking it up into a summation of all possible values of δ, and if δ can take 

on only two values, then the equation can be expressed as: 

𝑷(𝛾|𝛼) =
∫ [

𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛿1) ∙ 𝑷(𝛿1|𝛾)…

…+ 𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛿2) ∙ 𝑷(𝛿2|𝛾)
] 𝑑𝛽 ∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙 ∫∫ [
𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)
] 𝑑𝛽 𝑑𝛾

 

This assumes that 𝛿1 and 𝛿2 are mutually disjoint events. Next, the integration 

over all values of β further expands the equation. As with δ, only two values of β are 

considered. That simple case is shown here: 

𝑷(𝛾|𝛼) =
[
 
 
 
𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾) ]
 
 
 

∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙 ∫

[
 
 
 
𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾) ]
 
 
 

𝑑𝛾

 

Again, this assumes that 𝛽1 and 𝛽2 are mutually disjoint events. If, on the other 

hand, β can take on other values, then this additional information can also be 

incorporated, as long as all of them together form a set of mutually disjoint events. A set 

of three mutually disjoint events for β is shown in the following version of equation ( 5 ): 
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𝑷(𝛾|𝛼) =
[
 
 
 
 
 
 
𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾) ]
 
 
 
 
 
 

∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙 ∫

[
 
 
 
 
 
 
𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾) ]
 
 
 
 
 
 

𝑑𝛾

 

This leaves only one integration to be performed in the denominator of the 

equation. Assuming that the model γ can only take on two values (represented as 𝛾 and 

𝛾𝐶), the equation becomes: 

𝑷(𝛾|𝛼) =
[
 
 
 
 
 
 
𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾) ]
 
 
 
 
 
 

∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾𝐶) ∙ 𝑷(𝛾𝐶) ]
 
 
 
 
 
 
 
 
 
 
 
 

 

( 6 ) 

3.5.2: Matrix decomposition of integrated equations 

Equation ( 6) is closer to yielding a numerical result than was equation ( 5 ), but it 

is unwieldy and repetitive. Examination of the pattern of terms within the equation 
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reveals that the long combination of summed multiplications can more easily be 

represented by the multiplication of matrices; decomposing the numerator into two 

matrices gives the following result: 

𝑷(𝛾|𝛼) =

[𝑷(𝛼|𝛽1) 𝑷(𝛼|𝛽2) 𝑷(𝛼|𝛽3)] [

𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾) + 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾)

𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾) + 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾)

𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾) + 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾)
] ∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾
𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾
𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾
𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾
𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾
𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾
𝐶) ∙ 𝑷(𝛾𝐶) ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Carrying the matrix decomposition one step further onto three matrices gives the 

most compact representation of the numerator, with: 

𝑷(𝛾|𝛼) =

[𝑷(𝛼|𝛽1) 𝑷(𝛼|𝛽2) 𝑷(𝛼|𝛽3)] [

𝑷(𝛽1|𝛿1) 𝑷(𝛽1|𝛿2)

𝑷(𝛽2|𝛿1) 𝑷(𝛽2|𝛿2)

𝑷(𝛽3|𝛿1) 𝑷(𝛽3|𝛿2)
] [
𝑷(𝛿1|𝛾)

𝑷(𝛿2|𝛾)
] ∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾) ∙ 𝑷(𝛾)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿1) ∙ 𝑷(𝛿1|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿1) ∙ 𝑷(𝛿1|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿1) ∙ 𝑷(𝛿1|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽1) ∙ 𝑷(𝛽1|𝛿2) ∙ 𝑷(𝛿2|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽2) ∙ 𝑷(𝛽2|𝛿2) ∙ 𝑷(𝛿2|𝛾𝐶) ∙ 𝑷(𝛾𝐶)…

…+ 𝑷(𝛼|𝛽3) ∙ 𝑷(𝛽3|𝛿2) ∙ 𝑷(𝛿2|𝛾𝐶) ∙ 𝑷(𝛾𝐶) ]
 
 
 
 
 
 
 
 
 
 
 
 

 

As with the numerator, the denominator can be decomposed into the result of the 

multiplication of matrices. With this matrix decomposition carried out, the fully 

integrated and decomposed form of equation ( 5 ) is: 
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𝑷(𝛾|𝛼) =

[𝑷(𝛼|𝛽1) 𝑷(𝛼|𝛽2) 𝑷(𝛼|𝛽3)] [

𝑷(𝛽1|𝛿1) 𝑷(𝛽1|𝛿2)

𝑷(𝛽2|𝛿1) 𝑷(𝛽2|𝛿2)

𝑷(𝛽3|𝛿1) 𝑷(𝛽3|𝛿2)
] [
𝑷(𝛿1|𝛾)

𝑷(𝛿2|𝛾)
] ∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙 ([𝑷(𝛼|𝛽1) 𝑷(𝛼|𝛽2) 𝑷(𝛼|𝛽3)] [

𝑷(𝛽1|𝛿1) 𝑷(𝛽1|𝛿2)

𝑷(𝛽2|𝛿1) 𝑷(𝛽2|𝛿2)

𝑷(𝛽3|𝛿1) 𝑷(𝛽3|𝛿2)
] [
𝑷(𝛿1|𝛾) 𝑷(𝛿1|𝛾

𝐶)

𝑷(𝛿2|𝛾) 𝑷(𝛿2|𝛾
𝐶)
] [
𝑷(𝛾)

𝑷(𝛾𝐶)
])

 ( 7 ) 

This form is not only beneficial for its relative compactness, but also for its ease 

of error-checking. For instance, in every matrix with more than a single row, the columns 

represent a set of mutually disjoint events, and the intervals in them must sum to [1,1]. In 

the case of a single-valued rather than interval-valued equation, the entries in any multi-

rowed column must sum to 1. This property is due to the imposition of the Logic 

Coherence Constraint in the case of generalized intervals, which is analogous to the 

definition of mutually disjoint events for the single-valued case. Rows with more than 

one column (e.g. [𝑷(𝛼|𝛽1) 𝑷(𝛼|𝛽2) 𝑷(𝛼|𝛽3)])are not numerically related. The 

simplified format also makes it easier to keep track of variable names and decreases 

repetition, simplifying the process of performing or of programming the calculations. 

Matrices must be arranged such that the result of the final multiplication is a single 

interval, or, in the case of a non-interval equation, a scalar. 

In addition, when the pattern of matrix decomposition is recognized, it becomes a 

simple matter to change the number of terms that each link in the chain contains, or to 

change the number of links in the chain. For instance, if the GIBR equation is used to link 

model γ with evidence α using only the link β, then the relevant integration is: 

𝑷(𝛾|𝛼) =
∫𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛾)𝑑𝛽 ∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙 ∫ ∫𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛾) ∙ 𝑷(𝛾)𝑑𝛽 𝑑𝛾
 

This can easily be broken up into a very simple case of only two terms for each 

parameter. For the sake of compactness in representation, a shorthand is employed; each 

term represents a probability, and the subscript represents the condition upon which the 

probability depends. For instance, 𝛽1𝛾 is used to represent 𝑷(𝛽1|𝛾). Using the shorthand 

notation, this simple case is represented as: 
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𝑷(𝛾|𝛼) =

[𝛼𝛽1 𝛼𝛽2] [
𝛽1𝛾
𝛽2𝛾

] ∙ 𝛾

𝑑𝑢𝑎𝑙 ([𝛼𝛽1 𝛼𝛽2] [
𝛽1𝛾 𝛽1𝛾𝐶

𝛽2𝛾 𝛽2𝛾𝐶
] [
𝛾

𝛾𝐶])

 

The same integration can just as easily be broken up into a very complex case of 

four terms each for both α and β: 

𝑷(𝛾|𝛼) =

[𝛼𝛽1 𝛼𝛽2 𝛼𝛽3 𝛼𝛽4]

[
 
 
 
 
𝛽1𝛾
𝛽2𝛾
𝛽3𝛾
𝛽4𝛾]

 
 
 
 

∙ 𝛾

𝑑𝑢𝑎𝑙

(

 
 
[𝛼𝛽1 𝛼𝛽2 𝛼𝛽3 𝛼𝛽4]

[
 
 
 
 
𝛽1𝛾 𝛽1𝛾𝐶

𝛽2𝛾 𝛽2𝛾𝐶

𝛽3𝛾 𝛽3𝛾𝐶

𝛽4𝛾 𝛽4𝛾𝐶]
 
 
 
 

[
𝛾

𝛾𝐶]

)

 
 

 

In the case of more links in the chain, the GIBR equation might look like this: 

𝑷(𝛾|𝛼) =
∫∫∫𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛿) ∙ 𝑷(𝛿|𝜖) ∙ 𝑷( 𝜖|𝛾)𝑑𝜖 𝑑𝛿 𝑑𝛽 ∙ 𝑷(𝛾)

𝑑𝑢𝑎𝑙 ∫ ∫∫∫𝑷(𝛼|𝛽) ∙ 𝑷(𝛽|𝛿) ∙ 𝑷(𝛿|𝜖) ∙ 𝑷( 𝜖|𝛾) ∙ 𝑷(𝛾) 𝑑𝜖 𝑑𝛿 𝑑𝛽𝑑𝛾
 

And it could be decomposed into this: 

𝑷(𝛾|𝛼) =

[𝛼𝛽1 𝛼𝛽2] [
𝛽1𝛿1 𝛽1𝛿2
𝛽2𝛿1 𝛽2𝛿2

] [
𝛿1𝜖1 𝛿1𝜖2
𝛿2𝜖1 𝛿2𝜖2

] [
𝜖1𝛾
𝜖2𝛾

] ∙ 𝛾

𝑑𝑢𝑎𝑙 ([𝛼𝛽1 𝛼𝛽2] [
𝛽1𝛿1 𝛽1𝛿2
𝛽2𝛿1 𝛽2𝛿2

] [
𝛿1𝜖1 𝛿1𝜖2
𝛿2𝜖1 𝛿2𝜖2

] [
𝜖1𝛾 𝜖1𝛾𝐶

𝜖2𝛾 𝜖2𝛾𝐶
] [
𝛾

𝛾𝐶])

 

Or, almost as easily, into this: 

𝑷(𝛾|𝛼) =

[𝛼𝛽1 𝛼𝛽2] [
𝛽1𝛿1 𝛽1𝛿2 𝛽1𝛿3
𝛽2𝛿1 𝛽2𝛿2 𝛽2𝛿3

] [

𝛿1𝜖1 𝛿1𝜖2 𝛿1𝜖3 𝛿1𝜖4
𝛿2𝜖1 𝛿2𝜖2 𝛿2𝜖3 𝛿2𝜖4
𝛿3𝜖1 𝛿3𝜖2 𝛿3𝜖3 𝛿3𝜖4

]

[
 
 
 
 
𝜖1𝛾
𝜖2𝛾
𝜖3𝛾
𝜖4𝛾]

 
 
 
 

∙ 𝛾

𝑑𝑢𝑎𝑙

(

 
 
[𝛼𝛽1 𝛼𝛽2] [

𝛽1𝛿1 𝛽1𝛿2 𝛽1𝛿3
𝛽2𝛿1 𝛽2𝛿2 𝛽2𝛿3

] [

𝛿1𝜖1 𝛿1𝜖2 𝛿1𝜖3 𝛿1𝜖4
𝛿2𝜖1 𝛿2𝜖2 𝛿2𝜖3 𝛿2𝜖4
𝛿3𝜖1 𝛿3𝜖2 𝛿3𝜖3 𝛿3𝜖4

]

[
 
 
 
 
𝜖1𝛾 𝜖1𝛾𝐶

𝜖2𝛾 𝜖2𝛾𝐶

𝜖3𝛾 𝜖3𝛾𝐶

𝜖4𝛾 𝜖4𝛾𝐶]
 
 
 
 

[
𝛾

𝛾𝐶]

)

 
 

 

There is no theoretical limit on the number of links in the expanded GIBR chain, 

nor on the number of mutually disjoint events that may be used in the discretization of the 

integrals. There is, however, a practical limitation: too many links or too many levels of 
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discretization will cause the equations to become large and unwieldy, even with matrix 

decomposition. The analysis may be further limited in practice by the amount of 

information available to populate the likelihoods that connect the evidence to the model. 

3.5.3: Verification through Monte Carlo Simulations 

Generalized Interval Bayes’ Rule attempts to predict the interval in which a result 

will lie given the intervals for each of the inputs. For the sake of illustration, the 

following equation is used: 

𝑷(𝛾|𝛼) =

[𝛼𝛽1 𝛼𝛽2 𝛼𝛽3 𝛼𝛽4]

[
 
 
 
 
𝛽1𝛾
𝛽2𝛾
𝛽3𝛾
𝛽4𝛾]

 
 
 
 

∙ 𝛾

𝑑𝑢𝑎𝑙

(

 
 
[𝛼𝛽1 𝛼𝛽2 𝛼𝛽3 𝛼𝛽4]

[
 
 
 
 
𝛽1𝛾 𝛽1𝛾𝐶

𝛽2𝛾 𝛽2𝛾𝐶

𝛽3𝛾 𝛽3𝛾𝐶

𝛽4𝛾 𝛽4𝛾𝐶]
 
 
 
 

[
𝛾

𝛾𝐶]

)

 
 

 ( 8 ) 

Intervals were arbitrarily assigned to each of the probabilities in equation ( 8 ). 

These are shown in Table 1: 

Table 1: Assigned probability intervals for an example problem. 

Symbol Probability Interval Notes 

𝛼𝛽1 𝑷(𝛼|𝛽1) [0.3880,0.9973] 
Arbitrarily Assigned 

Note that the assigned intervals are all 

proper intervals. Only where the Logic 

Coherence Constraint is used to generate 

an interval value does the value become an 

improper interval (e.g. 𝛽4𝛾, 𝛽4𝛾𝐶, and 𝛾𝐶). 

𝛼𝛽2 𝑷(𝛼|𝛽2) [0.7415,0.9024] 

𝛼𝛽3 𝑷(𝛼|𝛽3) [0.3667,0.8688] 

𝛼𝛽4 𝑷(𝛼|𝛽4) [0.1655,0.4140] 

𝛽1𝛾 𝑷(𝛽1|𝛾) [0.1197,0.1826] 

𝛽2𝛾 𝑷(𝛽2|𝛾) [0.1662,0.3080] 

𝛽3𝛾 𝑷(𝛽3|𝛾) [0.3587,0.4603] 

𝛽4𝛾 𝑷(𝛽4|𝛾) [0.3554,0.0491] 𝛽4𝛾 = 1 − 𝑑𝑢𝑎𝑙 (𝛽1𝛾 + 𝛽2𝛾 + 𝛽3𝛾) 

𝛽1𝛾𝐶 𝑷(𝛽1|𝛾𝐶) [0.0410,0.1930] 

Arbitrarily Assigned 𝛽2𝛾𝐶 𝑷(𝛽2|𝛾𝐶) [0.1527,0.1772] 

𝛽3𝛾𝐶 𝑷(𝛽3|𝛾𝐶) [0.3683,0.4682] 

𝛽4𝛾𝐶 𝑷(𝛽4|𝛾𝐶) [0.4380,0.1616] 𝛽4𝛾𝐶 = 1 − 𝑑𝑢𝑎𝑙 (𝛽1𝛾𝐶 + 𝛽2𝛾𝐶 + 𝛽3𝛾𝐶) 

𝛾 𝑷(𝛾) [0.3000,0.4500] Arbitrarily Assigned 

𝛾𝐶 𝑷(𝛾𝐶) [0.7000,0.5500] 𝛾𝐶 = 1 − 𝑑𝑢𝑎𝑙(𝛾) 
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Once the interval values are substituted into equation ( 8 ), the resulting equation 

is as shown in equation ( 9 ). The [𝛼𝛽] matrix has been transposed only for the sake of 

compactness in representation: 

𝑷(𝛾|𝛼) =

[

[0.3880,0.9973]

[0.7415,0.9024]
[0.3667,0.8688]

[0.1655,0.4140]

]

𝑇

[

[0.1197,0.1826]

[0.1662,0.3080]
[0.3587,0.4603]

[0.3554,0.0491]

] ∙ [0.3000,0.4500]

𝑑𝑢𝑎𝑙

(

 
 
[

[0.3880,0.9973]

[0.7415,0.9024]

[0.3667,0.8688]

[0.1655,0.4140]

]

𝑇

[

[0.1197,0.1826] [0.0410,0.1930]

[0.1662,0.3080] [0.1527,0.1772]

[0.3587,0.4603] [0.3683,0.4682]

[0.3554,0.0491] [0.4380,0.1616]

] [
[0.3000,0.4500]

[0.7000,0.5500]
]

)

 
 

 ( 9 ) 

The lower bound of the posterior probability 𝑷(𝛾|𝛼) = 0.3143 is calculated by 

using the lower bounds of each of the input intervals, as follows: 

𝑷(𝛾|𝛼) =

[0.3880 0.7415 0.3667 0.1655] [

0.1197
0.1662
0.3587
0.3554

] ∙ 0.3000

𝑑𝑢𝑎𝑙 ([0.3880 0.7415 0.3667 0.1655] [

0.1197 0.0410
0.1662 0.1527
0.3587 0.3683
0.3554 0.4380

] [
0.3000
0.7000

])

 

Similarly, the upper bound 𝑷(𝛾|𝛼) = 0.4658 is calculated by using the upper 

bound of each of the input intervals: 

𝑷(𝛾|𝛼) =

[0.9973 0.9024 0.8688 0.4140] [

0.1826
0.3080
0.4603
0.0491

] ∙ 0.4500

𝑑𝑢𝑎𝑙 ([0.9973 0.9024 0.8688 0.4140] [

0.1826 0.1930
0.3080 0.1772
0.4603 0.4682
0.0491 0.1616

] [
0.4500
0.5500

])

 

A single counter-example can clearly demonstrate the lack of completeness in the 

GIBR solution: a real-valued equation in the form of equation ( 8 ) that has inputs within 

the given intervals, and an output beyond the range of the output interval. One such 

counter-example is 𝑃(𝛾|𝛼) = 0.4901. 
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𝑃(𝛾|𝛼) =

[0.8094 0.8026 0.7881 0.2634] [

0.1346
0.2921
0.4435
0.1298

] ∙

𝑑𝑢𝑎𝑙 ([0.8094 0.8026 0.7881 0.2634] [

0.1346 0.0624
0.2921 0.1542
0.4435 0.3712
0.1298 0.4123

] [
0.4321
0.2679

])

 

Despite the fact that every value in the right-hand side of the given equation is 

within the intervals prescribed, the resulting posterior probability of 0.4901 is outside of 

the predicted interval of [0.3143,0.4658]. Obviously the GIBR solution is not complete, 

but there is still much that can be learned about its soundness by repeated testing of the 

equation outputs and the distribution of results. 

In its purest interpretation, a generalized interval neither represents nor implies 

any particular distribution of values within its limits. The actual result could be single 

value somewhere within or even on the limits, or it could be any distribution contained 

within the limits, as demonstrated in Figure 3. 

 

Figure 3: Some of the many distributions that could be represented by an interval. 
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For something like a normal distribution, the limits could be said to reasonably 

represent the distribution if they contained it only to a certain level, such as ±3σ. As such, 

the distribution of values that are obtained from multiple examples provides a valuable 

insight into the usefulness of GIBR. This leads directly to the use of Monte Carlo 

simulation to verify GIBR. As an example Monte Carlo simulation, equation ( 9 ) was 

used to calculate a posterior probability interval. Each input interval within the equation 

was replaced with a real value randomly generated to conform to the boundaries of the 

interval, thus allowing a single real-valued output to be obtained as a posterior 

probability. 

3.5.3.1: Uniform Input Monte Carlo Simulation 

For the first Monte Carlo verification simulation, the assigned input intervals in 

equation( 9 ) were replaced with uniformly distributed random values within their 

bounds; the value for the complementary intervals (i.e. 𝛽4𝛾, 𝛽4𝛾𝐶, and 𝛾𝐶) was 

determined by subtraction in order to comply with the Logic Coherence Constraint. 

Assuming a distribution goes against the nature of generalized intervals, but is necessary 

for the sake of obtaining an observable, understandable verification result. The resulting 

real-valued equation was then used to calculate a posterior probability. This process was 

repeated 1,000,000 times, using pseudo-random numbers generated by Microsoft Excel’s 

“rand()” function. A histogram and the corresponding count of the results is shown in 

Figure 4. The bin size of the histogram was intentionally selected so that twenty bins 

would completely cover the proposed posterior probability of [0.3143,0.4658]. 
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Figure 4: Histogram of a 1,000,000 run Monte Carlo simulation with uniform inputs. The heavy black vertical 

bars represent the limits of the posterior probability as predicted by GIBR. The height of each bar represents 

the relative frequency, or count, of the Monte Carlo simulation’s output falling within the bin denoted beneath 

the bar. The bins are inclusive of their respective lower bounds and exclusive of their upper bounds. For 

instance, 0.3143≤𝑷(𝜸|𝜶)<0.3218 defines one of the bins; the simulation result fell in this bin 25,788 times. 

Aside from the obvious fact that the Monte Carlo simulation results exceed the 

interval limits at both the upper and lower bounds, there are other relevant measurements 

that can be gained from these results. The proposed interval of [0.3143,0.4658] is 57.19% 

of the width of the extreme limits of the Monte Carlo simulation, which were 

[0.2777,0.5426]. Of the million runs, however, 91.73% did fall within the 

[0.3143,0.4658] limits. Despite the lack of completeness, the proposed interval is at least 

sound. In this case, soundness denotes a solution that does not include any impossible 

values, whereas completeness denotes a solution that does not exclude any possible 

values. It is also worth noting that, with uniform input intervals, the distribution of the 

Monte Carlo simulation falls off sharply near the borders of the predicted posterior 

probability interval. 

In an ideal situation, the wide intervals of an initial calculation should gradually 

be narrowed as more information is gained. In order to simulate this, the intervals in 
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Table 1 were replaced with intervals of half the width and the simulation was run again. 

The process was repeated with intervals one-quarter the width of the original, and finally 

with a real-valued equation. The intervals used are shown below in Table 2, and the 

results of the simulation are shown in Figure 5 and Figure 6. 

Table 2: Assigned probability intervals that are narrower than the originally assigned intervals, and centered on 

the original intervals. The three rows shown in italics (𝜷𝟒𝜸, 𝜷𝟒𝜸𝑪, and 𝜸𝑪) were calculated using the Logic 

Coherence Constraint; all others were simply calculated as a proportion of the original arbitrary interval. The 

posterior probabilities are also shown and are each compared with the results of million-run MC simulations. 

Symbol/Probability 
Original 

Interval 

Half-Width 

Interval 

Quarter-Width 

Interval 

Centered 

Real 

Value 

𝛼𝛽1 𝑷(𝛼|𝛽1) [0.3880,0.9973] [0.5403,0.8450] [0.6165,0.7688] 0.6927 

𝛼𝛽2 𝑷(𝛼|𝛽2) [0.7415,0.9024] [0.7817,0.8622] [0.8018,0.8421] 0.8220 

𝛼𝛽3 𝑷(𝛼|𝛽3) [0.3667,0.8688] [0.4922,0.7433] [0.5550,0.6805] 0.6178 

𝛼𝛽4 𝑷(𝛼|𝛽4) [0.1655,0.4140] [0.2276,0.3519] [0.2587,0.3208] 0.2898 

𝛽1𝛾 𝑷(𝛽1|𝛾) [0.1197,0.1826] [0.1354,0.1669] [0.1433,0.1590] 0.1512 

𝛽2𝛾 𝑷(𝛽2|𝛾) [0.1662,0.3080] [0.2017,0.2726] [0.2194,0.2548] 0.2371 

𝛽3𝛾 𝑷(𝛽3|𝛾) [0.3587,0.4603] [0.3841,0.4349] [0.3968,0.4222] 0.4095 

𝛽4𝛾 𝑷(𝛽4|𝛾) [0.3554,0.0491] [0.2788,0.1257] [0.2405,0.1640] 0.2023 

𝛽1𝛾𝐶 𝑷(𝛽1|𝛾𝐶) [0.0410,0.1930] [0.0790,0.1550] [0.0980,0.1360] 0.1170 

𝛽2𝛾𝐶 𝑷(𝛽2|𝛾𝐶) [0.1527,0.1772] [0.1588,0.1711] [0.1619,0.1680] 0.1650 

𝛽3𝛾𝐶 𝑷(𝛽3|𝛾𝐶) [0.3683,0.4682] [0.3933,0.4432] [0.4058,0.4307] 0.4183 

𝛽4𝛾𝐶 𝑷(𝛽4|𝛾𝐶) [0.4380,0.1616] [0.3689,0.2307] [0.3344,0.2653] 0.2998 

𝛾 𝑷(𝛾) [0.3000,0.4500] [0.3375,0.4125] [0.3563,0.3938] 0.3750 

𝛾𝐶 𝑷(𝛾𝐶) [0.7000,0.5500] [0.6625,0.5875] [0.6438,0.6063] 0.6250 

Results 

Posterior: 𝑷(𝛾|𝛼) [0.3143,0.4658] [0.3565,0.4310] [0.3761,0.4132] 0.3949 

% of M.C. runs 

within output 

interval 

91.73% 91.24% 91.05% NA 

Extreme values of 

M.C. simulation 
[0.2777,0.5426] [0.3352,0.4621] [0.3655,0.4283] NA 

𝑷(𝛾|𝛼)

𝑀.𝐶.𝑅𝑎𝑛𝑔𝑒
%  57.19% 58.72% 59.06% NA 
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Figure 5: Histogram of 1,000,000 run Monte Carlo simulation 

with half-width interval inputs. The height of the data bars has 

been scaled to be consistent with Figure 6. 

 

Figure 6: Histogram of a 1,000,000 run 

Monte Carlo simulation with quarter-width 

inputs. 

When the input intervals are narrowed about their respective centers, the output 

interval predictably does the same. The calculated real-valued posterior probability of 

0.3949 is almost centered in each of the calculate interval posterior probabilities. All 

three simulations contained a similar percentage of the Monte Carlo simulation runs, and 

the comparison of Monte Carlo extreme values versus posterior probability interval was 

almost the same for all three cases, suggesting that the equation’s predictive capability is 

scale independent. More importantly, it demonstrates that GIBR converges to classical 

Bayes’ rule as the interval widths reduce. As the interval widths reduce, the completeness 

of interval range estimation also improves. 

3.5.3.2: Normal Input Monte Carlo Simulation 

For the second Monte Carlo verification simulation, the assigned input intervals in 

equation( 9 ) were replaced with normally distributed random values based on their 
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bounds; the value for the complementary intervals was again determined by subtraction 

in order to comply with the Logic Coherence Constraint. The bounds of the assigned 

intervals were assumed to represent the ±3σ limits of a distribution centered at the 

average of the upper and lower bounds. As before, the resulting real-valued equation was 

then used to calculate a posterior probability. This process was repeated 1,000,000 times, 

using pseudo-random numbers generated by Microsoft Excel’s “norm.inv()” function, 

with the “rand()” function as one of its inputs. A histogram and the corresponding count 

of the results is shown in Figure 7. 

 

Figure 7: Histogram of a 1,000,000 run Monte Carlo simulation with normal inputs. The bins are inclusive of 

their respective lower bounds and exclusive of their upper bounds. 

As with the uniform input simulation, the results of the normal input simulation 

indicate that the proposed interval is sound but not complete. In this case, 99.45% of the 

million runs fell within the bounds of [0.3143,0.4658], and the proposed interval was 

58.23% of the width of the extreme limits of the situation, which ranged from 0.2636 to 

an 0.5238. For this example, GIBR does provide a very good idea of where the results 

will be concentrated, both with uniformly distributed inputs and with normally distributed 
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inputs, which is the general goal of sensitivity analysis. It should be noticed that classical 

sensitivity analysis methods do not guarantee the completeness of range estimation either.  
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CHAPTER 4: AN APPLICATION OF THE METHOD IN 

SIMULATING DEFECT FORMATION 

This chapter demonstrates an application of the method described in Chapter 3. A 

model, including the input parameters and other model characteristics, is referred to as θ. 

The model θ simulates the firing of an atom at BCC iron. It transfers some energy T 

during impact, where T=Tm for a direct hit, or T< Tm for a glancing blow. A defect 

(specifically a Frenkel Pair) may be formed due to this transfer of energy. The actual 

formation of a defect is probabilistic and dependent on several parameters and conditions. 

The purpose of the model θ is to simulate the formation of a defect. Physical evidence 

used to validate the model θ comes in the form of experiments measuring the resistivity 

change per defect, 
Δρ

n
, and the links between the two are the energy Tm of the incident 

particles and the damage threshold energy Td. 

This chapter focuses on the calculation of a posterior probability 𝑷(θ|
Δρ

n
), where 

the prior probability that the model θ is correct (𝑷(𝜃)) is updated using the physical 

evidence of experiments that measure 
Δρ

n
. Several obstacles make calculating the posterior 

probability difficult, and lead directly to the expanded form of GIBR. While the 

simulation looks at a single atom impacting a crystalline lattice, physical experiments 

must work on a larger scale—for example, a continual stream of atoms bombarding a 

polycrystalline sample. Because the original simulation looked at a single defect, 

evidence used to validate the simulation must be normalized by dividing by the number 

of defects. Scale discrepancies necessitate the use intermediate links in the probability 

updated and thus an expanded form of GIBR. 

Atomic level defects (a single displaced atom and the void it leaves behind) are 

not directly measurable. However, the effects of a large number of defects are 
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measurable. For instance, as the number of defects (n) increases, the electrical resistivity 

ρ of the material increases by some amount Δρ. Similarly, as n increases, so does the 

volume of the material (the material actually expands as it is subject to radiation). This 

increase in volume is more easily measured in one dimension as an increase in length 

(Δℓ), and is rendered unitless by dividing by the original length (Δℓ/ℓ). Multiple 

calculation paths exist to bridge this gap of measurable versus simulated quantities, 

though, which leads to the use of interval probabilities. 

4.1: Constructing the applied equation 

Having derived the basic form of a GIBR equation, the next step is to translate it 

into an application. The starting point, equation ( 4 ), is repeated here for clarity: 

𝑃(𝐷|𝐴) =
∫∫𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶|𝐷)𝑑𝐵 𝑑𝐶 ∙ 𝑃(𝐷)

∫ ∫∫𝑃(𝐴|𝐵) ∙ 𝑃(𝐵|𝐶) ∙ 𝑃(𝐶|𝐷) ∙ 𝑃(𝐷)𝑑𝐵 𝑑𝐶 𝑑𝐷
 

The goal of this equation development is to update a belief that the model θ 

accurately reflects reality given the information from experiments that measure a 

resistivity change per defect (Frenkel pair) in BCC iron. The actual parameters and 

variables that are applied to the equation are shown simply in Table 3. 

Table 3: Parameters and variables used in the GIBR example. 

Symbol Explanation 

𝑷(θ|
Δρ

n
) 

The calculated result: the probability that the model θ accurately 

represents reality, given the physical evidence of experiments measuring 

(Δρ/n). 

𝑷(θ) 
The probability that the model θ accurately represents reality, given no 

other evidence. 

𝑷(Td|θ) 
The probability of finding a specific damage threshold Td, given the 

model θ. 

𝑷(Tm|Td) 
The probability of having a specific maximum possible level of 

transferred energy Tm (or of being struck by an incident electron having a 

specific energy) given a damage threshold Td. 

𝑷(
Δρ

n
|Tm) 

The probability that damage causing a resistivity change Δρ/n occurs, 

given that incident particles have energy level Tm. 
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Once these terms are assembled into a cohesive equation, the result is as seen in 

equation ( 10 ). The calculation of the input interval values in this equation are given in 

the next section. 

 

𝑷(θ|
Δρ

n
) =

∫ ∫ [𝑷(
Δρ
n |
Tm) ∙ 𝑷(Tm|Td) ∙ 𝑷(Td|θ)] dTddTm ∙ 𝑷(θ)

𝑑𝑢𝑎𝑙∫ ∫ ∫ [𝑷 (
Δρ
n |
Tm) ∙ 𝑷(Tm|Td) ∙ 𝑷(Td|θ) ∙ 𝑷(θ)] dTddTmdθ

 ( 10 ) 

4.1.1: Calculations and assumptions for the input intervals 

In assembling the probability chain used in the GIBR equation, the first “link” is 

the probability that the model θ accurately reflects reality. The shorthand used to 

represent this is 𝑃(𝜃) for a single value, or 𝑷(𝜃) for an interval-valued probability. For 

this chapter’s example, 𝑷(𝜃) = [0.4,0.5] was used. The interval was based purely on 

intuition rather than on any mathematical derivation or numerical evidence. For the 

denominator of the GIBR, a set of mutually disjoint events is required, and so the Logic 

Coherence Constraint was used to find 𝑷(𝜃𝐶), or the probability that the model θ does 

not accurately reflect reality. Quite simply, 𝑷(𝜃𝐶) = 1 − 𝑑𝑢𝑎𝑙𝑷(𝜃) = [0.6,0.5]. 

A major simplification occurs with the introduction of a damage threshold Td. It is 

assumed that if the transferred energy is less than Td, then no damage occurs. Similarly, if 

the transferred energy is greater than or equal to Td, then damage occurs. Td is found by 

interpreting the damage function ν of the transfer/ recoil energy T as a cumulative 

distribution function, or CDF. A smoothing algorithm is applied to the damage function 

to ensure that it is non-decreasing over its domain. This algorithm allows the generation 

of two limiting curves on the CDF, which in turn allows for interval-valued probabilities 

based on the chart. 

To generate conditional probability 𝑷(Td|θ), the value Td=70 eV was arbitrarily 

chosen. Using the CDF of the damage function of T, the upper and lower limits of the 

damage function then correspond to the upper and lower limits of the probability 

𝑷(Td ≤ 70|θ); they are [0.7923,1.000]. The Logic Coherence Constraint again easily 
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allows the calculation of 𝑷(Td ≥ 70|θ), which is [0.2077,0.000]. This is also referred to 

as 𝑷(Td
𝐶|θ). 

𝑷(Td|θ
C) is the probability of Td taking some value when the model θ is not 

consulted. Of necessity this represents complete ignorance. The first choice for this 

probability is the interval [0,1]. Employing the Logic Coherence Constraint then gives 

𝑷(Td
𝐶|θC) = [1,0]. 

𝑷(Tm|Td) is a more difficult example of complete ignorance. The subscript “m” 

stands for “maximum;” Tm is the maximum possible energy that can be transferred 

during a collision. It is also the energy of the incident particle striking the iron crystal in 

the simulation. The actual damage threshold should have no bearing on the energy of the 

incident particle, and so the intervals related to 𝑷(Tm|Td) should represent complete 

ignorance. The values used for 𝑷(Tm|Td) within this thesis are the same as those 

previously published for this application in (Tallman, Blumer, Wang, & McDowell, 

2014); they represent the result of a misunderstanding of the meaning of the probabilities 

within the equation, and are preserved here only for the sake of consistency with the 

earlier published account. Rather than representing 𝑷(Tm|Td), the calculated probabilities 

are more correctly rendered as 𝑷(Damage|Tm, Td), but the original notation is preserved 

here. Damage is impossible when the damage threshold is greater than the maximum 

possible transferred energy, and thus 𝑷(Tm = 70|Td > 70) = [0,0]. When the damage 

threshold is less than or equal to the maximum transferred energy, damage is possible but 

not certain, and thus 𝑷(Tm = 70|Td ≤ 70) = [0,1]. When the maximum transferred 

energy is unknown but complementary (i.e. Tm ≠ 70, Tm ≠ 100), the probability of 

damage could be anywhere in the interval [0,1], but the related probabilities were 

designated as non-focal because their conditions were complementary to the conditions 

where more was understood, and thus 𝑷(Tm ≠ 70, Tm ≠ 100|Td ≤ 70) = [1,0] and 

𝑷(Tm ≠ 70, 𝑇𝑚 ≠ 100|Td > 70) = [1,0]. With these four probabilities in place, the 
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Logic Coherence Constraint dictated the final two probability intervals: 

𝑷(Tm = 100|Td ≤ 70) = [0,0], and 𝑷(Tm = 100|Td > 70) = [0,1]. Calculating the 

𝑷(Tm = 100|Td) intervals by subtraction with the LCC while designating the 

𝑷(Tm ≠ 70, Tm ≠ 100|Td) as non-focal and thus improper represents significantly 

flawed logic, and is only preserved here for consistency with the previously published 

account of this application. Once these errors in logic and in notation were found and 

understood, these probabilities were replaced with various improved representations of 

complete ignorance. 

𝑷(
Δρ

n
|Tm) is based on a physical experiment reported in (Vajda, 1977). Figure 26 

of that paper shows the increases in both resistivity and displacement cross-section of 

radiation-damaged BCC iron in three directions. The <111> direction was selected for 

further analysis. By using the pixel-counting capabilities of Plot Digitizer 2.6.4 on an 

image of Figure 26, the data points shown in Table 4 were found. Using the curves’ 

values at Tm=20, 30, 45, 60, 70, 80, 100, and 130 eV to correlate between the graphs for 

σ and 
Δρ

n
, a least-squares fit linear relationship between σ and 

Δρ

n
 was calculated and is 

shown in equation ( 11 ). Using this equation, eight points on the calculated line were 

generated; these are shown in Table 5. For each of the eight values of Tm used to generate 

the line, the distance between the calculated and the actual values of σ and 
Δρ

n
 was 

calculated. The average of these distances, 0.1536, was assumed to represent the possible 

error in the 
Δρ

n
 measurements; the values of 

Δρ

n
 found in Figure 26a were assumed to be 

the center of a uniform distribution of values with the range 
Δρ

n
± 0.1536. 
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Table 4: Corresponding values of 𝐓𝐦, σ, and 
𝚫𝛒

𝐧
 from Figure 26 in (Vajda, 1977). 

Tm, eV 20 30 45 60 70 80 100 130 

σ, barns 0.8667 9.605 17.63 24.21 29.08 33.29 39.21 46.32 

Δρ

n
, 
Ω∙𝑐𝑚×10−26

𝑒− 𝑐𝑚2⁄
 0.4082 2.897 5.794 7.857 9.405 10.91 13.02 15.75 

 

Δρ

n
= 0.3370𝜎 − 0.1775 ( 11 ) 

 

Table 5: Values for σ and 
𝚫𝛒

𝐧
 based on a least-squares linear fit, with corresponding values for 𝐓𝐦. 

Tm, eV 20 30 45 60 70 80 100 130 

σ, barns 0.9555 9.556 17.64 24.17 29.01 33.25 39.20 46.41 

Δρ

n
, 
Ω∙𝑐𝑚×10−26

𝑒− 𝑐𝑚2⁄
 0.1444 3.043 5.767 7.968 9.599 11.03 13.03 15.46 

 

Table 6: Range of values for 
𝚫𝛒

𝐧
 based the average error of the measured versus calculated values. 

1 Tm, eV 20 30 45 60 70 80 100 130 

2 
Δρ

n
, min 0.2546 2.743 5.640 7.704 9.251 10.76 12.86 15.60 

3 
Δρ

n
, max 0.5618 3.050 5.947 8.011 9.558 11.07 13.17 15.91 

4 

𝑷(
Δρ

n
≤ 9.4048|Tm), 

assuming a 

uniform 

distribution 

[1,1] [1,1] [1,1] [1,1] [0.5,0.5] [0,0] [0,0] [0,0] 

5 
standard 

deviation of 
Δρ

n
, 

0.1831 0.3535 1.159 0.2248 0.5850 0.5072 0.9281 1.150 

6 

𝑷(
Δρ

n
≤ 9.4048|Tm), 

assuming either of two 

normal distributions 

centered at the min 

(line 2) or the max (line 

3), with standard 

deviation from line 5. 

[1.000, 

1.000] 

[1.000, 

1.000] 

[0.9986, 

0.9994] 

[1.000, 

1.000] 

[0.3965, 

0.6036] 

[0.0005, 

0.0038] 

[0.0000, 

0.0001] 

[0.0000, 

0.0000] 
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Once a distribution was assumed for each value of 
Δρ

n
, the calculation of an 

interval for 𝑷(
Δρ

n
|Tm) was relatively straightforward. 9.4048 (Ω•cm×10⁻

26
)/( e⁻/cm²) 

was chosen for comparison because it is the measured value for 
Δρ

n
 corresponding to 

Tm = 70𝑒𝑉, and therefore falls at the halfway point for the range of 
Δρ

n
 for that value of 

Tm. As such, the interval for 𝑷(
𝛥𝜌

𝑛
≤ 9.4048|𝑇𝑚 = 70) = [0.5,0.5]. The range of values 

for 
Δρ

n
 corresponding to Tm = 100𝑒𝑉 is 12.8623 to 13.1695; 9.4048 is below the lower 

bound of this range, and so 𝑷(
𝛥𝜌

𝑛
≤ 9.4048|𝑇𝑚 = 100) = [0,0]. This method, while 

simple, only calculates a single value and results in zero-width intervals. The 

probabilities for 
Δρ

n
 given each level of Tm using this method are shown in line 4 of Table 

6. 

A different method was used to calculate the value of 

𝑷(
𝛥𝜌

𝑛
≤ 9.4048|

𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

). While the purest interpretation of the method would likely 

express this probability as pure ignorance with [0,1], it was desired that a narrower 

interval be obtained for the sake of testing the capabilities of the equations. At this point, 

it was realized that Figure 26a from (Vajda, 1977) was generated using measurements 

that were clearly delineated in Figure 1c of (Maury, Biget, Vajda, Lucasson, & Lucasson, 

1976). Using Plot Digitizer 2.6.4 on an image of Figure 1c, the values of each discrete 

measurement of 
Δρ

n
 at the stratified values of Tm were measured, giving a standard 

deviation for 
Δρ

n
 at each level of Tm; these appear in line 5 of Table 6. In order to obtain 

intervals wider than a single point, two distributions were assumed for each value of Tm: 

one was normally distributed with a mean at the minimum level of 
Δρ

n
 (line 2 of Table 6), 

and the other was normally distributed with a mean at the maximum level of 
Δρ

n
 (line 3 of 
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the same table). Using these two distributions, it was possible to generate an interval for 

𝑷(
𝛥𝜌

𝑛
≤ 9.4048|𝑇𝑚); this is shown in line 6 of Table 6. 

Even with these interval probabilities, further assumptions were necessary to 

generate an interval value for 𝑷(
𝛥𝜌

𝑛
≤ 9.4048|

𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

). This probability can be more 

properly written as 𝑷(
𝛥𝜌

𝑛
≤ 9.4048|

𝑇𝑚 ≠ 70…
∩ 𝑇𝑚 ≠ 100

), and using the fact that 𝑃(𝐴|𝐵) =

𝑃(𝐴∩𝐵)

𝑃(𝐵)
, it can also be expressed as: 

𝑷(
𝛥𝜌

𝑛
≤ 9.4048|

𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) =

𝑷(
𝛥𝜌
𝑛 ≤ 9.4048 ∩ (

𝑇𝑚 ≠ 70…
∩ 𝑇𝑚 ≠ 100

))

𝑑𝑢𝑎𝑙𝑷 (
𝑇𝑚 ≠ 70…
∩ 𝑇𝑚 ≠ 100

)
 

As this derivation progresses, (
𝛥𝜌

𝑛
≤ 9.4048) will be replaced with 

Δρ

n
 for the sake 

of compactness. It was assumed that Tm could only take on one of the eight values at 

which the figures in (Vajda, 1977) and (Maury, Biget, Vajda, Lucasson, & Lucasson, 

1976) had been measured. This is reasonable only because Tm is specified as an input to 

the model θ and values occur without variability. Because of this assumption, 

𝑷(
𝛥𝜌

𝑛
|
𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) can also be expressed as: 

𝑷(
Δρ

n
|
𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) =

𝑷(
Δρ
n ∩ (

𝑇𝑚 = 20 ∪ 𝑇𝑚 = 30 ∪ 𝑇𝑚 = 45…
…∪ 𝑇𝑚 = 60 ∪ 𝑇𝑚 = 80 ∪ 𝑇𝑚 = 130

))

𝑑𝑢𝑎𝑙𝑷 (
𝑇𝑚 = 20 ∪ 𝑇𝑚 = 30 ∪ 𝑇𝑚 = 45…

…∪ 𝑇𝑚 = 60 ∪ 𝑇𝑚 = 80 ∪ 𝑇𝑚 = 130
)

 

Each value of Tm is mutually exclusive of the other values, and so the equation 

can be further re-written as: 



 

52 

 

𝑷(
Δρ

n
|
𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) =
(

 
 

𝑷(
Δρ
n ∩ 𝑇𝑚 = 20) + 𝑷(

Δρ
n ∩ 𝑇𝑚 = 30)…

…+ 𝑷(
Δρ
n ∩ 𝑇𝑚 = 45) + 𝑷(

Δρ
n ∩ 𝑇𝑚 = 60)…

…+ 𝑷(
Δρ
n ∩ 𝑇𝑚 = 80) + 𝑷(

Δρ
n ∩ 𝑇𝑚 = 130))

 
 

𝑑𝑢𝑎𝑙 (
𝑷(𝑇𝑚 = 20) + 𝑷(𝑇𝑚 = 30) + 𝑷(𝑇𝑚 = 45)…

…+ 𝑷(𝑇𝑚 = 60) + 𝑷(𝑇𝑚 = 80) + 𝑷(𝑇𝑚 = 130)
)

 

Because 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵), the equation can then be expressed as: 

𝑷(
Δρ

n
|
𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) =
(

 
 
 
 
 
 
 
 
𝑷(
Δρ
n |𝑇𝑚 = 20)𝑷(𝑇𝑚 = 20)…

+𝑷(
Δρ
n
|𝑇𝑚 = 30)𝑷(𝑇𝑚 = 30)…

+𝑷(
Δρ
n |𝑇𝑚 = 45)𝑷(𝑇𝑚 = 45)…

+𝑷(
Δρ
n |𝑇𝑚 = 60)𝑷(𝑇𝑚 = 60)…

+𝑷(
Δρ
n |𝑇𝑚 = 80)𝑷(𝑇𝑚 = 80)…

+𝑷(
Δρ
n |𝑇𝑚 = 130)𝑷(𝑇𝑚 = 130))

 
 
 
 
 
 
 
 

𝑑𝑢𝑎𝑙 (
𝑷(𝑇𝑚 = 20) + 𝑷(𝑇𝑚 = 30) + 𝑷(𝑇𝑚 = 45)…

…+ 𝑷(𝑇𝑚 = 60) + 𝑷(𝑇𝑚 = 80) + 𝑷(𝑇𝑚 = 130)
)

 

A further assumption was made that Tm would be uniformly distributed among 

the eight possible values, and so 𝑷(𝑇𝑚) = [
1

8
,
1

8
] ∀𝑇𝑚. Because this is a zero-width 

interval, it can also be given as a single value with no loss of information, and the dual 

operator can be left out of the denominator. This assumption simplifies the equation to: 

𝑷(
Δρ

n
|
𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) =
(

 
 

𝑷(
Δρ
n |𝑇𝑚 = 20) ∙

1
8 + 𝑷(

Δρ
n |𝑇𝑚 = 30) ∙

1
8…

…+ 𝑷(
Δρ
n |𝑇𝑚 = 45) ∙

1
8 + 𝑷(

Δρ
n |𝑇𝑚 = 60) ∙

1
8…

…+ 𝑷(
Δρ
n |𝑇𝑚 = 80) ∙

1
8 + 𝑷 (

Δρ
n |𝑇𝑚 = 130) ∙

1
8)

 
 

1
8
+
1
8
+
1
8
+
1
8
+
1
8
+
1
8
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𝑷(
Δρ

n
|
𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) =
1

6

(

 
 
 

𝑷(
Δρ

n
|𝑇𝑚 = 20) + 𝑷(

Δρ

n
|𝑇𝑚 = 30)…

…+ 𝑷(
Δρ

n
|𝑇𝑚 = 45) + 𝑷(

Δρ

n
|𝑇𝑚 = 60)…

…+ 𝑷(
Δρ

n
|𝑇𝑚 = 80) + 𝑷(

Δρ

n
|𝑇𝑚 = 130))

 
 
 

 

This formulation is equal to an average of the six probabilities calculated above, 

and is permissible only with the given assumptions. Finally, using the values for each of 

these probabilities that are given in line 6 of Table 6, 𝑷(
Δρ

n
|
𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) can be calculated 

as [0.6665,0.6672]. 

4.1.2: Updating to find a posterior probability 

Because of the lengthy nature of the GIBR equations, it is necessary to employ a 

shorthand notation in order to fit a fully developed equation in a standard-sized 

document. This shorthand is explained in Table 7. Table 7 also contains a summary of the 

values of the input intervals. 

Table 7: Explanation of shorthand symbols. 

Symbol Interval Value Explanation 

𝑷(θ|
Δρ

n
) [0.4,0.5] 

The calculated result: the probability that the model θ 

accurately represents reality, given the physical evidence 

of experiments measuring (Δρ/n). 

𝜌𝑇𝑚1 [0.5,0.5] 
The probability that Δρ/n≤9.4048 Ω·cm×10⁻²⁶/(e⁻/cm²) 

given that Tm=70eV. 

𝜌𝑇𝑚2 [0,0] 
The probability that Δρ/n≤9.4048 Ω·cm×10⁻²⁶/(e⁻/cm²) 

given that Tm=100eV. 

𝜌𝑇𝑚3 [0.6665,0.6672] 
The probability that Δρ/n≤9.4048 Ω·cm×10⁻²⁶/(e⁻/cm²) 

given that Tm is neither 70eV nor 100eV. 

𝑇𝑚1𝑇𝑑 [0,1] 

The probability that the maximum possible transferred 

energy (or energy of the incident particle) Tm=70eV, given 

that the damage threshold Td ≤70eV. 

𝑇𝑚2𝑇𝑑 [0,0] 

The probability that the maximum possible transferred 

energy (or energy of the incident particle) Tm=100eV, 

given that the damage threshold Td ≤70eV. 
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Symbol Interval Value Explanation 

𝑇𝑚3𝑇𝑑 [1,0] 

The probability that the maximum possible transferred 

energy (or energy of the incident particle) Tm is neither 

70eV nor 100eV, given that the damage threshold Td 

≤70eV. 

𝑇𝑚1𝑇𝑑𝑐  [0,0] 

The probability that the maximum possible transferred 

energy (or energy of the incident particle) Tm=70eV, given 

that the damage threshold Td >70eV. 

𝑇𝑚2𝑇𝑑𝑐  [0,1] 

The probability that the maximum possible transferred 

energy (or energy of the incident particle) Tm=100eV, 

given that the damage threshold Td >70eV. 

𝑇𝑚3𝑇𝑑𝑐  [1,0] 

The probability that the maximum possible transferred 

energy (or energy of the incident particle) Tm is neither 

70eV nor 100eV, given that the damage threshold Td 

>70eV. 

𝑇𝑑𝜃 [0.7923,1] 
The probability that the damage threshold Td ≤70eV, given 

that the model θ is accurate. 

𝑇𝑑𝜃
𝑐  [0.2077,0] 

The probability that the damage threshold Td >70eV, given 

that the model θ is accurate. 

𝑇𝑑𝜃𝑐 [0,1] 
The probability that the damage threshold Td≤70eV, given 

that the model θ is not accurate. 

𝑇𝑑𝜃𝑐
𝑐  [1,0] 

The probability that the damage threshold Td >70eV, given 

that the model θ is not accurate. 

𝜃 [0.4,0.5] 
The initial probability that the model θ accurately 

represents reality, given no other evidence. 

𝜃𝑐 [0.6,0.5] 
The initial probability that the model θ does not accurately 

represent reality, given no other evidence. 

Using the shorthand notation, equation ( 10 ) becomes: 

𝑷(θ|
Δρ

n
) =

[𝜌𝑇𝑚1 𝜌𝑇𝑚2 𝜌𝑇𝑚3] [

𝑇𝑚1𝑇𝑑 𝑇𝑚1𝑇𝑑𝑐

𝑇𝑚2𝑇𝑑 𝑇𝑚2𝑇𝑑𝑐

𝑇𝑚3𝑇𝑑 𝑇𝑚3𝑇𝑑𝑐
] [
𝑇𝑑𝜃
𝑇𝑑𝜃

𝑐 ] 𝜃

𝑑𝑢𝑎𝑙 ([𝜌𝑇𝑚1 𝜌𝑇𝑚2 𝜌𝑇𝑚3] [

𝑇𝑚1𝑇𝑑 𝑇𝑚1𝑇𝑑𝑐
𝑇𝑚2𝑇𝑑 𝑇𝑚2𝑇𝑑𝑐
𝑇𝑚3𝑇𝑑 𝑇𝑚3𝑇𝑑𝑐

] [
𝑇𝑑𝜃 𝑇𝑑𝜃𝑐

𝑇𝑑𝜃
𝑐 𝑇𝑑𝜃𝑐

𝑐 ] [
𝜃
𝜃𝑐
])

 ( 12 ) 

For the sake of completeness in explanation, the posterior probability calculation 

is explicitly shown here. First, the intervals are substituted in for their respective variable 

names in equation ( 12 ), resulting in equation ( 13 ). 
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𝑷(θ|
Δρ

n
) =

[[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]

[0,0] [0,1]
[1,0] [1,0]

] [
[0.7923,1]
[0.2077,0]

] [0.4,0.5]

𝑑𝑢𝑎𝑙 ([[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]
[0,0] [0,1]

[1,0] [1,0]
] [
[0.7923,1] [0,1]

[0.2077,0] [1,0]
] [
[0.4,0.5]

[0.6,0.5]
])

 ( 13 ) 

The lower bound of the posterior probability is calculated by using the lower 

bound of each input interval, as shown in the following equation: 

𝑷(θ|
Δρ

n
) =

[0.5 0 0.6665] [
0 0
0 0
1 1

] [
0.7923
0.2077

] 0.4

[0.5 0 0.6665] [
0 0
0 0
1 1

] [
0.7923 0
0.2077 1

] [
0.4
0.6
]

= 0.4 

Likewise, the upper bound of the posterior probability is calculated by using the 

upper bound of each input interval, as follows: 

𝑷(θ|
Δρ

n
) =

[0.5 0 0.6672] [
1 0
0 1
0 0

] [
1
0
] 0.5

[0.5 0 0.6672] [
1 0
0 1
0 0

] [
1 1
0 0

] [
0.5
0.5
]

= 0.5 

Thus, the posterior probability interval is [0.4,0.5]. This value is identical to the 

prior probability, and is a result of the representation of complete ignorance found in the 

(𝑇𝑚|𝑇𝑑) terms. As equation ( 12 ) represents a chain of probabilities, ignorance in the 

middle terms can be thought of as a missing link. When the connection between levels of 

information is missing, no evidence can get through to update the posterior probability. 

While this thesis endeavors to find a method for expressing complete ignorance that 

allows some information updating to occur, researchers would do well to be cautious 

when using GIBR in cases where complete ignorance is present. This is no surprise, as 

total ignorance is a challenge in all forms of probability analysis. More important, 

though, is the negative impact of applying the Logic Coherence Constraint in the 

presence of complete ignorance, which forces the presence of one proper interval [0,1], 
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one improper interval [1,0], and one point interval [0,0]. This will be further examined in 

§4.4.2 and in §4.5. 

4.2: Incorporating Multiple Sources of Information 

A large part of the value of Bayesian updating is the ability to incorporate 

information from multiple sources. In this case, experimental results were also obtained 

for change in length per defect in BCC iron. Because both changes are used to update a 

belief in the same model θ, equation ( 10 ) can be modified to incorporate both the 

information for change in resistivity and the information for change in length:  

 

𝑷(θ|
Δρ

n
∩
Δℓ

ℓ⁄

𝑛
) =

∫∫ [𝑷(
Δρ
n
∩
Δℓ

ℓ⁄

𝑛
|Tm) ∙ 𝑷(Tm|Td) ∙ 𝑷(Td|θ)] dTd dTm ∙ 𝑷(θ)

𝑑𝑢𝑎𝑙 ∫∫ ∫ [𝑷(
Δρ
n
∩
Δℓ

ℓ⁄

𝑛
|Tm) ∙ 𝑷(Tm|Td) ∙ 𝑷(Td|θ) ∙ 𝑷(θ)] dTd dTm dθ

 ( 14 ) 

The measurements for length change are not coupled from the measurements for 

resistivity change; indeed, it would be extremely difficult to measure these 

simultaneously. Because of this, it can be assumed that 𝑷(
Δρ

n
|𝑇𝑚) and 𝑷(

Δℓ
ℓ⁄

𝑛
|𝑇𝑚) are 

independent. Incorporating this assumption into equation ( 14 ) gives the following:  

 

𝑷(θ|
Δρ

n
∩
Δℓ

ℓ⁄

𝑛
) =

∫∫ [𝑷 (
Δρ
n
|Tm) ∙ 𝑷(

Δℓ
ℓ⁄

𝑛 |Tm) ∙ 𝑷(Tm|Td) ∙ 𝑷(Td|θ)] dTd dTm ∙ 𝑷(θ)

𝑑𝑢𝑎𝑙 ∫ ∫∫ [𝑷 (
Δρ
n
|Tm) ∙ 𝑷(

Δℓ
ℓ⁄

𝑛 |Tm) ∙ 𝑷(Tm|Td) ∙ 𝑷(Td|θ) ∙ 𝑷(θ)]dTd dTm dθ

 ( 15 ) 

Integrating this equation and decomposing it into a multiplied-matrix format 

gives: 

𝑷(θ|
Δρ

n
∩
Δℓ

ℓ⁄

𝑛
) =

[

ℓ𝑇𝑚1 ∙ 𝜌𝑇𝑚1
ℓ𝑇𝑚2 ∙ 𝜌𝑇𝑚2
ℓ𝑇𝑚3 ∙ 𝜌𝑇𝑚3

]

𝑇

[

𝑇𝑚1𝑇𝑑 𝑇𝑚1𝑇𝑑𝑐

𝑇𝑚2𝑇𝑑 𝑇𝑚2𝑇𝑑𝑐

𝑇𝑚3𝑇𝑑 𝑇𝑚3𝑇𝑑𝑐
] [
𝑇𝑑𝜃
𝑇𝑑𝜃

𝑐 ] 𝜃

𝑑𝑢𝑎𝑙 ([

ℓ𝑇𝑚1 ∙ 𝜌𝑇𝑚1
ℓ𝑇𝑚2 ∙ 𝜌𝑇𝑚2
ℓ𝑇𝑚3 ∙ 𝜌𝑇𝑚3

]

𝑇

[

𝑇𝑚1𝑇𝑑 𝑇𝑚1𝑇𝑑𝑐
𝑇𝑚2𝑇𝑑 𝑇𝑚2𝑇𝑑𝑐
𝑇𝑚3𝑇𝑑 𝑇𝑚3𝑇𝑑𝑐

] [
𝑇𝑑𝜃 𝑇𝑑𝜃𝑐

𝑇𝑑𝜃
𝑐 𝑇𝑑𝜃𝑐

𝑐 ] [
𝜃
𝜃𝑐
])

 ( 16 ) 
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The leading matrix has been transposed in both the numerator and the 

denominator of the equation in order to conserve space. Note that equation ( 16 ) only 

differs from equation ( 12 ) in that each ρ term has been multiplied by an ℓ term.  

Without any shorthand, the three intervals that must be determined are 

𝑷(
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 70), 𝑷(

Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 100), and 𝑷(

Δℓ ℓ⁄

𝑛
≤ 15|

𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

), 

where 𝑇𝑚 is measured in eV, Δℓ ℓ⁄  is unitless, and 𝑛 is measured in e⁻/cm². The 

comparison point of 
Δℓ ℓ⁄

𝑛
≤ 15

𝑐𝑚2×10−2

𝑒−
 was chosen arbitrarily. 

To demonstrate the process, the calculation of the interval for 

𝑷(
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 70) is shown. (Dunlop & Lesueur, 1989) determined a Frenkel Pair 

Formation Volume for iron (𝜈𝐹𝑒) of 1.35 ± 0.25; the value is found both in the abstract 

an in Table IV on page 347 of that paper. Equation (2) of the same paper notes that for 

isotropic crystals (including BCC iron), Frenkel Pair Formation Volume is related to 

changing length by 𝜈 =
3(Δℓ ℓ⁄ )

𝑐
, where c is the defect concentration or number of defects 

(the same as n in (Vajda, 1977)). Substituting in 1.35 ± 0.25 for ν in that equation and 

solving for the length change to defect concentration ratio gives 
(Δℓ ℓ⁄ )

𝑐
=

1.35±0.25

3
 (units 

1

𝑒−
) or [0.367,0.533] as a range for 

(Δℓ ℓ⁄ )

𝑐
. In order to phrase this value in terms that are 

compatible with the GIBR equation, a relationship between length change and energy 

level 𝑇𝑚 must be determined.  

Radiation-induced swelling is based on the number of defects formed, which, in 

turn, is based on the displacement cross section. Displacement cross section is not based 

alone on the material being irradiated, but upon the material and the energy level of the 

incident radiation. As such, the displacement cross section is the necessary link between 

(Δℓ ℓ⁄ )

𝑐
 and 𝑇𝑚. Examining the <111> line on Figure 26b of (Vajda, 1977) gives a 
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displacement cross section of σ=29.08 barns (𝑐𝑚2 × 10−24) when 𝑇𝑚 = 70𝑒𝑉. From 

there, a simple multiplication gives a range of possible values for 
(Δℓ ℓ⁄ )

𝑛
: 

([0.367,0.533]
1

𝑒−
) × (29.08𝑐𝑚2 × 10−24) = [10.66,15.51]

𝑐𝑚2 × 10−24

𝑒−
 

The bounds [10.66,15.51] were assumed to represent the upper and lower limits 

of a 95% confidence interval for a normal distribution, which means that the distribution 

has a standard deviation of 1.24 and a mean of 13.09. Given this normal distribution, 

𝑃 (
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 70) = 94%. This is one of the bounds of 𝑷(

Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 70); 

whether this is the upper or the lower bound depends on the value for 

𝑃 (
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 70) that is found through another calculation path. 

For the second probability, Figure 26a of (Vajda, 1977), was consulted. 𝑇𝑚 =

70𝑒𝑉 on that figure corresponds to a value of 
Δ𝜌

𝑛
= 9.40

Ω∙𝑐𝑚×10−26

𝑒−
𝑐𝑚2⁄

. Table IV on page 

347 of (Dunlop & Lesueur, 1989) gives the range 260 ± 30
1

Ω∙𝑐𝑚
 (or [230,290]) for the 

ratio (
Δℓ ℓ⁄

Δ𝜌
). However, Figure 26 also resulted in 𝜌𝐹 = 30Ω ∙ 𝑐𝑚 ∙ 10−4, whereas 

(Dunlop & Lesueur, 1989) used 𝜌𝐹 = 1700Ω ∙ 𝑐𝑚 ∙ 10−6. A scaling change must be used 

in order to make the results compatible. For the sake of consistency, 30Ω ∙ 𝑐𝑚 ∙ 10−4 is 

instead rendered as 3000Ω ∙ 𝑐𝑚 ∙ 10−6, and the entire equation conversion is multiplied 

by 1 in the form of 
0.01×10−24

10−26
. Combining all of this results in the following equation.  

(9.40
Ω ∙ 𝑐𝑚 × 10−26

𝑒−
𝑐𝑚2⁄

) × ([230,290]
1

Ω ∙ 𝑐𝑚
) ×

(1700
Ω ∙ 𝑐𝑚 ∙ 10−6

𝐹𝑟𝑒𝑛𝑘𝑒𝑙 𝑃𝑎𝑖𝑟
)

(3000
Ω ∙ 𝑐𝑚 ∙ 10−6

𝐹𝑟𝑒𝑛𝑘𝑒𝑙 𝑃𝑎𝑖𝑟
)
× (

0.01 × 10−24

10−26
) 

= [12.25,15.46]
𝑐𝑚2 × 10−24

𝑒−
 

15.46 and 12.25 are taken to represent the upper and lower limits of a 95% 

confidence interval for a normal distribution, meaning that the distribution has a standard 
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deviation of 0.82 and a mean of 13.86. Given the normal distribution generated, 

𝑃 (
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 70) = 92%. Because this is less than the formerly calculated 

𝑃 (
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 70), it will become the lower bound of the interval probability. Thus, 

𝑷(
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 70) = [0.92,0.94]. 

This process was repeated for each of eight values found, using the same 

assumptions and conversion factors each time. A summary of the eight calculations is 

found in Table 8. 

Table 8: Values used in the calculations of 𝑷(
𝚫𝓵 𝓵⁄

𝒏
≤ 𝟏𝟓|𝑻𝒎), based on Figure 26 of (Vajda, 1977). 

𝑇𝑚 (eV) 𝜎(barns) 

95% confidence 

interval of 
Δℓ ℓ⁄

𝑛
 

based on 𝜎 

Δ𝜌

𝑛
 (
Ω∙𝑐𝑚×10−26

𝑒−
𝑐𝑚2⁄

) 

95% confidence 

interval of 
Δℓ ℓ⁄

𝑛
 

based on 
Δ𝜌

𝑛
 

𝑷(
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚)  

20 0.8667 [0.3178,0.4622] 0.4082 [0.5320,0.6707] [1.00,1.00] 

30 9.605 [3.522,5.123] 2.897 [3.776,4.760] [1.00,1.00] 

45 17.63 [6.465,9.404] 5.794 [7.551,9.521] [1.00,1.00] 

60 24.21 [8.877,12.91] 7.857 [10.24,12.91] [1.00,1.00] 

70 29.08 [10.66,15.51] 9.405 [12.26,15.46] [0.92,0.94] 

80 33.29 [12.21,17.75] 10.91 [14.22,17.93] [0.13,0.51] 

100 39.21 [14.38,20.91] 13.02 [16.96,21.39] [0.01,0.06] 

130 46.32 [16.98,24.70] 15.75 [20.53,25.89] [0.00,0.00] 

In order to find the complementary probability 𝑷(
Δℓ ℓ⁄

𝑛
≤ 15|

𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

), the 

same assumptions were made as were made to determine 𝑷(
𝛥𝜌

𝑛
≤ 9.4048|

𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

), 

namely: the eight values of 𝑇𝑚 given in Table 8 form a set of mutually disjoint events, all 

eight of which are equally likely to occur. This allows the formation of the following 

equation:  

𝑷(
Δℓ ℓ⁄

𝑛
|
𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) =
1

6

(

 
 
 
 

𝑷(
Δℓ ℓ⁄

𝑛
|𝑇𝑚 = 20) + 𝑷(

Δℓ ℓ⁄

𝑛
|𝑇𝑚 = 30)…

…+ 𝑷(
Δℓ ℓ⁄

𝑛
|𝑇𝑚 = 45) + 𝑷(

Δℓ ℓ⁄

𝑛
|𝑇𝑚 = 60)…

…+ 𝑷(
Δℓ ℓ⁄

𝑛
|𝑇𝑚 = 80) + 𝑷(

Δℓ ℓ⁄

𝑛
|𝑇𝑚 = 130)

)
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Using this equation, the value for 𝑷(
Δℓ ℓ⁄

𝑛
≤ 15|

𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) shown in Table 9 is 

obtained. 

Table 9: Explanation of shorthand symbols. 

Probability Symbol Interval Value Explanation 

𝑷(
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 70) ℓ𝑇𝑚1 [0.9200,0.9400] 

The probability that (Δℓ/ℓ)/n≤15 

𝑐𝑚2 × 10−2/(e⁻) given that 

Tm=70eV. 

𝑷(
Δℓ ℓ⁄

𝑛
≤ 15|𝑇𝑚 = 100) ℓ𝑇𝑚2 [0.0000,0.0556] 

The probability that (Δℓ/ℓ)/n≤15 

𝑐𝑚2 × 10−2/(e⁻) given that 

Tm=100eV. 

𝑷(
Δℓ ℓ⁄

𝑛
≤ 15|

𝑇𝑚 ≠ 70
𝑇𝑚 ≠ 100

) ℓ𝑇𝑚3 [0.6879,0.7512] 

The probability that (Δℓ/ℓ)/n≤15 

𝑐𝑚2 × 10−2/(e⁻) given that Tm is 

neither 70eV nor 100eV. 

With these three probabilities determined, equation ( 16 ) can finally be evaluated. 

With the intervals in place, the equation becomes: 

𝑷(θ|
Δρ

n
∩
Δℓ

ℓ⁄

𝑛
) =

[

[0.9200,0.9400] ∙ [0.5,0.5]
[0.0000,0.0556] ∙ [0,0]

[0.6879,0.7512] ∙ [0.6665,0.6672]
]

𝑇

[

[0,1] [0,0]
[0,0] [0,1]
[1,0] [1,0]

] [
[0.7923,1]

[0.2077,0]
] [0.4,0.5]

𝑑𝑢𝑎𝑙 ([

[0.9200,0.9400] ∙ [0.5,0.5]
[0.0000,0.0556] ∙ [0,0]

[0.6879,0.7512] ∙ [0.6665,0.6672]
]

𝑇

[

[0,1] [0,0]
[0,0] [0,1]
[1,0] [1,0]

] [
[0.7923,1] [0,1]

[0.2077,0] [1,0]
] [
[0.4,0.5]

[0.6,0.5]
])

 ( 17 ) 

The result of this interval update is [0.4,0.5]—identical to the result of equation 

( 13 ), and identical to the prior probability. Unfortunately, the expressions of complete 

ignorance in the (𝑇𝑚|𝑇𝑑) matrix prevent the passage of updating information through 

the equation. An analysis of the treatment of ignorance appears in §4.4.2, and alternative 

methods of expressing ignorance are presented in §4.4.2.1 and §4.5. However, because 

the added experimental information of 
Δℓ ℓ⁄

𝑛
 in equations ( 16 ) and ( 17 ) does not affect 

the posterior probability in the current formulation of the GIBR update, equations ( 12 ) 

and ( 13 ) will be used for further analysis and verification within this chapter. 

4.3: Verification through Monte Carlo simulation 

Generalized Interval Bayes’ Rule predicts that, if each of the inputs on the right 

hand side of equation ( 12 ) is within its given interval as shown in Table 7, then the 
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output on the left hand side should be within the calculated interval shown on the same 

table. What follows is an attempt at verifying this application of GIBR through Monte 

Carlo simulations. 

4.3.1: Monte Carlo Verification with Uniformly Distributed Inputs 

As in the example from §3.5.3.1, the input intervals in equation ( 13 ) were 

replaced with uniformly distributed random values within their bounds, and the resulting 

real-valued equation was then used to calculate a posterior probability. The results of one 

million calculations are shown in Figure 8. 

 

Figure 8: Histogram of a 1,000,000 run Monte Carlo simulation with uniform inputs. Each bin is inclusive of its 

lower limit and exclusive of its upper limit. 

Similar to the examples in §3.5.3, the proposed posterior probability interval is 

sound, but not complete. The proposed interval of [0.4.0.5] is only 15.19% of the width 

of the extreme limits of the Monte Carlo simulation, which were [0.3390,0.9974]. Of the 

million runs, however, 56.17% did fall within the [0.4,0.5] limits. For this example, 

GIBR does provide a good idea of where the results will be the most concentrated, but it 

does severely underestimate the range of possible results. 

4.3.2: Monte Carlo Verification with Normally Distributed Inputs 

For the second verification Monte Carlo simulation, the input intervals in equation 

( 13 ) were replaced with normally distributed random values within their bounds. The 

bounds were assumed to represent the ±3σ limits of a distribution centered between the 
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bounds. As before, the resulting real-valued equation was then used to calculate a 

posterior probability. This process was repeated 1,000,000 times. The results of this 

simulation are shown in Figure 9 and Table 10.  

 

Figure 9: Histogram of a 1,000,000 run Monte Carlo simulation with inputs normally distributed to ±3σ within 

the input interval bounds. This figure is trimmed at both the upper and lower ends, because the visual 

representation of the count became invisible beyond the limits shown here. Again, each bin is inclusive of its 

lower limit and exclusive of its upper limit. 
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Table 10: Count of posterior probability calculations that fell within each bin for the 1,000,000 run Monte Carlo 

simulation with normally distributed inputs. 

Bin Count 
 

Bin Count 
 

Bin Count 

0.36 ≤ P < 0.37 2 
 

0.65 ≤ P < 0.66 1597 
 

0.94 ≤ P < 0.95 4 

0.37 ≤ P < 0.38 16 
 

0.66 ≤ P < 0.67 1252 
 

0.95 ≤ P < 0.96 1 

0.38 ≤ P < 0.39 57 
 

0.67 ≤ P < 0.68 933 
 

0.96 ≤ P < 0.97 2 

0.39 ≤ P < 0.40 228 
 

0.68 ≤ P < 0.69 722 
 

0.97 ≤ P < 0.98 1 

0.40 ≤ P < 0.41 843 
 

0.69 ≤ P < 0.70 589 
 

0.98 ≤ P < 0.99 2 

0.41 ≤ P < 0.42 2942 
 

0.70 ≤ P < 0.71 421 
 

0.99 ≤ P < 1.00 2 

0.42 ≤ P < 0.43 8436 
 

0.71 ≤ P < 0.72 336 
 

1.00 ≤ P < 1.01 1 

0.43 ≤ P < 0.44 20498 
 

0.72 ≤ P < 0.73 255 
 

1.01 ≤ P < 1.02 0 

0.44 ≤ P < 0.45 39931 
 

0.73 ≤ P < 0.74 208 
 

1.02 ≤ P < 1.03 1 

0.45 ≤ P < 0.46 64804 
 

0.74 ≤ P < 0.75 151 
 

1.03 ≤ P < 1.04 0 

0.46 ≤ P < 0.47 88763 
 

0.75 ≤ P < 0.76 130 
 

1.04 ≤ P < 1.05 0 

0.47 ≤ P < 0.48 105237 
 

0.76 ≤ P < 0.77 95 
 

1.05 ≤ P < 1.06 0 

0.48 ≤ P < 0.49 110158 
 

0.77 ≤ P < 0.78 75 
 

1.06 ≤ P < 1.07 1 

0.49 ≤ P < 0.50 105954 
 

0.78 ≤ P < 0.79 48 
 

1.07 ≤ P < 1.08 0 

0.50 ≤ P < 0.51 94925 
 

0.79 ≤ P < 0.80 37 
 

1.08 ≤ P < 1.09 0 

0.51 ≤ P < 0.52 80095 
 

0.80 ≤ P < 0.81 31 
 

1.09 ≤ P < 1.10 2 

0.52 ≤ P < 0.53 64547 
 

0.81 ≤ P < 0.82 27 
 

1.10 ≤ P < 1.11 2 

0.53 ≤ P < 0.54 51450 
 

0.82 ≤ P < 0.83 27 
 

1.11 ≤ P < 1.12 0 

0.54 ≤ P < 0.55 39659 
 

0.83 ≤ P < 0.84 21 
 

1.12 ≤ P < 1.13 0 

0.55 ≤ P < 0.56 30583 
 

0.84 ≤ P < 0.85 12 
 

1.13 ≤ P < 1.14 1 

0.56 ≤ P < 0.57 22911 
 

0.85 ≤ P < 0.86 11 
 

1.14 ≤ P < 1.15 0 

0.57 ≤ P < 0.58 17001 
 

0.86 ≤ P < 0.87 17 
 

1.15 ≤ P < 1.16 2 

0.58 ≤ P < 0.59 13047 
 

0.87 ≤ P < 0.88 7 
 

1.16 ≤ P < 1.17 1 

0.59 ≤ P < 0.60 9469 
 

0.88 ≤ P < 0.89 4 
 

1.17 ≤ P < 1.18 0 

0.60 ≤ P < 0.61 7051 
 

0.89 ≤ P < 0.90 5 
 

1.18 ≤ P < 1.19 0 

0.61 ≤ P < 0.62 5231 
 

0.90 ≤ P < 0.91 6 
 

1.19 ≤ P < 1.20 0 

0.62 ≤ P < 0.63 3894 
 

0.91 ≤ P < 0.92 8 
 

1.20 ≤ P < 1.21 1 

0.63 ≤ P < 0.64 2979 
 

0.92 ≤ P < 0.93 5 
 

    

0.64 ≤ P < 0.65 2234 
 

0.93 ≤ P < 0.94 1 
   As with the uniform input simulation, the results of the normal input simulation 

indicate that the proposed interval is sound but not complete. In this case, 54.76% of the 

million runs fell within the bounds of [0.4,0.5], and the proposed interval was only 

11.92% of the width of the extreme limits of the simulation, which ranged from 0.3619 to 

an impossible 1.2006. In twelve instances the calculated posterior probability exceeded 1; 

this is due to the fact that, as is expected with a normal distribution, in some cases the 
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randomly generated real values of the inputs fell outside of their respective ±3σ 

boundaries. If these values are instead replaced with a probability of 1. then the proposed 

interval range covers 15.67% of the width of the extreme limits of the simulation. While 

over half of the simulation results are within the proposed posterior probability interval, a 

large skew means that the center of their distribution is close to the edge of the interval. 

4.4: Analyzing the sensitivity of the GIBR with respect to likelihoods 

4.4.1: Proper versus Improper Input Intervals 

Some attention to which input intervals are proper or improper is due. A 

generalized interval with two bounds 𝑥 and 𝑥 where 𝑥 ≤ 𝑥 can be represented as either 

[𝑥, 𝑥] or [𝑥, 𝑥]. In both cases, the range of values represented by the interval is the same, 

but the mathematical outcome of equations using the interval may be quite different. As a 

reminder, the intervals used in the simulations of equation ( 12 ) §4.3.1 and §4.3.2 are 

shown below in equation ( 18 ), along with the output of that calculation. 

𝑷(θ|
Δρ

n
) =

[[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]

[0,0] [0,1]
[1,0] [1,0]

] [
[0.7923,1]
[0.2077,0]

] [0.4,0.5]

𝑑𝑢𝑎𝑙 ([[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]
[0,0] [0,1]

[1,0] [1,0]
] [
[0.7923,1] [0,1]

[0.2077,0] [1,0]
] [
[0.4,0.5]

[0.6,0.5]
])

= [0.4,0.5] 

( 18 ) 

The change with the most obvious result is switching the bounds for the prior 

probability θ. This directly carries through the equation and switches the bounds for the 

posterior probability, as seen in equation ( 19 ), where the intervals whose bounds have 

been switched are indicated in bold: 
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𝑷(θ|
Δρ

n
)

=

[[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]

[0,0] [0,1]
[1,0] [1,0]

] [
[0.7923,1]
[0.2077,0]

] [𝟎. 𝟓, 𝟎. 𝟒]

𝑑𝑢𝑎𝑙 ([[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]
[0,0] [0,1]

[1,0] [1,0]
] [
[0.7923,1] [0,1]

[0.2077,0] [1,0]
] [
[𝟎. 𝟓, 𝟎. 𝟒]

[𝟎. 𝟓, 𝟎. 𝟔]
])

= [0.5,0.4] 

( 19 ) 

A more dramatic change can be observed by switching the bounds for 𝑇𝑑𝜃 and, to 

comply with the Logic Coherence Constraint, 𝑇𝑑𝜃
𝐶. This results in a dramatic narrowing 

of the posterior probability interval, as seen in equation ( 20 ): 

𝑷(θ|
Δρ

n
) =

[[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]
[0,0] [0,1]
[1,0] [1,0]

] [
[𝟏, 𝟎. 𝟕𝟗𝟐𝟑]

[𝟎, 𝟎. 𝟐𝟎𝟕𝟕]
] [0.4,0.5]

𝑑𝑢𝑎𝑙 ([[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]

[0,0] [0,1]
[1,0] [1,0]

] [
[𝟏, 𝟎. 𝟕𝟗𝟐𝟑] [0,1]
[𝟎, 𝟎. 𝟐𝟎𝟕𝟕] [1,0]

] [
[0.4,0.5]
[0.6,0.5]

])

= [0.4,0.4421] 

( 20 ) 

On the other hand, a dramatic widening of the interval occurs if the “complete 

ignorance” probabilities of 𝑇𝑑𝜃𝑐 and 𝑇𝑑𝜃𝑐
𝐶  are reversed, as seen in equation( 21 ): 

𝑷(θ|
Δρ

n
) =

[[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]

[0,0] [0,1]
[1,0] [1,0]

] [
[0.7923,1]
[0.2077,0]

] [0.4,0.5]

𝑑𝑢𝑎𝑙 ([[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]
[0,0] [0,1]

[1,0] [1,0]
] [
[0.7923,1] [𝟏, 𝟎]

[0.2077,0] [𝟎, 𝟏]
] [
[0.4,0.5]

[0.6,0.5]
])

= [0.4,1] 

( 21 ) 

Other significant changes can be observed by switching the bounds of some of the 

other complete ignorance intervals, such as 𝑇𝑚1𝑇𝑑 and 𝑇𝑚3𝑇𝑑 in equation ( 22 ) or 

𝑇𝑚2𝑇𝑑
𝐶  and 𝑇𝑚3𝑇𝑑

𝐶  in equation ( 23 ). A more in-depth examination of the treatment of 

complete ignorance will be given in §4.4.2. 

𝑷(θ|
Δρ

n
) =

[[0.5,0.5] [0,0] [0.6665,0.6672]] [

[𝟏, 𝟎] [0,0]

[0,0] [0,1]
[𝟎, 𝟏] [1,0]

] [
[0.7923,1]
[0.2077,0]

] [0.4,0.5]

𝑑𝑢𝑎𝑙 ([[0.5,0.5] [0,0] [0.6665,0.6672]] [

[𝟏, 𝟎] [0,0]
[0,0] [0,1]

[𝟎, 𝟏] [1,0]
] [
[0.7923,1] [0,1]

[0.2077,0] [1,0]
] [
[0.4,0.5]

[0.6,0.5]
])

= [0.3484,0.5] 

( 22 ) 
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𝑷(θ|
Δρ

n
) =

[[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]

[0,0] [𝟏, 𝟎]
[1,0] [𝟎, 𝟏]

] [
[0.7923,1]
[0.2077,0]

] [0.4,0.5]

𝑑𝑢𝑎𝑙 ([[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,0]
[0,0] [𝟏, 𝟎]

[1,0] [𝟎, 𝟏]
] [
[0.7923,1] [0,1]

[0.2077,0] [1,0]
] [
[0.4,0.5]

[0.6,0.5]
])

= [1,0.5] 

( 23 ) 

Examining the changes that can occur due to an arbitrary reversal of the order of 

the limits of intervals within GIBR equations demands a convention for why certain 

intervals may be expressed as proper or improper within the context of GIBR.  

Intervals not subject to the Logic Coherence Constraint should always be 

represented as proper intervals. Examples of this are 𝜌𝑇𝑚1, 𝜌𝑇𝑚2, and 𝜌𝑇𝑚3. It is worth 

noting that the limits of these intervals are obtained from experimental measurements, 

suggesting a further convention: when an interval has been determined by analysis of 

simulation or experimental results, it should be represented as a proper interval. The 

companion rule is that when an interval has been determined simply by its subjection to 

the Logic Coherence Constraint, it may then be represented by an improper interval. 

Finally, the prior probability receiving the update should be represented as a proper 

interval. In the case of equation ( 12 ), these three conventions lock down the order of all 

but the intervals representing complete ignorance. However, other situations may arise 

that require further conventions. For instance, in this case 𝑇𝑑𝜃 was determined by 

examining simulation results in the form of a cumulative distribution function, whereas 

𝑇𝑑𝜃
𝐶 was determined by applying the Logic Coherence Constraint to 𝑇𝑑𝜃. A situation 

could arise wherein both 𝑇𝑑𝜃
𝐶 and 𝑇𝑑𝜃 are determined by examining simulation or 

experimental results; which one should be proper in that case? Or, if two or more 

intervals that should be subject to the Logic Coherence Constraint have values that are 

determined from simulation/experimental results and the evidence for them conflicts, 

how can the conflicting results be reconciled? These questions have yet to be answered. 
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4.4.2: Challenges Due to the Representation of Complete Ignorance 

In further examining the initial inputs of equation ( 12 ), it becomes apparent that 

some of the input intervals were too restrictive for the amount of information available. 

For instance, Tm1Td, Tm2Td, and Tm3Td were respectively assigned intervals of [0,1], 

[0,0], and [1,0]. This was an attempt to represent complete ignorance, as seen in the two 

full-width intervals of Tm1Td and Tm3Td. However, once these were assigned, the Logic 

Coherence Constraint forced the value of Tm2Td to an overly restrictive [0,0]. This strong 

assumption exerted undue influence on the outcome of both equation ( 12 ) and the 

simulations based upon it. Another method for expressing ignorance is desired. 

4.4.2.1: Equal Weighting to Represent Complete Ignorance 

A more traditional approach would weight all three mutually disjoint events 

equally; expressed as intervals, their values would all be [⅓,⅓]. Other mutually disjoint 

events that attempt to show complete ignorance should similarly be equally weighted: 

𝑇𝑚1𝑇𝑑𝐶, 𝑇𝑚2𝑇𝑑𝐶, and 𝑇𝑚3𝑇𝑑𝐶 would each be assigned the interval [⅓,⅓], and 𝑇𝑑𝜃𝐶 

and 𝑇𝑑
𝜃𝐶
𝐶  would each be assigned the interval [½,½]. Putting the interval values into 

equation ( 12 ) gives: 

𝑷(θ|
Δρ

n
) =

[[0.5,0.5] [0,0] [0.6665,0.6672]]

[
 
 
 
 [
1
3
,
1
3
] [

1
3
,
1
3
]

[
1
3
,
1
3
] [

1
3
,
1
3
]

[
1
3
,
1
3
] [

1
3
,
1
3
]]
 
 
 
 

[
[0.7923,1]
[0.2077,0]

] [0.4,0.5]

𝑑𝑢𝑎𝑙

(

 
 
[[0.5,0.5] [0,0] [0.6665,0.6672]]

[
 
 
 
 [
1
3
,
1
3
] [

1
3
,
1
3
]

[
1
3
,
1
3
] [

1
3
,
1
3
]

[
1
3
,
1
3
] [

1
3
,
1
3
]]
 
 
 
 

[
[0.7923,1] [

1
2
,
1
2
]

[0.2077,0] [
1
2
,
1
2
]
] [
[0.4,0.5]
[0.6,0.5]

]

)

 
 

 ( 24 ) 

In effect, this is a hybrid model, combining the traditional approach of equally 

weighting fully unknown quantities with the nontraditional approach of representing 

other probabilities with intervals. Combining these two approaches has several 

shortcomings. For instance, in the context of generalized interval probability, a zero-

width interval represents the removal of all epistemic uncertainty. Equally weighted 

intervals subject to the Logic Coherence Constraint are of necessity zero-width intervals, 
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incorrectly implying a complete lack of epistemic uncertainty when in fact epistemic 

uncertainty is at its maximum. A more serious drawback, though, is that none of the 

information actually gathered can affect the posterior probability while these equal 

weightings are used. This can be seen demonstrated by calculating either one of the 

bounds of the posterior probability; in this case, the lower bound is used: 

𝑷(θ|
Δρ

n
) =

[0.5 0 0.6665]

[
 
 
 
 
1
3

1
3

1
3

1
3

1
3

1
3]
 
 
 
 

[
0.7923
0.2077

] ∙ 0.4

[0.5 0 0.6665]

[
 
 
 
 
1
3

1
3

1
3

1
3

1
3

1
3]
 
 
 
 

[
0.7923

1
2

0.2077
1
2

] [
0.4
0.6
]

 

For illustrative purposes, the prior probability’s lower bound, 0.4, is separated 

from the rest of the fraction. Additionally, the scalar ⅓ is factored out of the second 

matrix: 

𝑷(θ|
Δρ

n
) =

1
3 ∙
[0.5 0 0.6665] [

1 1
1 1
1 1

] [
0.7923
0.2077

]

1
3 ∙
[0.5 0 0.6665] [

1 1
1 1
1 1

] [
0.7923

1
2

0.2077
1
2

] [
0.4
0.6
]

∙ 0.4 

The value ⅓ can be cancelled from the equation as the first two matrices in both 

the numerator and denominator are multiplied: 

𝑷(θ|
Δρ

n
) =

[1.1665 1.1665] [
0.7923
0.2077

]

[1.1665 1.1665] [
0.7923

1
2

0.2077
1
2

] [
0.4
0.6
]

∙ 0.4 

The value 1.1665 can then be factored out of the leading matrix and cancelled, 

leaving: 
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𝑷(θ|
Δρ

n
) =

[1 1] [
0.7923
0.2077

]

[1 1] [
0.7923

1
2

0.2077
1
2

] [
0.4
0.6
]

∙ 0.4 

From here the Logic Coherence Constraint takes over, and all remaining 

multiplications result in matrices filled with ones. Continuing to multiply matrices left-to-

right gives: 

𝑷(θ|
Δρ

n
) =

1

[1 1] [
0.4
0.6
]
∙ 0.4 

𝑷(θ|
Δρ

n
) =

1

1
∙ 0.4 

𝑷(θ|
Δρ

n
) = 0.4 

A similar pattern of multiplication, factorization, and cancellation can be observed 

when calculating 𝑷(θ|
Δρ

n
) = 0.5. In essence, combining a traditional equal-weighting 

approach with an interval approach nullifies both approaches, removing any variability 

except what is present in the prior probability—the result of a Monte Carlo simulation is 

simply input distribution chosen for the prior, as illustrated in Figure 10 and Figure 11. 

Yet another method is needed to quantify complete ignorance using Generalized Interval 

Bayes’ Rule. 
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Figure 10: Histogram of 1,000,000 run Monte Carlo simulation of equation ( 24 ) with uniformly distributed 

interval inputs. 

 

Figure 11: Histogram of 1,000,000 run Monte Carlo simulation of equation ( 24 ) with normally distributed 

interval inputs. Each input interval was assumed to represent the ±3σ limits of a centered normal distribution. 

The result is perfectly normal and centered because the posterior probability shows no update from the prior, 

and because representation of complete ignorance used causes every input distribution to cancel out except for 

the prior probability. 

4.5: Formulation of a Modified Generalized Interval Bayes’ Rule 

The Logic Coherence Constraint forces the appearance of the interval [0,0] 

whenever more than two mutually disjoint events representing complete ignorance occur. 
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In addition, when only two mutually disjoint events representing complete ignorance 

appear in the equation, the assignment of the intervals [0,1] or [1,0] to one or the other of 

them is entirely subjective, but it can have a major impact on the calculated posterior 

probability. For instance, using the values from Table 7 in equation ( 12 ) gives the 

posterior probability [0.4,0.5]. It should be noted that in Table 7, 𝑇𝑑𝜃𝑐 and 𝑇𝑑𝜃𝑐
𝐶  are 

given the respective values of [0,1] and [1,0]; the two probability assignments could 

easily be reversed with no change in the meaning of the equation. However, in the first 

case the posterior probability 𝑷 (θ|
Δρ

n
) is [0.4,0.5], while in the second case it is 

[0.4,1.0]. 

To address these problems and to add consistency to the analysis, a modification 

of the Generalized Interval Bayes’ Rule is proposed: when expressing complete 

ignorance, always use the interval [0,1], and do not use the Logic Coherence Constraint 

for that set of intervals. With this modified rule, equation ( 12 ) becomes: 

𝑷(θ|
Δρ

n
) =

[[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,1]
[0,1] [0,1]
[0,1] [0,1]

] [
[0.7923,1]

[0.2077,0]
] [0.4,0.5]

𝑑𝑢𝑎𝑙 ([[0.5,0.5] [0,0] [0.6665,0.6672]] [

[0,1] [0,1]

[0,1] [0,1]
[0,1] [0,1]

] [
[0.7923,1] [0,1]
[0.2077,0] [0,1]

] [
[0.4,0.5]
[0.6,0.5]

])

 ( 25 ) 

The upper bound of the new posterior probability interval is easily calculated: 

𝑷(θ|
Δρ

n
) =

[0.5 0 0.6672] [
1 1
1 1
1 1

] [
1
0
] ∙ 0.5

[0.5 0 0.6672] [
1 1
1 1
1 1

] [
1 1
0 1

] [
0.5
0.5
]

= 0.3333 ( 26 ) 

However, the lower bound calculation suffers from the introduction of so many 

zeroes, and quickly leads to a 0/0 division problem. 

𝑷(θ|
Δρ

n
) =

[0.5 0 0.6665] [
0 0
0 0
0 0

] [
0.7923
0.2077

] ∙ 0.4

[0.5 0 0.6665] [
0 0
0 0
0 0

] [
0.7923 0
0.2077 0

] [
0.4
0.6
]

 ( 27 ) 
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If calculated as a limit, however, a useful numerical value can be obtained: 

𝑷(θ|
Δρ

n
) = lim

x→0

[0.5 0 0.6665] [
𝑥 𝑥
𝑥 𝑥
𝑥 𝑥

] [
0.7923
0.2077

] ∙ 0.4

[0.5 0 0.6665] [
𝑥 𝑥
𝑥 𝑥
𝑥 𝑥

] [
0.7923 𝑥
0.2077 𝑥

] [
0.4
0.6
]

 

Completing the first matrix multiplications allows the value 1.6665 x to be 

factored out and cancelled: 

𝑷(θ|
Δρ

n
) = lim

x→0

[1.1665 ∙ 𝑥 1.1665 ∙ 𝑥] [
0.7923
0.2077

] ∙ 0.4

[1.1665 ∙ 𝑥 1.1665 ∙ 𝑥] [
0.7923 𝑥
0.2077 𝑥

] [
0.4
0.6
]
 

𝑷(θ|
Δρ

n
) = lim

x→0

1.1665 ∙ 𝑥 ∙ [1 1] [
0.7923
0.2077

] ∙ 0.4

1.1665 ∙ 𝑥 ∙ [1 1] [
0.7923 𝑥
0.2077 𝑥

] [
0.4
0.6
]
 

With this done, the limit can be executed and the numerical solution can be 

quickly reached: 

𝑷(θ|
Δρ

n
) =

[1 1] [
0.7923
0.2077

] ∙ 0.4

[1 1] [
0.7923 0
0.2077 0

] [
0.4
0.6
]
 

𝑷(θ|
Δρ

n
) =

1 ∙ 0.4

[1 0] [
0.4
0.6
]
 

𝑷(θ|
Δρ

n
) = 1 

Thus, with eight probabilities represented as complete ignorance, the new 

posterior probability is calculated as 𝑷(θ|
Δρ

n
) = [1,0.3333]. 

4.5.1: Verifying the New Rule through Monte Carlo Simulation 

Because the input intervals have been changed, this interval cannot be compared 

to the previous Monte Carlo simulations, and new simulations are necessary. While the 

Logic Coherence Constraint is not maintained for the input intervals, it must be obeyed 



 

73 

 

within the Monte Carlo simulations. This adds a level of difficulty to the Monte Carlo 

simulations: in a group of three or more mutually disjoint events, if the probability of one 

variable is randomly selected with some distribution between zero and one, then the 

probability distribution for the other events will be altered. For instance, for three events 

A, B, and C, if A has a randomly selected probability of 0.75, then event B can only be 

randomly selected between 0 and 0.25. In order to mitigate this, the order in which the 

probabilities are determined must be randomized, thus making the Monte Carlo 

simulation a double-sampling process. 

4.5.1.1: Monte Carlo Simulations with a Uniform Distribution 

The first Monte Carlo simulation to verify equation ( 25 ) was run using 

uniformly distributed values for the input intervals. The results of one million 

calculations are shown in Figure 12.  
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Figure 12: One million run Monte Carlo simulation of interval equation ( 25 ) with uniformly distributed inputs. 

90.14% of the one million runs were contained within the posterior probability 

interval limits [1,0.3333]. The posterior probability was only 67.07% of the range of the 

Monte Carlo simulation results, which stretched from 0.0011 to 0.9952. 

4.5.1.2: Monte Carlo Simulations with a Normal Distribution 

The second Monte Carlo simulation to verify equation ( 25 ) was run using 

normally distributed values for the input intervals, assuming that each input interval 

represented the ±3σ limits of a centered normal distribution. The results of one million 

calculations are shown visually in Figure 13, and numerically in Table 10. 
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Figure 13: One million run Monte Carlo simulation of interval equation ( 25 ) with normally distributed inputs. 

 

Table 11: Count of posterior probability calculations that fell within each bin for the 1,000,000 run Monte Carlo 

simulation with normally distributed inputs. Bins denoted with italics are wider than other bins due to the huge 

spread of the simulation results. 

Bin Count 
 

Bin Count 
 

Bin Count 

7.00 ≤ P < 8.00 1  0.50 ≤ P < 0.53 74630  -0.10 ≤ P < -0.07 10 

3.00 ≤ P < 7.00 0  0.47 ≤ P < 0.50 208679  -0.13 ≤ P < -0.10 9 

2.00 ≤ P < 3.00 2  0.43 ≤ P < 0.47 336857  -0.17 ≤ P < -0.13 8 

1.00 ≤ P < 2.00 7  0.40 ≤ P < 0.43 198729  -0.20 ≤ P < -0.17 7 

0.97 ≤ P < 1.00 2  0.37 ≤ P < 0.40 78559  -0.23 ≤ P < -0.20 4 

0.93 ≤ P < 0.97 4  0.33 ≤ P < 0.37 33913  -0.27 ≤ P < -0.23 1 

0.90 ≤ P < 0.93 3  0.30 ≤ P < 0.33 15038  -0.30 ≤ P < -0.27 2 

0.87 ≤ P < 0.90 6  0.27 ≤ P < 0.30 6831  -0.33 ≤ P < -0.30 5 

0.83 ≤ P < 0.87 11  0.23 ≤ P < 0.27 3107  -0.37 ≤ P < -0.33 1 

0.80 ≤ P < 0.83 24  0.20 ≤ P < 0.23 1411  -0.40 ≤ P < -0.37 3 

0.77 ≤ P < 0.80 68  0.17 ≤ P < 0.20 703  -0.50 ≤ P < -0.40 3 

0.73 ≤ P < 0.77 113  0.13 ≤ P < 0.17 338  -1.00 ≤ P < -0.50 8 

0.70 ≤ P < 0.73 208  0.10 ≤ P < 0.13 199  -2.00 ≤ P < -1.00 5 

0.67 ≤ P < 0.70 495  0.07 ≤ P < 0.10 99  -3.00 ≤ P < -2.00 1 
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Bin Count 
 

Bin Count 
 

Bin Count 

0.63 ≤ P < 0.67 1318  0.03 ≤ P < 0.07 49  -4.00 ≤ P < -3.00 1 

0.60 ≤ P < 0.63 3356  0.00 ≤ P < 0.03 55  -5.00 ≤ P < -4.00 0 

0.57 ≤ P < 0.60 9070  -0.03 ≤ P < 0.00 27  -6.00 ≤ P < -5.00 1 

0.53 ≤ P < 0.57 26004  -0.07 ≤ P < -0.03 15    

97.21% of the one million runs were contained within the posterior probability 

interval limits [1,0.3333]. The posterior probability was only 5.00% of the range of the 

Monte Carlo simulation results, which had an impossibly wide range of -5.7873 to 7.542. 

When simulation results greater than 1 or less than 0 were replaced with 1 and 0, 

respectively, the posterior probability was 66.67% of the range of the MC simulation 

results. 

4.5.2: Cross-Checking the Treatment of Complete Ignorance 

In order to verify the modified rule for more than just one case, equation ( 8 ) 

from Chapter 3 was again employed as a purely numerical example. The equation is 

repeated here as a reminder: 

𝑷(𝛾|𝛼) =

[𝛼𝛽1 𝛼𝛽2 𝛼𝛽3 𝛼𝛽4]

[
 
 
 
 
𝛽1𝛾
𝛽2𝛾
𝛽3𝛾
𝛽4𝛾]

 
 
 
 

∙ 𝛾

𝑑𝑢𝑎𝑙

(

 
 
[𝛼𝛽1 𝛼𝛽2 𝛼𝛽3 𝛼𝛽4]

[
 
 
 
 
𝛽1𝛾 𝛽1𝛾𝐶

𝛽2𝛾 𝛽2𝛾𝐶

𝛽3𝛾 𝛽3𝛾𝐶

𝛽4𝛾 𝛽4𝛾𝐶]
 
 
 
 

[
𝛾

𝛾𝐶]

)

 
 

 ( 8 ) 

The values of the 𝑷(𝛽|𝛾) terms in equation ( 8 ) are modified to represent 

complete ignorance as follows: 

In the case of “complete ignorance with the Logic Coherence Constraint,” the first 

(𝛽|𝛾) probability is given the obvious interval of complete ignorance, and thus 

𝑷(𝛽1|𝛾) = [0,1]. The second interval is given the only other interval that can represent 

complete ignorance, so 𝑷(𝛽2|𝛾) = [1,0]. With these two intervals chosen, the Logic 

Coherence Constraint forces the choice of the other two values, and so 𝑷(𝛽3|𝛾) =
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𝑷(𝛽4|𝛾) = [0,0]. The values of the (𝛽|𝛾𝐶) intervals are similarly chosen, so that 

𝑷(𝛽1|𝛾𝐶) = [0,1],  𝑷(𝛽2|𝛾𝐶) = [1,0], and 𝑷(𝛽3|𝛾𝐶) = 𝑷(𝛽4|𝛾𝐶) = [0,0]. 

In the second case, all four intervals are given equal values in order to represent 

equal weighting of all cases. Due to the Logic Coherence Constraint, intervals with width 

greater than zero cannot be used, and so all four intervals 𝑷(𝛽1|𝛾) = 𝑷(𝛽2|𝛾) =

𝑷(𝛽3|𝛾) = 𝑷(𝛽4|𝛾) = [¼,¼]. Likewise, 𝑷(𝛽1|𝛾𝐶) = 𝑷(𝛽2|𝛾𝐶) = 𝑷(𝛽3|𝛾𝐶) =

𝑷(𝛽4|𝛾𝐶) = [¼,¼]. 

In the third case, the Logic Coherence Constraint is ignored where complete 

ignorance is present, allowing the use of the interval [0,1] for all four probabilities. The 

results of these calculations are shown in Table 12. 

Table 12: The effect of complete ignorance occupying a link in the probability chain, with three different 

methods for representing complete ignorance. 

Symbol Probability 
Original 

Interval 

Complete Ignorance 

Case 1: 

 

Forced zeros 

due to the LCC 

Case 2: 

Equal Weights 

following the 

LCC 

Case 3: 

Equal 

Weights 

without 

LCC 

𝛼𝛽1 𝑷(𝛼|𝛽1) [0.3880,0.9973] Same as original 

𝛼𝛽2 𝑷(𝛼|𝛽2) [0.7415,0.9024] Same as original 

𝛼𝛽3 𝑷(𝛼|𝛽3) [0.3667,0.8688] Same as original 

𝛼𝛽4 𝑷(𝛼|𝛽4) [0.1655,0.4140] Same as original 

𝛽1𝛾 𝑷(𝛽1|𝛾) [0.1197,0.1826] [0,1] [¼,¼] [0,1] 

𝛽2𝛾 𝑷(𝛽2|𝛾) [0.1662,0.3080] [1,0] [¼,¼] [0,1] 

𝛽3𝛾 𝑷(𝛽3|𝛾) [0.3587,0.4603] [0,0] [¼,¼] [0,1] 

𝛽4𝛾 𝑷(𝛽4|𝛾) [0.3554,0.0491] [0,0] [¼,¼] [0,1] 

𝛽1𝛾𝐶 𝑷(𝛽1|𝛾𝐶) [0.0410,0.1930] [0,1] [¼,¼] [0,1] 

𝛽2𝛾𝐶 𝑷(𝛽2|𝛾𝐶) [0.1527,0.1772] [1,0] [¼,¼] [0,1] 

𝛽3𝛾𝐶 𝑷(𝛽3|𝛾𝐶) [0.3683,0.4682] [0,0] [¼,¼] [0,1] 

𝛽4𝛾𝐶 𝑷(𝛽4|𝛾𝐶) [0.4380,0.1616] [0,0] [¼,¼] [0,1] 

𝛾 𝑷(𝛾) [0.3000,0.4500] Same as original 

𝛾𝐶 𝑷(𝛾𝐶) [0.7000,0.5500] Same as original 

Posterior: 𝑷(𝛾|𝛼) [0.3143,0.4658] [0.30,0.45] [0.30,0.45] [0.30,0.45] 
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Interestingly enough, all three cases show the exact same thing: no update from 

the prior probability 𝑷(𝛾). In Case 2 and Case 3, the reason for this is identical to that 

given in §4.4.2.1: when all of the values in a matrix are identical, the effects of all other 

matrices are cancelled out except for the prior probability. This is true for 0 (when a limit 

is taken), ¼, 1, and any other number. Case 1 also cancels out the effects of all matrices, 

but it does so by eliminating all but one input at a time, which is then equal in both the 

numerator and the denominator of the matrix. 

This lack of an update is actually encouraging. Evidence that cannot be linked to a 

prior probability should not be allowed to update that posterior probability. In essence, 

the examples of Table 12 illustrate that the GIBR equation automatically excludes 

irrelevant information. This also leads to one significant and positive conclusion: if GIBR 

is used when one of the links in the equation’s chain is occupied by complete ignorance, 

it will provide no update. However, this provides no advantage over classical (non-

interval) Bayes’ Rule, which will also give no update when equal weighting is used to 

represent complete ignorance. This is illustrated in equation ( 28 ), below, where the 

𝑃(𝛽|𝛾) and the 𝑃(𝛽|𝛾𝐶) terms have been replaced with equally weighted probabilities in 

order to represent complete ignorance, and the other terms have been replaced with real 

values centered on the intervals used elsewhere in this section: 

𝑃(𝛾|𝛼) =

[0.6927 0.8220 0.6178 0.2898] [

0.2500
0.2500
0.2500
0.2500

] ∙ 0.3750

[0.6927 0.8220 0.6178 0.2898] [

0.2500 0.2500
0.2500 0.2500
0.2500 0.2500
0.2500 0.2500

] [
0.3750
0.6250

]

= 0.3750 ( 28 ) 

Perhaps a more common situation involves a link in the chain that is partially 

occupied by ignorance. This is illustrated in Table 13, where the values of the 𝑷(𝛽|𝛾) 

terms are known, but the values of the 𝑷(𝛽|𝛾𝐶) terms are representations of complete 

ignorance. This may occur when 𝛾 is used to represent a model, while 𝛾𝐶 is used to 
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represent “not the model.” “Not the model” could be interpreted as anything else, and so 

complete ignorance in that case makes sense. 

Table 13: The effect of complete ignorance occupying part of a link in the probability chain, with three different 

methods for representing complete ignorance. Note that the negative percentage for (𝑷(𝜸|𝜶) range)/ (MC range) 

in Case 3 reflects the improper posterior interval 𝑷(𝜸|𝜶), and the large absolute value of that percentage reflects 

the fact that the posterior interval was wider than the range of the Monte Carlo simulation results. 

Symbol Probability 
Original 

Interval 

Complete Ignorance 

Case 1: 

 

Forced zeros 

due to the LCC 

Case 2: 

Equal Weights 

following the 

LCC 

Case 3: 

Equal 

Weights 

without 

LCC 

𝛼𝛽1 𝑷(𝛼|𝛽1) [0.3880,0.9973] Same as original 

𝛼𝛽2 𝑷(𝛼|𝛽2) [0.7415,0.9024] Same as original 

𝛼𝛽3 𝑷(𝛼|𝛽3) [0.3667,0.8688] Same as original 

𝛼𝛽4 𝑷(𝛼|𝛽4) [0.1655,0.4140] Same as original 

𝛽1𝛾 𝑷(𝛽1|𝛾) [0.1197,0.1826] Same as original 

𝛽2𝛾 𝑷(𝛽2|𝛾) [0.1662,0.3080] Same as original 

𝛽3𝛾 𝑷(𝛽3|𝛾) [0.3587,0.4603] Same as original 

𝛽4𝛾 𝑷(𝛽4|𝛾) [0.3554,0.0491] Same as original 

𝛽1𝛾𝐶 𝑷(𝛽1|𝛾𝐶) [0.0410,0.1930] [0,1] [¼,¼] [0,1] 

𝛽2𝛾𝐶 𝑷(𝛽2|𝛾𝐶) [0.1527,0.1772] [1,0] [¼,¼] [0,1] 

𝛽3𝛾𝐶 𝑷(𝛽3|𝛾𝐶) [0.3683,0.4682] [0,0] [¼,¼] [0,1] 

𝛽4𝛾𝐶 𝑷(𝛽4|𝛾𝐶) [0.4380,0.1616] [0,0] [¼,¼] [0,1] 

𝛾 𝑷(𝛾) [0.3000,0.4500] Same as original 

𝛾𝐶 𝑷(𝛾𝐶) [0.7000,0.5500] Same as original 

Posterior: 𝑷(𝛾|𝛼) [0.3143,0.4658] [0.1722,0.4193] [0.2708,0.4751] [1,0.1845] 

% of MC simulation 

results contained 

(uniform inputs) 

91.73% 94.41% 99.68% 100% 

(𝑷(𝛾|𝛼) range)/ 

(MC range) 
57.19% 60.29% 82.56% -136.64% 

 

The calculations for these three cases representing complete ignorance 

unfortunately result in very different posterior probabilities. The point intervals used in 

Case 1 and Case 2 incorrectly imply that only one value is acceptable for the 𝑷(𝛽|𝛾) 

terms in equation ( 8 ). From that perspective, Case 3 is the best representation of 
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complete ignorance. It has the added advantage of providing the widest posterior 

probability interval, although the interval is improper. 

Although all three cases are intended to represent the same thing, their input 

intervals are different, and so all three require different Monte Carlo simulations for 

verification. All three are scaled such that the posterior probability intervals are 

represented by twenty bins. The results of these simulations are shown in Figure 14, 

Figure 15, and Figure 16. 

 

Figure 14: 1,000,000 sample Monte Carlo simulation of Case 1 from Table 13, with uniform input intervals. 
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Figure 15: 1,000,000 sample Monte Carlo simulation of Case 2 from Table 13, with uniform input intervals. 

 

Figure 16: 1,000,000 sample Monte Carlo simulation of Case 3 from Table 13, with uniform input intervals. 
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It can be observed from these figures that the posterior probability interval in 

Case 1 is sound, but it is not centered on the sample output distribution. Case 3 is 

likewise not centered, but it provides a complete rather than a sound solution. The Case 2 

sample output is centered and almost complete—its posterior probability gives perhaps 

the best estimate of its Monte Carlo simulation results out of all three. However, Case 2 

suffers conceptually from the incorrect implication of certainty where equally weighted 

point intervals are applied. In this respect it is no worse than the traditional real-valued 

equation, though, which does give an update when part of a link is occupied by complete 

ignorance. This is illustrated below in equation ( 29 ), where the 𝑃(𝛽|𝛾𝐶) terms have 

been replaced with equally weighted probabilities that represent complete ignorance, and 

the other terms have been replaced with real values centered on the intervals used 

elsewhere in this section: 

𝑃(𝛾|𝛼) =

[0.6927 0.8220 0.6178 0.2898] [

0.1512
0.2371
0.4095
0.2023

] ∙ 0.3750

[0.6927 0.8220 0.6178 0.2898] [

0.1512 0.2500
0.2371 0.2500
0.4095 0.2500
0.2023 0.2500

] [
0.3750
0.6250

]

= 0.3772 ( 29 ) 

This equation likewise provides an update in the face of a link partially occupied 

by complete ignorance, and likewise uses a potentially misleading impression that the 

values of the four 𝑃(𝛽|𝛾𝐶) terms are actually known. 

4.6: Summary of Calculations 

To ease review of this work, a summary of the equations used in Chapter 4 along 

with and their inputs and outputs is given in Table 15. Posterior probabilities were 

calculated for two main equation forms: equation ( 12 ) and equation ( 16 ), calculating 

the posterior probabilities 𝑷(θ|
Δρ

n
) and 𝑷(θ|

Δρ

n
∩
Δℓ

ℓ⁄

𝑛
), respectively. Equation ( 12 ) 

was calculated with several sets of inputs, represented by equations ( 13 ), ( 19 ), 

( 20 )( 19 ), ( 21 ), ( 22 ), ( 23 ), ( 24 ), and ( 25 ). A posterior probability for equation 
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( 16 ) was calculated only once, as shown in equation ( 17 ) in §4.2, and its results are not 

repeated here. A basic explanation for each of these equations is given in Table 14. 

Table 14: Summary of the methods used to calculate a posterior probability using for equations ( 12 ) and ( 16 ). 

Equation ( 17 ) represents the interval values used in place of the symbolic equation ( 16 ); all others represent 

interval values used in place of the symbolic equation ( 12 ). 

( 13 ) Intervals as originally interpreted. This includes a representation of complete 

ignorance that forces a zero-width [0,0] interval due to the LCC. 

( 19 ) Reversed the bounds of the prior probability intervals. 

( 20 ) Reversed the bounds of the 𝑇𝑑𝜃 and 𝑇𝑑𝜃
𝑐  intervals. 

( 21 ) Reversed the bounds of the 𝑇𝑑𝜃𝑐 and 𝑇𝑑𝜃𝑐
𝑐  complete ignorance intervals. 

( 22 ) Reversed the bounds of the 𝑇𝑚𝑇𝑑 complete ignorance intervals. 

( 23 ) Reversed the bounds of the 𝑇𝑚𝑇𝑑𝑐 complete ignorance intervals. 

( 24 ) Replaced the complete ignorance intervals with equally-weighted point intervals. 

( 25 ), Replaced the complete ignorance intervals with full-width intervals ([0,1]) that 

are not subject to the LCC. 

( 17 ) Intervals as originally interpreted, with added experimental information related 

to 
Δℓ

ℓ⁄

𝑛
. This gave a result identical to equation ( 13 ), as discussed in §4.2. 
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Table 15: Summary of interval input values and calculated posterior probabilities for equation ( 12 ). 

Symbol Value 

Equation: ( 13 ) ( 19 ) ( 20 ) ( 21 ) ( 22 ) ( 23 ) ( 24 ) ( 25 ) 

Inputs 

𝜌𝑇𝑚1 
[0.5, 

0.5] 

[0.5, 

0.5] 

[0.5, 

0.5] 

[0.5, 

0.5] 

[0.5, 

0.5] 

[0.5, 

0.5] 

[0.5, 

0.5] 

[0.5, 

0.5] 

𝜌𝑇𝑚2 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] 

𝜌𝑇𝑚3 
[0.6665, 

0.6672] 

[0.6665, 

0.6672] 

[0.6665, 

0.6672] 

[0.6665, 

0.6672] 

[0.6665, 

0.6672] 

[0.6665, 

0.6672] 

[0.6665, 

0.6672] 

[0.6665, 

0.6672] 

𝑇𝑚1𝑇𝑑 [0,1] [0,1] [0,1] [0,1] [1,0] [0,1] [⅓,⅓] [0,1] 

𝑇𝑚2𝑇𝑑 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [⅓,⅓] [0,1] 

𝑇𝑚3𝑇𝑑 [1,0] [1,0] [1,0] [1,0] [0,1] [1,0] [⅓,⅓] [0,1] 

𝑇𝑚1𝑇𝑑𝑐 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [⅓,⅓] [0,1] 

𝑇𝑚2𝑇𝑑𝑐 [0,1] [0,1] [0,1] [0,1] [0,1] [1,0] [⅓,⅓] [0,1] 

𝑇𝑚3𝑇𝑑𝑐 [1,0] [1,0] [1,0] [1,0] [1,0] [0,1] [⅓,⅓] [0,1] 

𝑇𝑑𝜃 
[0.7923, 

1] 

[0.7923, 

1] 

[1, 

0.7923] 

[0.7923, 

1] 

[0.7923, 

1] 

[0.7923, 

1] 

[0.7923, 

1] 

[0.7923, 

1] 

𝑇𝑑𝜃
𝑐  

[0.2077, 

0] 

[0.2077, 

0] 

[0, 

0.2077] 

[0.2077, 

0] 

[0.2077, 

0] 

[0.2077, 

0] 

[0.2077, 

0] 

[0.2077, 

0] 

𝑇𝑑𝜃𝑐 [0,1] [0,1] [0,1] [1,0] [0,1] [0,1] [½,½] [0,1] 

𝑇𝑑𝜃𝑐
𝑐  [1,0] [1,0] [1,0] [0,1] [1,0] [1,0] [½,½] [0,1] 

𝜃 
[0.4, 

0.5] 

[0.5, 

0.4] 

[0.4, 

0.5] 

[0.4, 

0.5] 

[0.4, 

0.5] 

[0.4, 

0.5] 

[0.4, 

0.5] 

[0.4, 

0.5] 

𝜃𝑐 
[0.6, 

0.5] 

[0.5, 

0.6] 

[0.6, 

0.5] 

[0.6, 

0.5] 

[0.6, 

0.5] 

[0.6, 

0.5] 

[0.6, 

0.5] 

[0.6, 

0.5] 

Results 

𝑷(θ|
Δρ

n
) 

[0.4, 

0.5] 

[0.5, 

0.4] 

[0.4, 

0.4421] 

[0.4, 

1] 

[0.3484, 

0.5] 

[1, 

0.5] 

[0.4, 

0.5] 

[1, 

0.3333] 

 

Because the values of the interval bounds are identical for equations ( 13 ), ( 19 ), 

( 20 ), ( 21 ), ( 22 ), and ( 23 ), each can be subject to the same Monte Carlo simulation 

results for verification—the results are simply viewed through a different posterior 

probability lens. This is illustrated in Figure 17. The drastic difference between these 

posterior probability intervals is a dramatic example of the huge effect that a small 

change can have on result of a GIBR equation, particularly in the case of equations ( 13 ) 
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and ( 21 ), where the difference between the inputs is the result of a completely subjective 

choice.  

 
Figure 17: Visual comparison of the posterior probability intervals of six equations following the form of 

equation ( 12 ) versus a one million run Monte Carlo simulation of the equations. The Monte Carlo simulation 

uses uniform input intervals. The green vertical bars represent the Monte Carlo simulation results, while the 

horizontal lines represent each equation’s posterior probability interval. The width of the line represents the 

width of the interval, and the vertical location of the line represents the percentage of the Monte Carlo 

simulation results that fell within the interval. Proper intervals are represented by black lines, and improper 

intervals by red lines. Each equation shares the same input intervals save for the order of the interval bounds. 

Monte Carlo simulations to verify equations ( 24 ) and ( 25 ) are given in §4.4.2.1 

and §4.5.1, respectively, and are not repeated here.  

4.6.1: The complete solution 

Of the fifteen input intervals used in equations ( 13 ), ( 19 ), ( 20 ), ( 21 ), ( 22 ), 

and ( 23 ), four are zero-width, and only six of the remaining eleven are independent 

when the Logic Coherence Constraint is obeyed. In order to determine the possible 

extremes of the real-valued solutions to these equations, only 64 (or 2⁶) real-valued 

calculations are necessary, each one representing a different combination of the upper or 
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lower bounds of the independent input intervals. This set of calculations reveals that the 

extreme values possible using the intervals from equation ( 13 ), etc. are 𝑷(θ|
Δρ

n
) =

0.3332 and 𝑷(θ|
Δρ

n
) = 1, where the double underbars or double overbars represent 

the extreme lower and upper bounds, respectively. The values that lead to these posterior 

probabilities are shown in Table 16. 

Table 16: Summary of the extreme values possible with real values within the bounds of the intervals used in 

equations ( 13 ), ( 19 ), ( 20 ), ( 21 ), ( 22 ), and ( 23 ). 

 Eq. ( 13 ) Type Minimum Maximum 

𝜌𝑇𝑚1 [0.5,0.5] Point 0.5 0.5 

𝜌𝑇𝑚2 [0,0] Point 0 0 

𝜌𝑇𝑚3 [0.6665,0.6672] Independent Either Bound Either Bound 

𝑇𝑚1𝑇𝑑 [0,1] Independent 1 Either Bound 

𝑇𝑚2𝑇𝑑 [0,0] Point 0 0 

𝑇𝑚3𝑇𝑑 [1,0] Dependent = 1 − 𝑇𝑚1𝑇𝑑 

𝑇𝑚1𝑇𝑑𝑐  [0,0] Point 0 0 

𝑇𝑚2𝑇𝑑𝑐  [0,1] Independent 0 1 

𝑇𝑚3𝑇𝑑𝑐  [1,0] Dependent = 1 − 𝑇𝑚2𝑇𝑑𝑐  

𝑇𝑑𝜃 [0.7923,1] Independent 1 Either Bound 

𝑇𝑑𝜃
𝑐  [0.2077,0] Dependent = 1 − 𝑇𝑑𝜃 

𝑇𝑑𝜃𝑐 [0,1] Independent 0 0 

𝑇𝑑𝜃𝑐
𝑐  [1,0] Dependent = 1 − 𝑇𝑑𝜃𝑐 

𝜃 [0.4,0.5] Independent 0.4 Either Bound 

𝜃𝑐 [0.6,0.5] Dependent = 1 − 𝜃 

𝑷(θ|
Δρ

n
) [0.4,0.5] Result 0.3332 1 

 

No obvious formulation of GIBR leads to the complete interval, but the GIBR 

equation does assist the analyst in organizing the information, recognizing dependencies 

between intervals, and identifying point intervals in order to decrease the required 

number of calculations. While not as simple as a single interval-valued calculation (or 

two decoupled real-valued calculations), 64 calculations is still a great improvement over 

the one million calculations used in each of the Monte Carlo simulations. 
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4.7: Conclusions 

This chapter has dealt with an example that contains instances of complete 

ignorance. Perhaps the most important conclusion is that interval probability mirrors 

other probability theories in cases of complete ignorance. In the best case scenario, 

intervals that are intended to represent complete ignorance may simply prevent the 

passage of information and deliver a posterior probability identical to the prior—making 

the analysis of no help other than to identify the existence of a missing link. In the worst 

case, intervals that represent complete ignorance can lead to the presence of subjective 

choices in bound limits. These choices can cause huge changes in the resulting posterior 

probability, despite ostensibly representing the exact same information. Between the best 

and the worst case, a “hybrid” of classical ignorance representation and interval 

ignorance may be used by employing equally weighted point intervals, but misleadingly 

implies certainty of input where there is none, and it may prevent information passage as 

well. If generalized interval Bayes’ rule is desired for use in an instance where data are 

not available, the next best option would still be to consult a domain expert for an 

estimation of the input interval based on his or her best intuition and experience, since the 

application of complete ignorance by interval probability may result in non-deterministic 

update. The underlying reasons should be further investigated in the future. 
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CHAPTER 5: USING GIBR TO COMPARE MODELS 

This chapter examines two methods to update belief in simulation results using 

Generalized Interval Bayes’ Rule. The first method uses the results of physical 

experiments for an update, and thus is an example of model validation. The second 

updates the model’s results with the evidence provided by a second model, and thus may 

be thought of as model verification or even model aggregation. 

In the context of this chapter, Model 1 refers to a finite element simulation (Patra, 

Zhu, & McDowell, Constitutive equations, 2014) that predicts the yield strength of bcc 

iron based on a combination of six input parameters at varying levels. It is based on a 

dislocation density crystal plasticity model, and assumes that non-Schmid effects are 

heavily manifested in both the orientation dependence of a material and in the tension-

compression asymmetry at initial yield. Model 2 in this chapter (Patra, Modeling 

mechanical behavior, 2013) uses the same set of parameters and predicts the same basic 

phenomena. It is similarly a crystal viscoplasticity model, but its formulation accounts for 

temperature-dependence in the non-Schmid parameters.  

A third model was also investigated for this analysis. Models 1 and 2 may be 

thought of as “top-down” models—that is, their formulation and parameters are based 

primarily on larger-scale measurements. Like these models, Model 3 employs crystal 

plasticity flow rule. However, unlike the previous models, Model 3 is a “bottom-up” 

model: it employs atomistically informed parameters to predict the behavior of the BCC 

iron crystals, including dependencies on temperature, orientation, and strain rate 

(Narayanan, McDowell, & Zhu, 2014). The results are of the same type for each model: 

each temperature and orientation will predict values for the yield strength of the material. 

Combining or comparing Model 3 with either of the other models would thus be cross-

scale model validation, as each model is based on a different scale of operation. The 
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results currently available for Model 3 are much more limited than for the other two 

models, and so only a limited analysis was performed using that model. Nevertheless, 

because of the similar form of the results of the models, the method for combining 

models 1 and 2 is identical to the method for combining models 1 and 3. Thus, even 

though Model 1 and Model 2 are of the same scale, the demonstrations with these two 

models can also serve as examples of how to complete cross-scale model validation. 

GIBR is first used as a comparative tool between the two main simulations, with 

the updating experimental results acting as a standard. GIBR is then used to combine the 

results of the two simulations, with a prior probability intervals supplied by the 

simulations and an update coming from the experimental results. Model aggregation is a 

novel application of Bayes’ Rule, and need not be confined to generalized interval 

applications—if the intervals are degenerated “point” intervals (i.e. real rather than 

interval values), then the application still may be used and is still novel. 

5.1: Equation formulation for updating individual model probabilities 

In an engineering application, it may be useful to know whether or not a material 

will yield under a given level of stress. In this example, a stress of 150 MPa is arbitrarily 

selected, and the probability that the model predicts yielding given that physical 

experiments predict yielding (𝑷(𝑦𝑚|𝑦𝑒)) is calculated with GIBR. In order to provide 

some consistent basis for comparing the results, the temperature of the simulation and of 

the experiment is used as a link in the GIBR. Under these conditions, the relevant 

equation is: 

𝑷(𝑦𝑚|𝑦𝑒) =
∫𝑷(𝑦𝑒|𝑡) ∙ 𝑷(𝑡|𝑦𝑚)𝑑𝑡 ∙ 𝑷(𝑦𝑚)

𝑑𝑢𝑎𝑙(∫ ∫𝑷(𝑦𝑒|𝑡) ∙ 𝑷(𝑡|𝑦𝑚) ∙ 𝑷(𝑦𝑚)𝑑𝑡 𝑑𝑦𝑚)
 ( 30 ) 

In this equation, 𝑦𝑚 means “the model predicts yielding,” 𝑦𝑒 means “the 

experimental results demonstrate yielding,” and 𝑡 means “temperature.” Using the 

conventions already established in this thesis, an integration over three possible 
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temperatures (143 K, 195 K, and 250 K) and two possible states of 𝑦𝑚 (for “the model 

predicts yielding” and “the model does not predict yielding”) looks like this: 

𝑷(𝑦𝑚|𝑦𝑒) =

[𝑷(𝑦𝑒|𝑡1) 𝑷(𝑦𝑒|𝑡2) 𝑷(𝑦𝑒|𝑡3)] [

𝑷(𝑡1|𝑦𝑚)

𝑷(𝑡2|𝑦𝑚)

𝑷(𝑡3|𝑦𝑚)
] 𝑷(𝑦𝑚)

𝑑𝑢𝑎𝑙 ([𝑷(𝑦𝑒|𝑡1) 𝑷(𝑦𝑒|𝑡2) 𝑷(𝑦𝑒|𝑡3)] [

𝑷(𝑡1|𝑦𝑚) 𝑷(𝑡1|𝑦𝑚
𝐶 )

𝑷(𝑡2|𝑦𝑚) 𝑷(𝑡2|𝑦𝑚
𝐶 )

𝑷(𝑡3|𝑦𝑚) 𝑷(𝑡3|𝑦𝑚
𝐶 )
] [
𝑷(𝑦𝑚)

𝑷(𝑦𝑚
𝐶 )
])

 ( 31 ) 

In each finite element model, six input parameters (temperature, orientation, p, q, 

�̇�0, and Δ𝐺) were combined at three levels each, resulting in 36 (or 729) total 

simulations—243 at each of the three orientations. The orientations are numbered 4, 5, 

and 6, which is a relic of some earlier simulations that were not included in this study. 

Yield behavior can vary significantly based on orientation, and the behaviors of different 

orientations cannot be averaged or otherwise combined: combining different orientations 

requires a polycrystalline model, which introduces the effects of grain boundaries and 

other slip mechanisms. Hence, for the single crystal models used here, the orientation of 

the material is the primary form of epistemic uncertainty. Given a specific orientation, the 

intervals would each collapse to a single real value. 

5.1.1: Calculation of relevant probabilities from Model 1 results 

In order to calculate a posterior probability 𝑷(𝑦𝑚1|𝑦𝑒) using equation ( 31 ), 

Model 1 results must be used to calculate 𝑷(𝑡1|𝑦𝑚1), 𝑷(𝑡2|𝑦𝑚1), 𝑷(𝑡3|𝑦𝑚1), 𝑷(𝑡1|𝑦𝑚1
𝐶 ), 

𝑷(𝑡2|𝑦𝑚1
𝐶 ), 𝑷(𝑡3|𝑦𝑚1

𝐶 ), 𝑷(𝑦𝑚1), and 𝑷(𝑦𝑚1
𝐶 ). The calculation of the probabilities 

𝑷(𝑦𝑚1) and 𝑷(𝑦𝑚1
𝐶 ) is examined first. 

Using Model 1, 243 finite element simulations were run at each of three 

orientations. The mean and standard deviation of the resulting yield strengths is easily 

calculated and a CDF is generated for each orientation assuming a normal distribution of 

yield strengths. An example of the approximated CDF is shown in Figure 18 along with a 



 

91 

 

discretized CDF based on the actual values of predicted yield strength for Model 1, 

Orientation #4. 

 

Figure 18: Discretized CDF made from the simulated yield strengths for each of the parameters used in Model 1, 

Orientation #4 plotted along with the smoothed CDF approximation, which assumes a normal distribution of 

simulated yield strengths. 

By comparing the chosen stress of 150 MPa with these approximated CDFs, the 

probability that the model will predict yielding at each orientation can be determined. 

Then, because the orientation represents the epistemic uncertainty, the highest and lowest 

probabilities from among these three orientations then represent 𝑷(𝑦𝑚1) and 𝑷(𝑦𝑚1), 

respectively. These calculations are summarized in Table 17. 

Table 17: Calculation of the interval probability that Model 1 predicts yielding. 

Orientation 
Average Yield 

Strength, Model 1 

Standard Deviation 

of Yield Strength, 

Model 1 
𝑃(𝑦𝑚1|𝑜𝑟𝑖𝑒𝑛𝑡. ) 𝑷(𝑦𝑚1) 

#4 94.9 MPa 50.0 MPa 86.47% 𝑷(𝑦𝑚1) 𝑷(𝑦𝑚1) 
#5 101.5 MPa 52.9 MPa 82.02% 0.5523 0.8647 

#6 140.0 MPa 76.4 MPa 55.23% 
  

 

Armed with the interval value of 𝑷(𝑦𝑚1), 𝑷(𝑦𝑚1
𝐶 ) is easily calculated. The 

probability that Model 1 does not predict yielding is simply 1 − 𝑑𝑢𝑎𝑙(𝑷(𝑦𝑚1)). Thus, 

𝑷(𝑦𝑚1
𝐶 ) = [0.4477,0.1353]. 
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Next, the calculation of probabilities of the form 𝑷(𝑡|𝑦𝑚) is examined. Because 

these probabilities are based on a binary condition (the model did or did not predict 

yielding), and because the temperatures have been discretized, using a distribution to 

describe the conditional probabilities does not make sense. Instead, a simple proportion 

will be used to generate the probabilities of each temperature given yielding. Using 

orientation #4 as an example, 202 simulations exhibited a yield strength below 150 MPa. 

Of these 202 simulations, 41 used a temperature of 143K (or 𝑡1), 80 used 𝑡2 = 195𝐾, and 

81 used 𝑡3 = 250𝐾. This is interpreted to mean that, for Model 1, orientation #4, the 

probability that the temperature is 143K given that the model predicted yielding was 
41

202
 

or 20.30%. This probability changes with orientation. For orientation #5, 𝑷(𝑡1|𝑦𝑚1) =

30

191
 or 15.71%. For orientation #6, 𝑷(𝑡1|𝑦𝑚1) =

3

142
 or 2.11%. If the lack of knowledge 

about which orientation to use is taken to be the epistemic uncertainty, then the minimum 

and maximum of these three probabilities give the bounds for the interval, and thus 

𝑷(𝑡1|𝑦𝑚1) = [0.0211,0.2030]. Following this method, the intervals 𝑷(𝑡2|𝑦𝑚1) and 

 𝑷(𝑡3|𝑦𝑚1) were calculated as [0.3960,0.4188] and [0.4010,0.5704], respectively. The 

results of these calculations are given in Table 18. It is important to note that, while each 

orientation individually adheres to the Logic Coherence Constraint, the intervals based on 

all three orientations do not adhere to the LCC. As such, it is necessary to choose one of 

the temperatures to be a non-focal event for the purposes of this GIBR, thus allowing its 

probability to be determined by the values of the probabilities of the other two 

temperatures. This will be discussed further in §5.1.4. 
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Table 18: Summary of the calculation of 𝑷(𝒕|𝒚𝒎𝟏). Note that the row exhibiting information for “All 

Temperatures” is the sum of the rows above it. In the case of the “Quantity of Simulations” columns, this row 

exhibits the normalizing factor that the other quantities were divided by in order to reach a probability. In the 

probability columns, this row exhibits the behavior of the Logic Coherence Constraint. 

 

Quantity of Simulations 

Exhibiting Yield in Model 1 
𝑷(𝑡|𝑦𝑚1) 

Orientation No. #4 #5 #6 #4 #5 #6 Interval 

T=143 K 41 30 3 0.2030 0.1571 0.0211 [0.0211,0.2030] 

T=195 K 80 80 58 0.3960 0.4188 0.4085 [0.3960,0.4188] 

T=250 K 81 81 81 0.4010 0.4241 0.5704 [0.4010,0.5704] 

All Temps. 202 191 142 1.0000 1.0000 1.0000 [0.8182,1.1922] 

 

A similar process was carried out in the calculation of 𝑷(𝑡|𝑦𝑚1
𝐶 ), except that the 

number of simulations not exhibiting yield (𝑦𝐶) was examined rather than the number of 

simulations exhibiting yield (𝑦). The results of these calculations, as well as the 

supporting values, are shown in Table 19. 

Table 19: Summary of the calculation of 𝑷(𝒕|𝒚𝒎𝟏
𝑪 ). 

 

Quantity of Simulations NOT 

Exhibiting Yield in Model 1 
𝑷(𝑡|𝑦𝑚1

𝐶 ) 

Orientation No. #4 #5 #6 #4 #5 #6 Interval 

T=143 K 40 51 78 0.9756 0.9808 0.7723 [0.7723,0.9808] 

T=195 K 1 1 23 0.0244 0.0192 0.2277 [0.0192,0.2277] 

T=250 K 0 0 0 0.0000 0.0000 0.0000 [0.0000,0.0000] 

All Temps. 41 52 101 1.0000 1.0000 1.0000 [0.7915,1.2085] 

 

5.1.2: Calculation of relevant probabilities from Model 2 results 

While the underlying mechanisms for Model 1 and Model 2 are different, their 

results are of the same form. Thus, in order to calculate the probabilities 𝑷(𝑡1|𝑦𝑚2), 

𝑷(𝑡2|𝑦𝑚2), 𝑷(𝑡3|𝑦𝑚2), 𝑷(𝑡1|𝑦𝑚2
𝐶 ), 𝑷(𝑡2|𝑦𝑚2

𝐶 ), 𝑷(𝑡3|𝑦𝑚2
𝐶 ), 𝑷(𝑦𝑚2), and 𝑷(𝑦𝑚2

𝐶 ), the 

exact same process is followed for Model 2 as for Model 1. The only difference is in the 

values used to generate the results. These are summarized in tabular form in the 

remainder of this section.  
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Table 20: Calculation of the interval probability that Model 2 predicts yielding. 

Orientation 
Average Yield 

Strength, Model 2 

Standard Deviation 

of Yield Strength, 

Model 2 
𝑃(𝑦𝑚2|𝑜𝑟𝑖𝑒𝑛𝑡. ) 𝑷(𝑦𝑚2) 

#4 135.0 MPa 64.0 MPa 59.24% 𝑷(𝑦𝑚2) 𝑷(𝑦𝑚2) 
#5 135.6 MPa 68.2 MPa 58.34% 0.3417 0.5924 

#6 190.5 MPa 99.3 MPa 34.17% 
  

By the Logic Coherence Constraint, 𝑷(𝑦𝑚2
𝐶 ) = [0.6583,0.4076] 

 

Table 21: Summary of the calculation of 𝑷(𝒕|𝒚𝒎𝟐). 

 

Quantity of Simulations 

Exhibiting Yield in Model 2 
𝑷(𝑡|𝑦𝑚2) 

Orientation No. #4 #5 #6 #4 #5 #6 Interval 

T=143 K 0 0 0 0.0000 0.0000 0.0000 [0.0000,0.0000] 

T=195 K 81 81 0 0.5000 0.5000 0.0000 [0.0000,0.5000] 

T=250 K 81 81 81 0.5000 0.5000 1.0000 [0.5000,1.0000] 

All Temps. 162 162 81 1.0000 1.0000 1.0000 [0.5000,1.5000] 

 

Table 22: Summary of the calculation of 𝑷(𝒕|𝒚𝒎𝟐
𝑪 ). 

 

Quantity of Simulations NOT 

Exhibiting Yield in Model 2 
𝑷(𝑡|𝑦𝑚2

𝐶 ) 

Orientation No. #4 #5 #6 #4 #5 #6 Interval 

T=143 K 81 81 81 1.0000 1.0000 0.5000 [0.5000,1.0000] 

T=195 K 0 0 81 0.0000 0.0000 0.5000 [0.0000,0.5000] 

T=250 K 0 0 0 0.0000 0.0000 0.0000 [0.0000,0.0000] 

All Temps. 81 81 162 1.0000 1.0000 1.0000 [0.5000,1.5000] 

 

5.1.3: Calculation of relevant probabilities from the experimental results 

Once the prior probabilities and the linking probabilities from the model are 

calculated, only the updating probabilities remain. These are based on experimental 

results. As with most of the probabilities in this document, there are potentially many 

ways to calculate each of these probabilities. For the limited experimental data available 

for use as a benchmark, a single yield strength is related to each combination of 

temperature and orientation. These are shown in Table 23. There is no randomness 

associated with this, and so the aleatory uncertainty of 𝑷(𝑦𝑒|𝑡1), 𝑷(𝑦𝑒|𝑡2), and 𝑷(𝑦𝑒|𝑡3) 
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should be zero. However, epistemic uncertainty will be present as long as a certain 

orientation has not been specified. For instance, at 195 K there are three experimental 

yield strengths that range from 148 MPa to 153 MPa, each one corresponding to a 

specific orientation. If the stress state for which information is desired is below 148 MPa, 

then according to that limited data set, the probability of yielding is zero. If the stress 

state in question is above 153 MPa, then the probability of yielding is one. If, however, 

the stress state is between 148 MPa and 153 MPa and the orientation has not been 

specified, then the probability is [0,1]. As soon as an orientation is specified, then a zero-

width interval or a single valued probability should be used to indicate the elimination of 

epistemic uncertainty. For the chosen stress of 150 MPa, the three probability intervals 

are 𝑷(𝑦𝑒|𝑡1 = 143𝐾) = [0,0], 𝑷(𝑦𝑒|𝑡2 = 195𝐾) = [0,1], and 𝑷(𝑦𝑒|𝑡3 = 250𝐾) =

[1,1]. 

Table 23: Experimental yield strengths and yield probability for each temperature and orientation. As with 

other probabilities in this section, a stress of 150 MPa is an implied condition for each probability. 

 
Experimental Yield Strengths 𝑃(𝑦𝑒|𝑡) 

Orientation #4 #5 #6 #4 #5 #6 

T=143 K 251.0 MPa 250.0 MPa 295.0 MPa 0.0000 0.0000 0.0000 

T=195 K 151.0 MPa 148.0 MPa 153.0 MPa 0.0000 1.0000 0.0000 

T=250 K 72.0 MPa 58.0 MPa 66.0 MPa 1.0000 1.0000 1.0000 

 

Unfortunately, the interval [0,1] used to represent 𝑷(𝑦𝑒|𝑡 = 195𝐾) provides the 

same information as complete ignorance. Because the detrimental effects of including 

complete ignorance intervals in the GIBR equations have been so thoroughly 

demonstrated in Chapter 4, a different calculation method will be employed to eliminate 

this overly wide interval. At 195 K, one of the three orientations yielded below 150 MPa, 

and the other two yielded above 150 MPa. In a more classical sense, this can be viewed 

as a one-in-three chance of yielding. Using this method, 𝑷(𝑦𝑒|𝑡 = 195𝐾) is expressed as 

a point interval: [⅓,⅓]. The probabilities at 143K and 250K are unchanged when using 
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this method, and so the probabilities associated with the experimental results are 

𝑷(𝑦𝑒|𝑡1) = [0,0], 𝑷(𝑦𝑒|𝑡2) = [⅓,⅓], and 𝑷(𝑦𝑒|𝑡3) = [1,1]. 

5.1.4: Calculating posterior probabilities for each model. 

5.1.4.1: Model 1 

With the relevant intervals in place of the symbolic representations for Model 1, 

equation ( 31 ) becomes equation ( 32 ): 

𝑷(𝑦𝑚1|𝑦𝑒) =

[

[0.0000,0.0000]

[0.3333,0.3333]
[1.0000,1.0000]

]

𝑇

[

[0.0211,0.2030]

[0.3960,0.4188]
[0.4010,0.5704]

] [0.5523,0.8647]

𝑑𝑢𝑎𝑙 ([

[0.0000,0.0000]

[0.3333,0.3333]

[1.0000,1.0000]
]

𝑇

[

[0.0211,0.2030] [0.7723,0.9808]

[0.3960,0.4188] [0.0192,0.2277]

[0.4010,0.5704] [0.0000,0.0000]
] [
[0.5523,0.8647]

[0.4477,0.1353]
])

 ( 32 ) 

With the interval values in place, some of the choices as to which events should 

be focal or non-focal become clearer. From a mathematical standpoint, because 

𝑷(𝑦𝑒|𝑡1) = [0,0], none of the information from 𝑷(𝑡1|𝑦𝑚1) or 𝑷(𝑡1|𝑦𝑚1
𝐶 ) will have an 

effect on the final updated interval, because they will be multiplied by the zero value. 

From a logical standpoint, too, the updating equation is supposed to inform the prior 

probability in the instances where the experiment predicts yielding. Since the experiment 

does not ever predict yielding at 150 MPa for 𝑡1, it is only logical that simulations at 

temperature 𝑡1should be non-focal events, because they do not conform to the condition. 

From a mathematical standpoint, the interval 𝑷(𝑡3|𝑦𝑚
𝐶 ) = [0,0] is both proper and 

improper, both focal and non-focal. Trying to force it to be strictly non-focal requires the 

subtraction 1 − 𝑑𝑢𝑎𝑙(𝑷(𝑡1|𝑦𝑚1
𝐶 ) + 𝑷(𝑡2|𝑦𝑚1

𝐶 )), which gives the interval probability 

[0.2085, −0.2085] for 𝑷(𝑡3|𝑦𝑚
𝐶 ). Negative probabilities have no logical meaning in this 

case, thus acting as a reminder that the simulations at temperature 𝑡3 should be not be 

forced into a strictly non-focal status. Again, logically this fits as well. All of the 

experiments at temperature 𝑡3 exhibited yielding below 150 MPa, and so the results of 
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the model at the same temperature should be very significant in determining the behavior 

of the model given that the experiment predicts yielding. 

Temperature 𝑡2 obviously falls somewhere in the middle. Making it a focal event 

could be logical since only one of the three temperatures needs to be non-focal in order to 

satisfy the Logic Coherence Constraint. However, since the effects of the 𝑡1 simulations 

are already cancelled due to the [0,0] value of 𝑷(𝑦𝑒|𝑡1), making 𝑡2 non-focal would 

essentially put more significance on the only remaining focal event, 𝑡3. These two 

potential paths bear further examination in the form of a verifying Monte Carlo 

simulation. 

5.1.4.2: Model 2 

With the relevant intervals in place of the symbolic representations for Model 2, 

equation ( 31 ) becomes equation ( 33 ): 

𝑷(𝑦𝑚2|𝑦𝑒) =

[

[0.0000,0.0000]

[0.3333,0.3333]
[1.0000,1.0000]

]

𝑇

[

[0.0000,0.0000]

[0.0000,0.5000]
[0.5000,1.0000]

] [0.3417,0.5924]

𝑑𝑢𝑎𝑙 ([

[0.0000,0.0000]

[0.3333,0.3333]

[1.0000,1.0000]
]

𝑇

[

[0.0000,0.0000] [0.5000,1.0000]

[0.0000,0.5000] [0.0000,0.5000]

[0.5000,1.0000] [0.0000,0.0000]
] [
[0.3417,0.5924]

[0.6583,0.4076]
])

 ( 33 ) 

Some discussion is again warranted as to which events should be focal or non-

focal. For the 𝑷(𝑡|𝑦𝑚2) terms, 𝑷(𝑡1|𝑦𝑚2) is already both focal and non-focal and should 

not be forced to take on a strictly non-focal role. 𝑷(𝑡3|𝑦𝑚2
𝐶 ) exhibits the same 

characteristic among the 𝑷(𝑡|𝑦𝑚2
𝐶 ) terms. This leaves two possibilities: either make the 

simulations at temperature 𝑡2 non-focal, or choose different sets of simulations to be non-

focal depending on whether the model did or did not predict yielding (𝑦𝑚 versus 𝑦𝑚
𝐶 ). 

Again, these different paths bear further examination through Monte Carlo simulations.  

5.1.5: Monte Carlo verification of Model 1 and Model 2 GIBR update. 

The intervals used to generate the posterior probabilities 𝑷(𝑦𝑚|𝑦𝑒) are 

summarized in Table 24. The non-focal events, i.e. the intervals with values determined 
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by subtraction from other intervals, are italicized. In both models, the original intervals 

are not verified through Monte Carlo simulation because they do not conform to the 

Logic Coherence Constraint. 

Table 24: Summary of the interval valued inputs and Monte Carlo simulation results for both Models 1 and 2 in 

the GIBR equation ( 31 ). 

 Model 1 Model 2 

 
Original 

Intervals 

Case 1: 

Nonfocal 

T1 

Case 2: 

Nonfocal 

T2 

Original 

Intervals 

Case 3: 

Nonfocal 

T2 

Case 4: 

Nonfocal 

T1,T3 

𝑷(𝑦𝑒|𝑡1) 
[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

𝑷(𝑦𝑒|𝑡2) 
[0.3333, 

0.3333] 

[0.3333, 

0.3333] 

[0.3333, 

0.3333] 

[0.3333, 

0.3333] 

[0.3333, 

0.3333] 

[0.3333, 

0.3333] 

𝑷(𝑦𝑒|𝑡3) 
[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

𝑷(𝑡1|𝑦𝑚) 
[0.0211, 

0.2030] 

[0.2030, 

0.0107] 

[0.0211, 

0.2030] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

𝑷(𝑡2|𝑦𝑚) 
[0.3960, 

0.4188] 

[0.3960, 

0.4188] 

[0.5779, 

0.2266] 

[0.0000, 

0.5000] 

[0.5000, 

0.0000] 

[0.0000, 

0.5000] 

𝑷(𝑡3|𝑦𝑚) 
[0.4010, 

0.5704] 

[0.4010, 

0.5704] 

[0.4010, 

0.5704] 

[0.5000, 

1.0000] 

[0.5000, 

1.0000] 

[1.0000, 

0.5000] 

𝑷(𝑡1|𝑦𝑚
𝐶 ) 

[0.7723, 

0.9808] 

[0.9808, 

0.7723] 

[0.7723, 

0.9808] 

[0.5000, 

1.0000] 

[0.5000, 

1.0000] 

[1.0000, 

0.5000] 

𝑷(𝑡2|𝑦𝑚
𝐶 ) 

[0.0192, 

0.2277] 

[0.0192, 

0.2277] 

[0.2277, 

0.0192] 

[0.0000, 

0.5000] 

[0.5000, 

0.0000] 

[0.0000, 

0.5000] 

𝑷(𝑡3|𝑦𝑚
𝐶 ) 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

𝑷(𝑦𝑚) 
[0.5523, 

0.8647] 

[0.5523, 

0.8647] 

[0.5523, 

0.8647] 

[0.3417, 

0.5924] 

[0.3417, 

0.5924] 

[0.3417, 

0.5924] 

𝑷(𝑦𝑚
𝐶 ) 

[0.4477, 

0.1353] 

[0.4477, 

0.1353] 

[0.4477, 

0.1353] 

[0.6583, 

0.4076] 

[0.6583, 

0.4076] 

[0.6583, 

0.4076] 

Results 

𝑷(𝑦𝑚|𝑦𝑒) 
[0.9903, 

0.9835] 

[0.9903, 

0.9835] 

[0.9061, 

0.9984] 

[1.0000, 

.9105] 

[0.6750, 

1.0000] 

[1.0000, 

0.8532] 

% of uniform MC 

simulation results 

contained by 

posterior interval 

N/A 17.61% 99.98% N/A 100.00% 75.11% 

Range of MC 

results 
N/A 

0.8972 to 

0.9985 

0.8977 to 

0.9985 
N/A 0.6786 to 1.0000 

(𝑷(𝑦𝑚|𝑦𝑒) range)/ 

(MC range), % 
N/A -6.71% 91.64% N/A 101.15% -45.67% 
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Some interesting things should be noted about the results. For Model 1, both the 

original intervals and Case 1 give the same posterior probability interval. This is due to 

the value of 𝑷(𝑦𝑒|𝑡1) = [0,0]—the values of any intervals that are multiplied by [0,0] 

will have no effect on the posterior probability. The only differences between Case 1 and 

the original equation are the values of 𝑷(𝑡1|𝑦𝑚1) and 𝑷(𝑡1|𝑦𝑚1
𝐶 ), and these are multiplied 

by 𝑷(𝑦𝑒|𝑡1) in the probability chain. The result of the original equation should be ignored 

because it has not been subjected to the LCC, but Case 1 encompasses a disappointingly 

small proportion of the MC simulation results. On the other hand, Case 2 gives a 

posterior probability interval that excellently predicts the Monte Carlo simulation results. 

For Model 2, the unique intervals used in Case 3 and Case 4 were determined by 

subtraction with the Logic Coherence Constraint. However, Case 3 can be converted to 

Case 4 by using the dual operator on the intervals 𝑷(𝑡2|𝑦𝑚), 𝑷(𝑡3|𝑦𝑚), 𝑷(𝑡1|𝑦𝑚
𝐶 ), and 

𝑷(𝑡2|𝑦𝑚
𝐶 ). Thus both Case 3 and Case 4 can be subject to the exact same Monte Carlo 

simulation for verification. The graphical results of the applicable Monte Carlo 

simulations are shown in Figure 19, Figure 20, Figure 21, and Figure 22. 
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Figure 19:A histogram of the results of a 1,000,000 run Monte Carlo simulation of 𝑷(𝒚𝒎|𝒚𝒆), Case 1, Model 1, 

with uniformly distributed input probabilities. Note that the bins are in decreasing order, because the Case 1 

posterior probability interval 𝑷(𝒚𝒎𝟏|𝒚𝒆) is improper. 

 

Figure 20: A histogram of the results of a 1,000,000 run Monte Carlo simulation of 𝑷(𝒚𝒎|𝒚𝒆), Case 2, Model 1, 

with uniformly distributed input probabilities. 
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Figure 21: A histogram of the results of a 1,000,000 

run Monte Carlo simulation of 𝑷(𝒚𝒎|𝒚𝒆), Case 3, 

Model 2, with uniformly distributed input 

probabilities. The same MC simulation is also used 

in Figure 22, although it is binned differently to 

reflect the different posterior probability interval. 

 

Figure 22: A histogram of the results of a 1,000,000 run 

Monte Carlo simulation of 𝑷(𝒚𝒎|𝒚𝒆), Case 4, Model 2, 

with uniformly distributed input probabilities. Note that 

the bins are in decreasing order, because the Case 4 

posterior probability interval 𝑷(𝒚𝒎𝟐|𝒚𝒆) is improper. 

The results of these Monte Carlo simulations are not particularly intuitive. The 

distributions of the Monte Carlo simulations for Model 1 (Case 1 and Case 2) have an 

almost identical shape and range—only the predicted range of the posterior probability 

interval was significantly different. The posterior probability interval for Case 2 was 

sound, as so many other predictions have been, but it was also nearly complete. This 

almost perfect prediction was the result of a seemingly subtle decision as to whether to 

consider simulations at temperature 𝑡1 or 𝑡2 non focal—and the better prediction came 

when 𝑡2 was non-focal, even though 𝑡2 should have a greater importance in the analysis 

than 𝑡1. 

In a similar fashion, the Monte Carlo simulation was identical for Case 3 and 

Case 4. The prediction of posterior probability for Case 3 was complete and nearly 

sound—it likely would prove entirely sound if enough simulations were run. Case 4, on 



 

102 

 

the other hand, contained far fewer of the MC simulation results. Again, it is non-

intuitive that making 𝑡2 into a non-focal event would result in an almost perfect 

prediction of the posterior probability. 

5.1.6: Comparing models by comparing GIBR results 

If Case 2 is taken as the best representation of Model 1 and Case 3 is taken as the 

best representation of Model 2, then some conclusions can be drawn about the relative 

behavior of each model. Recall that for Model  1, 𝑷(𝑦𝑚1|𝑦𝑒) = [0.9061,0.9984], and for 

Model 2 𝑷(𝑦𝑚2|𝑦𝑒) = [0.6750,1.0000]. Model 2 exhibits a far greater epistemic 

uncertainty than Model 1; it apparently predicts a wider range of results between the 

orientations, and so the lack of knowledge about which orientation is in use leads to 

greater uncertainty about yielding behavior. This conclusion, drawn from the posterior 

probability intervals alone, can be corroborated by comparing Table 17 with Table 20—

the range of average yield strengths for Model 1 is about 45 MPa, to Model 2’s 55 MPa, 

and Model 2 exhibits a larger standard deviation for yield strengths at all orientations. 

Although 𝑷(𝑦𝑚2|𝑦𝑒) is slightly larger than 𝑷(𝑦𝑚1|𝑦𝑒), 𝑷(𝑦𝑚1|𝑦𝑒) is much higher 

than 𝑷(𝑦𝑚2|𝑦𝑒). From this it can be concluded that Model 1 has a much higher likelihood 

than Model 2 of predicting yield when the experiments exhibit yielding. This can be 

corroborated by again comparing Table 17 with Table 20—the yield strengths found by 

Model 1 are much lower than those found by Model 2. 

These observations are not intended to show that one model is necessarily better 

or worse than the other. For instance, if a model 𝑚0 showed yield strengths close to zero, 

then it would predict yielding for almost any stress, and 𝑷(𝑦𝑚0|𝑦𝑒) would be very close 

to [1,1]. This would not mean the model was good, but rather that the model was almost 

certain to predict yielding at or below the stress at which the experiments show yielding. 

Similarly, a model 𝑚∞ with a nearly infinite yield strength would seldom predict 

yielding, and 𝑷(𝑦𝑚∞|𝑦𝑒) would be very close to [0,0], showing only that the model was 



 

103 

 

almost certain to not predict yielding where experiments demonstrate it should occur. 

Neither 𝑚0 nor 𝑚∞ is particularly accurate or useful, but their behavior exhibits very 

little uncertainty. For a measure of which model should be considered better, see §5.3: 

Model validation with Kullback-Leibler divergence. 

5.2: GIBR as a combinatory tool. 

5.2.1: Combining models of the same scale with Model 1 and Model 2 

If two simulations arrive at different results and there is no experimental evidence 

available, it is helpful to have some method to combine the evidence of the simulations—

to use one simulation to update the other. In this section, both 𝑷(𝑦𝑚1|𝑦𝑚2) and 

𝑷(𝑦𝑚2|𝑦𝑚1) are calculated and then verified through Monte Carlo simulation. The 

equations necessary for this update are simple modifications of equation ( 31 ): the 

updating evidence 𝑦𝑒 is replaced with the updating model 𝑦𝑚𝑐 , where 𝑦𝑚 is the primary 

model and 𝑦𝑚𝑐  is the updating model. This is shown in equations ( 34 ) and ( 35 ). 

𝑷(𝑦𝑚1|𝑦𝑚2) =

[𝑷(𝑦𝑚2|𝑡1) 𝑷(𝑦𝑚2|𝑡2) 𝑷(𝑦𝑚2|𝑡3)] [

𝑷(𝑡1|𝑦𝑚1)

𝑷(𝑡2|𝑦𝑚1)

𝑷(𝑡3|𝑦𝑚1)
] 𝑷(𝑦𝑚1)

𝑑𝑢𝑎𝑙 ([𝑷(𝑦𝑚2|𝑡1) 𝑷(𝑦𝑚2|𝑡2) 𝑷(𝑦𝑚2|𝑡3)] [

𝑷(𝑡1|𝑦𝑚1) 𝑷(𝑡1|𝑦𝑚1
𝐶 )

𝑷(𝑡2|𝑦𝑚1) 𝑷(𝑡2|𝑦𝑚1
𝐶 )

𝑷(𝑡3|𝑦𝑚1) 𝑷(𝑡3|𝑦𝑚1
𝐶 )

] [
𝑷(𝑦𝑚1)

𝑷(𝑦𝑚1
𝐶 )

])

 ( 34 ) 

𝑷(𝑦𝑚2|𝑦𝑚1) =

[𝑷(𝑦𝑚1|𝑡1) 𝑷(𝑦𝑚1|𝑡2) 𝑷(𝑦𝑚1|𝑡3)] [

𝑷(𝑡1|𝑦𝑚2)

𝑷(𝑡2|𝑦𝑚2)

𝑷(𝑡3|𝑦𝑚2)
] 𝑷(𝑦𝑚2)

𝑑𝑢𝑎𝑙 ([𝑷(𝑦𝑚1|𝑡1) 𝑷(𝑦𝑚1|𝑡2) 𝑷(𝑦𝑚1|𝑡3)] [

𝑷(𝑡1|𝑦𝑚2) 𝑷(𝑡1|𝑦𝑚2
𝐶 )

𝑷(𝑡2|𝑦𝑚2) 𝑷(𝑡2|𝑦𝑚2
𝐶 )

𝑷(𝑡3|𝑦𝑚2) 𝑷(𝑡3|𝑦𝑚2
𝐶 )

] [
𝑷(𝑦𝑚2)

𝑷(𝑦𝑚2
𝐶 )

])

 ( 35 ) 

5.2.1.1: Calculation of the relevant probabilities from the complementary model 

The only interval inputs that have yet to be determined in the construction of these 

equations are 𝑷(𝑦𝑚1|𝑡1), 𝑷(𝑦𝑚1|𝑡2), 𝑷(𝑦𝑚1|𝑡3), 𝑷(𝑦𝑚2|𝑡1), 𝑷(𝑦𝑚2|𝑡2), and 𝑷(𝑦𝑚2|𝑡3). 

For each model, each temperature and orientation have 243 different predicted yield 

strengths. The mean and standard deviation of these yield strengths is easily calculated, 
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and the CDF of that distribution can then be compared to the test stress of 150 MPa, 

giving the probability that the model predicts yielding for that temperature and 

orientation. Then for each temperature, the highest and lowest probabilities from the three 

orientations are used as the bounds of the interval probability. These calculations are 

summarized for Model 1 in Table 25 and for Model 2 in Table 26. 

Table 25: Calculation of 𝑷(𝒚𝒎𝟏|𝒕)for Model 1. 

Temperature 𝑡1=143 K 𝑡2=195 K 𝑡3=250 K 

Orientation Number #4 #5 #6 #4 #5 #6 #4 #5 #6 

Average Yield Strength 
(MPa) 

151.6 162.1 228.9 90.9 96.8 131.2 42.3 45.7 59.8 

Standard Deviation of 
Yield Strength (MPa) 

28.1 29.0 41.9 23.2 23.6 32.3 13.0 14.0 18.0 

𝑃(𝑦𝑚1|𝑡, 𝑜𝑟𝑖𝑒𝑛𝑡. ) 47.74% 33.84% 2.97% 99.46% 98.81% 72.02% 100% 100% 100% 

𝑷(𝑦𝑚1|𝑡) [0.0297,0.4774] [0.7202,0.9946] [1.0000,1.0000] 

 

Table 26: Calculation of 𝑷(𝒚𝒎𝟐|𝒕)for Model 2. 

Temperature 𝑡1=143 K 𝑡2=195 K 𝑡3=250 K 

Orientation Number #4 #5 #6 #4 #5 #6 #4 #5 #6 

Average Yield Strength 
(MPa) 

215.2 222.5 318.1 130.0 127.5 175.7 59.9 57.0 77.6 

Standard Deviation of 
Yield Strength (MPa) 

10.4 11.2 15.5 5.6 5.9 8.1 7.1 2.4 2.6 

𝑃(𝑦𝑚2|𝑡, 𝑜𝑟𝑖𝑒𝑛𝑡. ) 0.00% 0.00% 0.00% 99.98% 99.99% 0.08% 100% 100% 100% 

𝑷(𝑦𝑚2|𝑡) [0.0000,0.0000] [0.0008,0.9999] [1.0000,1.0000] 

 

Immediately the extreme width of the interval 𝑷(𝑦𝑚2|𝑡2) incites caution. However, 

because it is not complete ignorance, and because eliminating it would also lead to eliminating 

much information from 𝑷(𝑦𝑚2|𝑡1) and 𝑷(𝑦𝑚2|𝑡3), it will remain in use for equation ( 34 ). It 

should be noted, however, that the results of equation ( 35 ) should be viewed with greater 

confidence than those of equation ( 34 ). 
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5.2.1.2: Calculating the posterior probabilities for each model, and verifying with Monte 

Carlo simulation 

Calculating the posterior probabilities is a simple matter; the relevant intervals are 

simply substituted into equations ( 34 ) and ( 35 ). The input values and the resulting posterior 

probability intervals are shown along with the results of verifying Monte Carlo simulations in 

Table 27. 

Table 27: Summary of the interval valued inputs and Monte Carlo simulation results for both Models 1 and 2 in 

the GIBR equation ( 31 ). For equation ( 34 ), 𝒚𝒎𝑪  refers to Model 2 and 𝒚𝒎 refers to Model 1. For equation 

( 35 ) the reverse is true. 

 Model 1, equation ( 34 ) Model 2, equation ( 35 ) 

 
Original 

Intervals 

Case 1: 

Nonfocal 

T1 

Case 2: 

Nonfocal 

T2 

Original 

Intervals 

Case 3: 

Nonfocal 

T2 

Case 4: 

Nonfocal 

T1,T3 

𝑷(𝑦𝑚𝐶|𝑡1) 
[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0297, 

0.4774 

[0.0297, 

0.4774 

[0.0297, 

0.4774 

𝑷(𝑦𝑚𝐶|𝑡2) 
[0.0008, 

0.9999] 

[0.0008, 

0.9999] 

[0.0008, 

0.9999] 

[0.7202, 

0.9946] 

[0.7202, 

0.9946] 

[0.7202, 

0.9946] 

𝑷(𝑦𝑚𝐶|𝑡3) 
[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

[1.0000, 

1.0000] 

𝑷(𝑡1|𝑦𝑚) 
[0.0211, 

0.2030] 

[0.2030, 

0.0107] 

[0.0211, 

0.2030] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

𝑷(𝑡2|𝑦𝑚) 
[0.3960, 

0.4188] 

[0.3960, 

0.4188] 

[0.5779, 

0.2266] 

[0.0000, 

0.5000] 

[0.5000, 

0.0000] 

[0.0000, 

0.5000] 

𝑷(𝑡3|𝑦𝑚) 
[0.4010, 

0.5704] 

[0.4010, 

0.5704] 

[0.4010, 

0.5704] 

[0.5000, 

1.0000] 

[0.5000, 

1.0000] 

[1.0000, 

0.5000] 

𝑷(𝑡1|𝑦𝑚
𝐶 ) 

[0.7723, 

0.9808] 

[0.9808, 

0.7723] 

[0.7723, 

0.9808] 

[0.5000, 

1.0000] 

[0.5000, 

1.0000] 

[1.0000, 

0.5000] 

𝑷(𝑡2|𝑦𝑚
𝐶 ) 

[0.0192, 

0.2277] 

[0.0192, 

0.2277] 

[0.2277, 

0.0192] 

[0.0000, 

0.5000] 

[0.5000, 

0.0000] 

[0.0000, 

0.5000] 

𝑷(𝑡3|𝑦𝑚
𝐶 ) 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

[0.0000, 

0.0000] 

𝑷(𝑦𝑚) 
[0.5523, 

0.8647] 

[0.5523, 

0.8647] 

[0.5523, 

0.8647] 

[0.3417, 

0.5924] 

[0.3417, 

0.5924] 

[0.3417, 

0.5924] 

𝑷(𝑦𝑚
𝐶 ) 

[0.4477, 

0.1353] 

[0.4477, 

0.1353] 

[0.4477, 

0.1353] 

[0.6583, 

0.4076] 

[0.6583, 

0.4076] 

[0.6583, 

0.4076] 
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 Model 1, equation ( 34 ) Model 2, equation ( 35 ) 

 
Original 

Intervals 

Case 1: 

Nonfocal 

T1 

Case 2: 

Nonfocal 

T2 

Original 

Intervals 

Case 3: 

Nonfocal 

T2 

Case 4: 

Nonfocal 

T1,T3 

Results 

𝑷(𝑦𝑚|𝑦𝑚𝐶) 
[1.0000, 

0.9652] 

[1.0000, 

0.9652] 

[0.9996, 

0.9962] 

[0.9458, 

0.6907] 

[0.5408, 

0.7527] 

[0.9458, 

0.6632 

% of uniform MC 

simulation results 

contained by 

posterior interval 

N/A 61.72% 6.37% N/A 67.62% 56.47% 

Range of MC 

results 
N/A 

0.8195 to 

1.0000 

0.8170 to 

1.0000 
N/A 0.4172 to 0.9774 

(𝑷(𝑦𝑚|𝑦𝑚𝐶) range)/ 

(MC range), % 
N/A -19.24% -1.86% N/A 37.34% -50.44% 

 

As with the experimentally updated posterior probabilities from §5.1.5, both the 

original intervals and Case 1 for Model 1 give the same posterior probability interval 

when updated with the Model 2 results. Again, this is because 𝑷(𝑦𝑚2|𝑡1), like 𝑷(𝑦𝑒|𝑡1), 

is equal to [0,0]. Neither Case 1 nor Case 2, gives a posterior probability interval that 

predicts the range of the Monte Carlo simulation results very well. This is likely due to 

the already-mentioned width of the interval 𝑷(𝑦𝑚2|𝑡2). 

In another parallel to the experimentally updated posterior probabilities of §5.1.5, 

Case 3 and Case 4 of the two-model updates differ only by the use of the dual operator, 

despite being determined by choosing non-focal events and subjecting those events to the 

Logic Coherence Constraint. Case 3 and Case 4 thus share the same Monte Carlo 

simulation for verification, and once again Case 3 performs the best in terms of 

predicting where the greatest concentration of MC simulation results will be found. In 

fact, even though the Case 3 posterior probability interval is narrower than that of Case 4, 

it contains more of the simulation results due to better positioning. The results of the 

applicable Monte Carlo simulations are shown in Figure 23, Figure 24, Figure 25, and 

Figure 26. 
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Figure 23: A histogram of the results of a 1,000,000 run Monte Carlo simulation of 𝑷(𝒚𝒎𝟏|𝒚𝒎𝟐) (equation 

( 34 )), Case 1, Model 1, with uniformly distributed input probabilities. Note that the bins are in decreasing 

order, because the Case 1 posterior probability interval 𝑷(𝒚𝒎𝟏|𝒚𝒎𝟐) is improper. 

 

Figure 24: A histogram of the results of a 1,000,000 run Monte Carlo simulation of 𝑷(𝒚𝒎𝟏|𝒚𝒎𝟐) (equation 

( 34 )), Case 2, Model 1, with uniformly distributed input probabilities. The bins are again in decreasing order, 

because the Case 2 posterior probability interval 𝑷(𝒚𝒎𝟏|𝒚𝒎𝟐) is improper. In fact, the simulation results appear 

almost identical to those of Case 1, although the predicted posterior probability interval is much narrower and 

does not contain the peak of the simulation results. 
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Figure 25: A histogram of the results of a 1,000,000 run Monte Carlo simulation of 𝑷(𝒚𝒎𝟐|𝒚𝒎𝟏) (equation 

( 35 )), Case 3, Model 2, with uniformly distributed input probabilities. The same MC simulation is also used in 

Figure 26, although it is binned differently to reflect the different posterior probability interval. 

 

Figure 26: A histogram of the results of a 1,000,000 run Monte Carlo simulation of 𝑷(𝒚𝒎𝟐|𝒚𝒎𝟏) (equation 

( 35 )), Case 4, Model 2, with uniformly distributed input probabilities. Note that the bins are in decreasing 

order, because the Case 4 posterior probability interval 𝑷(𝒚𝒎𝟐|𝒚𝒎𝟏) is improper.  
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5.2.1.3: Comparing models using GIBR 

Based on the results of the Monte Carlo simulations, Case 1 should be considered 

the best representation of 𝑷(𝑦𝑚1|𝑦𝑚2), and Case 3 should be considered the best 

representation of 𝑷(𝑦𝑚2|𝑦𝑚1). The results of Case 1 are suspect because of the wide 

interval for 𝑷(𝑦𝑚2|𝑡2), but some general conclusions can be reached. Recall that for 

Case 1, 𝑷(𝑦𝑚1|𝑦𝑚2) = [1.0000,0.9652]. The high percentages of the aleatory 

uncertainty in this interval indicate that the updating model, Model 2, is much less likely 

to predict yielding than the updated model, Model 1—that Model 1 is almost certain to 

predict yielding whenever Model 2 does so. This reflects the higher yield strengths found 

by Model 2 (seen in Table 20) as compared to those found by Model 1 (Table 17). 

Recall that for Case 3, 𝑷(𝑦𝑚2|𝑦𝑚1) = [0.5408,0.7527]. The aleatory uncertainty 

may be as low as an almost ambivalent 54.08%, indicating that Model 1’s results do not 

greatly inform the user as to the likely result of Model 2. This makes sense, because 

Model 2 not only predicts higher yield strengths than Model 1, but it also has a much 

wider spread of yield strengths, reflected in its larger standard deviation. This may also 

be related to the fairly wide band of epistemic uncertainty present in the posterior 

probability—one that represents a significant lack of knowledge, but that by no means 

approaches complete ignorance. 

5.2.2: Combining across scales with Model 1 and Model 3 

While Model 3 has only limited data available, it is still possible to combine the 

limited evidence that is available with that of another model, in this case Model 1. 

Model 3 has no data available at temperature 3 (250 K), so the equations are simplified to 

only two discretized temperatures: 

𝑷(𝑦𝑚1|𝑦𝑚3) =

[𝑷(𝑦𝑚3|𝑡1) 𝑷(𝑦𝑚3|𝑡2)] [
𝑷(𝑡1|𝑦𝑚1)

𝑷(𝑡2|𝑦𝑚1)
] 𝑷(𝑦𝑚1)

𝑑𝑢𝑎𝑙 ([𝑷(𝑦𝑚3|𝑡1) 𝑷(𝑦𝑚3|𝑡2)] [
𝑷(𝑡1|𝑦𝑚1) 𝑷(𝑡1|𝑦𝑚1

𝐶 )

𝑷(𝑡2|𝑦𝑚1) 𝑷(𝑡2|𝑦𝑚1
𝐶 )

] [
𝑷(𝑦𝑚1)

𝑷(𝑦𝑚1
𝐶 )

])

 ( 36 ) 
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𝑷(𝑦𝑚3|𝑦𝑚1) =

[𝑷(𝑦𝑚1|𝑡1) 𝑷(𝑦𝑚1|𝑡2)] [
𝑷(𝑡1|𝑦𝑚3)

𝑷(𝑡2|𝑦𝑚3)
] 𝑷(𝑦𝑚3)

𝑑𝑢𝑎𝑙 ([𝑷(𝑦𝑚1|𝑡1) 𝑷(𝑦𝑚1|𝑡2)] [
𝑷(𝑡1|𝑦𝑚3) 𝑷(𝑡1|𝑦𝑚3

𝐶 )

𝑷(𝑡2|𝑦𝑚3) 𝑷(𝑡2|𝑦𝑚3
𝐶 )

] [
𝑷(𝑦𝑚3)

𝑷(𝑦𝑚3
𝐶 )

])

 ( 37 ) 

 

While some of the probabilities shown in these equations have been calculated 

previously, they included the data at 250 K for Model 1. Thus, all probabilities must be 

re-calculated for the sake of consistency within the equations. Because of the limited data 

available for Model 3 and the heavy effect of the prior probability on the posterior, using 

Model 3 to generate a prior and updating that with Model 1 is unlikely to have a useful 

result. However, the limited observations from Model 3 may be used to update Model 1. 

With this in mind, equation ( 36 ) will be investigated, while equation ( 37 ) will not be 

developed further. In order to avoid confusion with the other probabilities in this chapter, 

probabilities with potentially ambiguous labels will be denoted with a prime (e.g. 𝑦′), 

indicating that they are for use with this model combination only. Thus, the probabilities 

that must be calculated are 𝑷(𝑦𝑚3|𝑡1), 𝑷(𝑦𝑚3|𝑡2), 𝑷(𝑡1|𝑦
′
𝑚1
), 𝑷(𝑡2|𝑦

′
𝑚1
), 𝑷(𝑡1|𝑦

′
𝑚1
𝐶
), 

𝑷(𝑡2|𝑦
′
𝑚1
𝐶
),  𝑷(𝑦′

𝑚1
), and 𝑷(𝑦′

𝑚1
𝐶
), which will finally allow the calculation of 

𝑷(𝑦𝑚1|𝑦𝑚3). 

5.2.2.1: Calculation of relevant probabilities from Model 1 results 

By comparing the chosen stress of 150 MPa with the approximated CDFs 

mentioned in §5.1.1, the probability that the model will predict yielding at each 

orientation can be determined. In this case only the simulations at 𝑡1 = 143 𝐾 and 

𝑡2 = 195 𝐾 are examined; this means that there are now 162 simulations at each 

orientation (81 simulations for each of two temperatures). These calculations are 

summarized in Table 28. 
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Table 28: Calculation of the interval probability that Model 1 predicts yielding, without the data from 

temperature 3. 

Orientation 
Average Yield 

Strength, Model 1 

Standard Deviation 

of Yield Strength, 

Model 1 
𝑃(𝑦𝑚1|𝑜𝑟𝑖𝑒𝑛𝑡. ) 𝑷(𝑦′𝑚1) 

#4 121.3 MPa 39.8 MPa 76.49% 𝑷(𝑦′
𝑚1
) 𝑷(𝑦′

𝑚1
) 

#5 129.4 MPa 42.0 MPa 68.78% 0.3128 0.7649 

#6 180.0 MPa 61.5 MPa 31.28% 
  

By the Logic Coherence Constraint, 𝑷(𝑦′
𝑚1

𝐶
) = [0.6872,0.2351] 

 

The calculations for 𝑷(𝑡1|𝑦
′
𝑚1
), 𝑷(𝑡2|𝑦

′
𝑚1
), 𝑷(𝑡1|𝑦

′
𝑚1
𝐶
), and 𝑷(𝑡2|𝑦

′
𝑚1
𝐶
) are given in 

Table 29 and Table 30. It is worth noting that the values for 𝑷(𝑡|𝑦′
𝑚1
𝐶
) are identical to 

the values for 𝑷(𝑡|𝑦𝑚1
𝐶 ). This is due to the fact that all simulations at 250 K had exhibited 

yield strengths below 150 MPa. 

Table 29: Summary of the calculation of 𝑷(𝒕|𝒚′
𝒎𝟏
).  

 

Quantity of Simulations 

Exhibiting Yield in Model 1 
𝑷(𝑡|𝑦′

𝑚1
) 

Orientation No. #4 #5 #6 #4 #5 #6 Interval 

T=143 K 41 30 3 0.3388 0.2727 0.0492 [0.0492,0.3388] 

T=195 K 80 80 58 0.6612 0.7273 0.9508 [0.6612,0.9508] 

All Temps. 121 110 61 1.0000 1.0000 1.0000 [0.7915,1.2085] 

 

Table 30: Summary of the calculation of 𝑷(𝒕|𝒚′
𝒎𝟏
𝑪
).  

 

Quantity of Simulations NOT 

Exhibiting Yield in Model 1 
𝑷(𝑡|𝑦′

𝑚1
𝐶
) 

Orientation No. #4 #5 #6 #4 #5 #6 Interval 

T=143 K 40 51 78 0.9756 0.9808 0.7723 [0.7723,0.9808] 

T=195 K 1 1 23 0.0244 0.0192 0.2277 [0.0192,0.2277] 

All Temps. 41 52 101 1.0000 1.0000 1.0000 [0.7915,1.2085] 

 

5.2.2.2: Calculation of the relevant probabilities from the Model 3 results 

One set of simulations was run using Model 3 for each temperature and 

orientation. In order to calculate 𝑷(𝑦𝑚3|𝑡1) and 𝑷(𝑦𝑚3|𝑡2), it is only necessary to know 
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whether or not each simulation predicted yield at or below 150 MPa. The graphs of stress 

and strain for these simulations are shown in Figure 27 through Figure 32: 

 

 

Figure 27: Stress-strain data for Model 3 at 143 K, Orientation #4. The sloped line shown is a linear regression 

of all the data points. 

 

Figure 28: Stress-strain data for Model 3 at 143 K, Orientation #5. The sloped line shown is a linear regression 

of the first 20 data points, which does not include the labeled point at 366 MPa. 
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Figure 29: Stress-strain data for Model 3 at 143 K, Orientation #6. The sloped line shown is a linear regression 

of the first 20 data points, which does not include the labeled point at 495 MPa. 

As seen in Figure 27, Figure 28, and Figure 29, all of the simulations at 143 K 

exhibited yield far above 150 MPa. The yield stresses for orientations #5 and #6 were 

estimated as 366 MPa and 495 MPa, respectively, by visually checking for inelastic 

behavior in the curves. While the actual yield stress for orientation #4 at this temperature 

was not determined, it is enough to know that it had not yet yielded by 150 MPa. This 

analysis results in the interval 𝑷(𝑦𝑚3|𝑡1) = [0,0]. 
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Figure 30: Stress-strain data for Model 3 at 195 K, Orientation #4. The sloped line shown is a linear regression 

of the first eleven data points, which does not include the labeled point at 123 MPa. 

 

Figure 31: Stress-strain data for Model 3 at 195 K, Orientation #5. The sloped line shown is a linear regression 

of the first nine data points, which does not include the labeled point at 143 MPa. 
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Figure 32: Stress-strain data for Model 3 at 195 K, Orientation #6. The sloped line shown is a linear regression 

of the first nine data points, which does not include the labeled point at 190 MPa. 

When the stress-strain behavior of the material was simulated at 195 K, the yield 

strengths of orientations #4 through #6 were estimated as 123 MPa, 143 MPa, and 190 

MPa, respectively. These values encompass the stress of interest, 150 MPa, and so the 

value of 𝑷(𝑦𝑚3|𝑡2) is [0,1]. 

5.2.2.3: Calculating the update of Model 1 by Model 3 

With all of the relevant values in place, equation ( 36 ) becomes: 

𝑷(𝑦𝑚1|𝑦𝑚3) =

[[0,0] [0,1]] [
[0.0492,0.3388]

[0.6612,0.9508]
] [0.3128,0.7649]

𝑑𝑢𝑎𝑙 ([[0,0] [0,1]] [
[0.0492,0.3388] [0.7723,0.9808]

[0.6612,0.9508] [0.0192,0.2277]
] [
[0.3128,0.7649]

[0.6872,0.2351]
])

 ( 38 ) 

Note that the mutually disjoint events 𝑷(𝑡1|𝑦
′
𝑚1
) and 𝑷(𝑡2|𝑦

′
𝑚1
) do not comply 

with the Logic Coherence Constraint, nor do events 𝑷(𝑡1|𝑦
′
𝑚1
𝐶
) and 𝑷(𝑡2|𝑦

′
𝑚1
𝐶
). 

However, due to the nature of the discretization used, selecting a non-focal event simply 

switches the bounds of the associated intervals. Thus, if temperature 1 is considered non-

focal, then equation ( 38 ) becomes equation ( 39 ), and if temperature 2 is considered 

non-focal, then equation ( 38 ) becomes equation ( 40 ): 



 

116 

 

𝑷(𝑦𝑚1|𝑦𝑚3) =

[[0,0] [0,1]] [
[𝟎. 𝟑𝟑𝟖𝟖, 𝟎. 𝟎𝟒𝟗𝟐]

[0.6612,0.9508]
] [0.3128,0.7649]

𝑑𝑢𝑎𝑙 ([[0,0] [0,1]] [
[𝟎. 𝟑𝟑𝟖𝟖, 𝟎. 𝟎𝟒𝟗𝟐] [𝟎. 𝟗𝟖𝟎𝟖, 𝟎. 𝟕𝟕𝟐𝟑]

[0.6612,0.9508] [0.0192,0.2277]
] [
[0.3128,0.7649]

[0.6872,0.2351]
])

 ( 39 ) 

𝑷(𝑦𝑚1|𝑦𝑚3) =

[[0,0] [0,1]] [
[0.0492,0.3388]

[𝟎. 𝟗𝟓𝟎𝟖, 𝟎. 𝟔𝟔𝟏𝟐]
] [0.3128,0.7649]

𝑑𝑢𝑎𝑙 ([[0,0] [0,1]] [
[0.0492,0.3388] [0.7723,0.9808]

[𝟎. 𝟗𝟓𝟎𝟖, 𝟎. 𝟔𝟔𝟏𝟐] [𝟎. 𝟐𝟐𝟕𝟕, 𝟎. 𝟎𝟏𝟗𝟐]
] [
[0.3128,0.7649]

[0.6872,0.2351]
])

 ( 40 ) 

In addition, because of the zeros in the lower bounds of the 𝑷(𝑦𝑚3|𝑡) terms, the 

limit of each equation must be taken in order to calculate the lower bound of the posterior 

probability. The results of these equations are given in Table 31: 

Table 31: Summary of the interval valued inputs and Monte Carlo simulation results for updating Model 1 with 

Model 3 in GIBR equation ( 36 ). The Monte Carlo simulation utilized uniform inputs, and consisted of one 

million runs. Also included are the real values from the intervals that give the extreme possible values for the 

posterior probability. Italics denote values determined by subtraction from a complementary event. 

 
Original, 

equation ( 38 ) 

Nonfocal T1, 

equation ( 39 ) 

Nonfocal T2, 

equation ( 40 ) 

Lower 

Extreme 

Upper 

Extreme 

𝑷(𝑦𝑚3|𝑡1) [0.0000,0.0000] [0.0000,0.0000] [0.0000,0.0000] 0.0000 0.0000 

𝑷(𝑦𝑚3|𝑡2) [0.0000,1.0000] [0.0000,1.0000] [0.0000,1.0000] 0.0000 1.0000 

𝑷(𝑡1|𝑦
′
𝑚1
) [0.0492,0.3388] [0.3388,0.0492] [0.0492,0.3388] 0.0492 0.0492 

𝑷(𝑡2|𝑦
′
𝑚1
) [0.6612,0.9508] [0.6612,0.9508] [0.9508,0.6612] 0.9508 0.9508 

𝑷(𝑡1|𝑦
′
𝑚1
𝐶
) [0.7723,0.9808] [0.9808,0.7723] [0.7723,0.9808] 0.9808 0.9808 

𝑷(𝑡2|𝑦
′
𝑚1
𝐶
) [0.0192,0.2277] [0.0192,0.2277] [0.2277,0.0192] 0.0192 0.0192 

𝑷(𝑦′
𝑚1
) [0.3128,0.7649] [0.3128,0.7649] [0.3128,0.7649] 0.3128 0.7649 

𝑷(𝑦′
𝑚1
𝐶
) [0.6872,0.2351] [0.6872,0.2351] [0.6872,0.2351] 0.6872 0.2351 

𝑷(𝑦𝑚1|𝑦𝑚3) [0.2900,0.9314] [0.3128,0.9314] [0.3128,0.9911] 0.0223 0.9938 

% of uniform MC 

simulation results 

contained by 

posterior interval 

70.15% 70.15% 99.90% N/A N/A 

Range of MC 

results 
0.5753 to 0.9935 N/A N/A 

(𝑷(𝑦𝑚1|𝑦𝑚3) range)/ 

(MC range), % 
153.4% 147.9% 162.2% N/A N/A 

 

The updates provided by these three formulations of equation ( 36 ) are each very 

similar. While all three updates raise the upper bound, possibly indicating an increase in 

the probability of Model 1 predicting yield, they also lower the lower bound. Ultimately, 



 

117 

 

the uncertainty contained in the added evidence from Model 3 is the dominant 

characteristic of the update, which shows an increase in uncertainty. 

Monte Carlo simulation was performed to verify the soundness and completeness 

of each of these equations. This included the original interval equation despite its lack of 

compliance with the Logic Coherence Constraint. As with some of the earlier examples, 

because the intervals have the same bounds with different modality for all three cases of 

this equation, they can be verified using the exact same Monte Carlo simulation. The 

results of these Monte Carlo simulations are provided visually in Figure 33, Figure 34, 

and Figure 35. 

 

Figure 33: Histogram of a one million run Monte Carlo simulation of equation ( 38 ), with uniform inputs. 
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Figure 34: Histogram of a one million run Monte Carlo simulation of equation ( 39 ), with uniform inputs. 

 

Figure 35: Histogram of a one million run Monte Carlo simulation of equation ( 40 ), with uniform inputs. 

Each of these histograms reveals that the Monte Carlo simulation results leave a 

large portion of the posterior probability interval un-used, which may give the impression 
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that the predicted interval is not sound. However, Table 31 also contains the upper and 

lower extreme real values that are possible using the intervals. These extreme values were 

found by completing sixteen real-valued calculations, which allowed for every 

combination of extremes in the four independent intervals. The extreme values 

encompass both the Monte Carlo simulation results and the posterior probability 

intervals, illustrating that the predicted intervals are indeed sound. 

5.3 : Model validation with Kullback-Leibler divergence 

Model validation (or invalidation) may be based on the distance between a model 

and its Bayesian update (Babuška, Nobile, & Tempone, 2008) (Mahadevan & Rebba, 

2005). The Kullback-Leibler divergence (Kullback & Leibler, 1951) (Kullback S. , 1997) 

provides information about the divergence between two probability distributions. In the 

strictest sense, its lack of symmetry means that it is not a distance, but it is often used in a 

similar way in the validation process (Burnham & Anderson, 1998) (Cheung & Beck, 

2008). Where P and Q are discretized probability distributions, the K-L divergence of P 

from Q is given by: 

𝐷𝐾𝐿(𝑃|𝑄) =∑𝑃𝑖 ln
𝑃𝑖
𝑄𝑖

𝑖

 

For the special case of only two probabilities for each distribution (e.g. 𝑃(𝑦𝑚) and 

𝑃(𝑦𝑚
𝐶 )), this is written as: 

𝐷𝐾𝐿(𝑃|𝑄) = 𝑃1 ln
𝑃1
𝑄1
+ 𝑃2 ln

𝑃2
𝑄2

 

And, because ∑ 𝑃𝑖𝑖 = ∑ 𝑄𝑖𝑖 = 1, this can be written as: 

𝐷𝐾𝐿(𝑃|𝑄) = 𝑃1 ln
𝑃1
𝑄1
+ (1 − 𝑃1) ln

1 − 𝑃1
1 − 𝑄1

 

If either 𝑃1 or 𝑄1is equal to either zero or one, the above equation is defined as 

equal to zero. 
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The K-L divergence is not symmetric—that is, typically 𝐷𝐾𝐿(𝑃|𝑄) ≠ 𝐷𝐾𝐿(𝑄|𝑃). 

A symmetric measurement of the divergence between two probabilities P and Q can be 

obtained by adding 𝐷𝐾𝐿(𝑃|𝑄) and 𝐷𝐾𝐿(𝑄|𝑃). The sum of these is herein denoted as 

𝐷𝐾𝐿𝑆(𝑃, 𝑄). For any of these three measures of divergence, the closer the result is to zero, 

the less the two distributions diverge from one another, and the better each one 

approximates the other. 

5.3.1: Interval-valued K-L divergence 

When generalized interval valued-probabilities are used, the modality of the 

intervals must be considered. 𝐷𝐾𝐿 may take on any value greater than or equal to zero, 

and it is useful to know the largest possible range of values that the divergence may take. 

For this reason the interval-valued K-L divergence is formulated to provide a worst-case 

analysis. For the generalized interval valued probabilities 𝒑1 and 𝒒1, the following 

equations are used to calculate 𝑫𝐾𝐿𝑆: 

𝑷1 = 𝑝𝑟𝑜(𝒑1), 𝑷2 = 1 − 𝑑𝑢𝑎𝑙(𝑷1) 

𝑸1 = 𝑝𝑟𝑜(𝒒1), 𝑸2 = 1 − 𝑑𝑢𝑎𝑙(𝑸1) 

𝑫𝐾𝐿(𝑷|𝑸) = 𝑷1 ln
𝑷1
𝑸1

+ 𝑷2 ln
𝑷2
𝑸2

 

𝑫𝐾𝐿(𝑸|𝑷) = 𝑸1 ln
𝑸1
𝑷1
+ 𝑸2 ln

𝑸2
𝑷2

 

𝑫𝐾𝐿𝑆(𝒑, 𝒒) = 𝑝𝑟𝑜(𝑫𝐾𝐿(𝑷|𝑸)) + 𝑝𝑟𝑜(𝑫𝐾𝐿(𝑸|𝑷)) 

( 41 ) 

The divergence between 𝑷(𝑦𝑚) and 𝑷(𝑦𝑚|𝑦𝑒) provides an idea of the validity of 

the model. The results of these divergence calculations are given below in Table 32: 
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Table 32: K-L divergence validation of updating Models 1 and 2 with experimental results. 

 Model 1 Model 2 

 

Case 1: 

Nonfocal T1 

Case 2: 

Nonfocal T2 

Case 3: 

Nonfocal T2 

Case 4: 

Nonfocal T1,T3 

𝑝𝑟𝑜(𝑷(𝑦𝑚)) [0.5523,0.8647] [0.5523,0.8647] [0.3417,0.5924] [0.3417,0.5924] 

𝑝𝑟𝑜(𝑷(𝑦𝑚|𝑦𝑒)) [0.9835,0.9903] [0.9061,0.9984] [0.6750,1.0000] [0.8532,1.0000] 

𝑫𝐾𝐿(𝑷(𝑦𝑚)|𝑷(𝑦𝑚|𝑦𝑒)) [1.3931,0.1734] [2.1954,0.0090] [0.0000,0.0150] [0.0000,0.2001] 

𝑫𝐾𝐿(𝑷(𝑦𝑚|𝑦𝑒)|𝑷(𝑦𝑚)) [0.0919,0.5411] [0.0081,0.5821] [0.0145,1.0738] [0.1613,1.0738] 

𝑫𝐾𝐿𝑆(𝑷(𝑦𝑚), 𝑷(𝑦𝑚|𝑦𝑒)) [0.2653,1.9342] [0.0171,2.7775] [0.0145,1.0888] [0.1613,1.2740] 

 

In general, the divergence values for Model 2 are lower than those for Model 1, 

indicating that Model 2 is more valid than Model 1 when compared to the available 

experimental results. For Model 2, the symmetric K-L divergence for Case 3 is partially 

less than that of Case 4 (𝐶3𝑫𝐾𝐿𝑆 ≺ 𝐶4𝑫𝐾𝐿𝑆), indicating that Case 3 is generally more 

valid than Case 4. For Model 1, no such conclusion can be made as 𝐶1𝑫𝐾𝐿𝑆 ⊂ 𝐶2𝑫𝐾𝐿𝑆, 

although it can be seen that Case 1 exhibits less epistemic uncertainty than Case 2 in 

terms of its validity. 

Because each model involved is based upon a certain amount of experimental 

data, the update of one model with another model still represents a branch of model 

validation. The divergence between 𝑷(𝑦𝑚) and 𝑷(𝑦𝑚|𝑦𝑚𝐶) thus serves to validate the 

result of each two-model update. The results of these divergence calculations are given 

below in Table 33: 

Table 33: K-L divergence validation of updating Models 1 and 2 with the other (complementary) model. 

 Model 1 Model 2 

 

Case 1: 

Nonfocal T1 

Case 2: 

Nonfocal T2 

Case 3: 

Nonfocal T2 

Case 4: 

Nonfocal T1,T3 

𝑝𝑟𝑜(𝑷(𝑦𝑚)) [0.5523,0.8647] [0.5523,0.8647] [0.3417,0.5924] [0.3417,0.5924] 

𝑝𝑟𝑜 (𝑷(𝑦𝑚|𝑦𝑚𝐶)) [0.9652,1.0000] [0.9962,0.9996] [0.5408,0.7527] [0.6632,0.9458] 

𝑫𝐾𝐿 (𝑷(𝑦𝑚)|𝑷(𝑦𝑚|𝑦𝑚𝐶)) [0.0000,0.0886] [2.8154,0.3609] [0.3747,0.0054] [1.2959,0.0109] 

𝑫𝐾𝐿 (𝑷(𝑦𝑚|𝑦𝑚𝐶)|𝑷(𝑦𝑚)) [0.0589,0.5937] [0.1275,0.5902] [0.0055,0.3523] [0.0106,0.8276] 

𝑫𝐾𝐿𝑆 (𝑷(𝑦𝑚), 𝑷(𝑦𝑚|𝑦𝑚𝐶)) [0.0589,0.6823] [0.4884,3.4056] [0.0109,0.7270] [0.0215,2.1235] 
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For Model 1, 𝐶1𝑫𝐾𝐿𝑆 ≺ 𝐶2𝑫𝐾𝐿𝑆, indicating that Case 1 may be more valid than 

Case 2. Similarly, for Model 2, 𝐶3𝑫𝐾𝐿𝑆 ≺ 𝐶4𝑫𝐾𝐿𝑆, indicating that Case 3 may be more 

valid than Case 4 when Model 1 is allowed to update Model 2. 

5.3.2: Verification versus validation 

The “better” case as determined by the K-L divergence need not correspond with 

the “better” case as determined by the Monte Carlo simulations; the two methods 

measure different things. Monte Carlo simulations serve as verification—a purely 

mathematical check of how well the posterior probability interval represents the range of 

outputs that may be produced by real values within the input intervals (the prior and 

likelihoods). K-L divergence, on the other hand, serves as validation—a comparison of 

the updated model with the experimental results to determine how well the model 

represents reality.  

5.4: Model updates with real-valued Bayes’ Rule 

The difficulties encountered in making the applications of equations ( 31 ), ( 34 ), 

and ( 35 ) comply with the Logic Coherence Constraint were largely due to the fact that 

the epistemic uncertainty of the application included three possible orientations, whereas 

an interval only has two bounds. For the sake of comparison, the real-valued posterior 

probabilities are also calculated here for each of the three orientations individually and 

independently. 

5.4.1: Updating with experimental results 

The relevant real-valued equation for updating a model with experimental results 

is: 
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𝑃(𝑦𝑚|𝑦𝑒) =

[𝑃(𝑦𝑒|𝑡1) 𝑃(𝑦𝑒|𝑡2) 𝑃(𝑦𝑒|𝑡3)] [

𝑃(𝑡1|𝑦𝑚)

𝑃(𝑡2|𝑦𝑚)

𝑃(𝑡3|𝑦𝑚)
] 𝑃(𝑦𝑚)

[𝑃(𝑦𝑒|𝑡1) 𝑃(𝑦𝑒|𝑡2) 𝑃(𝑦𝑒|𝑡3)] [

𝑃(𝑡1|𝑦𝑚) 𝑃(𝑡1|𝑦𝑚
𝐶 )

𝑃(𝑡2|𝑦𝑚) 𝑃(𝑡2|𝑦𝑚
𝐶 )

𝑃(𝑡3|𝑦𝑚) 𝑃(𝑡3|𝑦𝑚
𝐶 )

] [
𝑃(𝑦𝑚)

𝑃(𝑦𝑚
𝐶 )
]

 

The values used in this equation for each orientation have been determined 

previously, and are summarized for each orientation and equation here: 

Table 34: Values used to update Models 1 and 2 according to experimental results. 

Orientation 
Model 1 Model 2 

#4 #5 #6 #4 #5 #6 

𝑃(𝑦𝑒|𝑡1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

𝑃(𝑦𝑒|𝑡2) 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 

𝑃(𝑦𝑒|𝑡3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

𝑃(𝑡1|𝑦𝑚) 0.2030 0.1571 0.0211 0.0000 0.0000 0.0000 

𝑃(𝑡2|𝑦𝑚) 0.3960 0.4188 0.4085 0.5000 0.5000 0.0000 

𝑃(𝑡3|𝑦𝑚) 0.4010 0.4241 0.5704 0.5000 0.5000 1.0000 

𝑃(𝑡1|𝑦𝑚
𝐶 ) 0.9756 0.9808 0.7723 1.0000 1.0000 0.5000 

𝑃(𝑡2|𝑦𝑚
𝐶 ) 0.0244 0.0192 0.2277 0.0000 0.0000 0.5000 

𝑃(𝑡3|𝑦𝑚
𝐶 ) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

𝑃(𝑦𝑚) 0.8647 0.8202 0.5523 0.5924 0.5834 0.3417 

𝑃(𝑦𝑚
𝐶 ) 0.1353 0.1798 0.4477 0.4076 0.4166 0.6583 

𝑃(𝑦𝑚|𝑦𝑒) 1.0000 0.9950 1.0000 1.0000 1.0000 1.0000 

 

For both models, the posterior probabilities are extremely high—100% in five out 

of six cases. This is because the experimental results showed yield strengths that were, in 

general, much higher than the yield strengths predicted by the models. When stresses are 

high enough to cause yielding in the experiments, they are almost certainly high enough 

to predict yielding in the models. 

For Model 1, GIBR Case 2 (with non-focal T2) gave a posterior probability 

interval of 𝑷(𝑦𝑚1|𝑦𝑒) = [0.9061,0.9984]. 𝑃(𝑦𝑚1|𝑦𝑒) is above the upper end of this 

interval for both orientation #4 and #6, and is just inside the upper end of the interval for 

orientation #5. All three orientations’ posterior probabilities are above the peak of the 

Monte Carlo simulation. If an interval is made of the posterior probabilities for the three 
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orientations as calculated separately, 𝑷(𝑦𝑚1|𝑦𝑒) = [0.9950,1.0000]. By this measure, 

GIBR has underestimated the posterior probability’s value and overestimated its 

epistemic uncertainty. A similar case can be made for Model 2, where GIBR (Case 3) 

predicts 𝑷(𝑦𝑚2|𝑦𝑒) = [0.6750,1.0000], and creating an interval from the individual 

orientations predicts the point interval 𝑷(𝑦𝑚2|𝑦𝑒) = [1.0000,1.0000]. 

5.4.2: Updating one model with another model 

The real-valued equation for updating one model with the complementary model 

is as follows: 

𝑃(𝑦𝑚|𝑦𝑚𝐶) =

[𝑃(𝑦𝑚𝐶|𝑡1) 𝑃(𝑦𝑚𝐶2|𝑡2) 𝑃(𝑦𝑚𝐶|𝑡3)] [

𝑃(𝑡1|𝑦𝑚)

𝑃(𝑡2|𝑦𝑚)

𝑃(𝑡3|𝑦𝑚)
] 𝑃(𝑦𝑚)

[𝑃(𝑦𝑚𝐶|𝑡1) 𝑃(𝑦𝑚𝐶2|𝑡2) 𝑃(𝑦𝑚𝐶|𝑡3)] [

𝑃(𝑡1|𝑦𝑚) 𝑃(𝑡1|𝑦𝑚
𝐶 )

𝑃(𝑡2|𝑦𝑚) 𝑃(𝑡2|𝑦𝑚
𝐶 )

𝑃(𝑡3|𝑦𝑚) 𝑃(𝑡3|𝑦𝑚
𝐶 )

] [
𝑃(𝑦𝑚)

𝑃(𝑦𝑚
𝐶 )
]

 

The values used to inform this model for each individual orientation are given 

below: 

Table 35: Values used to update Models 1 and 2 according to the other (complementary) model. 

Orientation 
Model 1 Model 2 

#4 #5 #6 #4 #5 #6 

𝑃(𝑦𝑚𝐶|𝑡1) 0.0000 0.0000 0.0000 0.4774 0.3384 0.0297 

𝑃(𝑦𝑚𝐶|𝑡2) 0.9998 0.9999 0.0008 0.9946 0.9881 0.7202 

𝑃(𝑦𝑚𝐶|𝑡3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

𝑃(𝑡1|𝑦𝑚) 0.2030 0.1571 0.0211 0.0000 0.0000 0.0000 

𝑃(𝑡2|𝑦𝑚) 0.3960 0.4188 0.4085 0.5000 0.5000 0.0000 

𝑃(𝑡3|𝑦𝑚) 0.4010 0.4241 0.5704 0.5000 0.5000 1.0000 

𝑃(𝑡1|𝑦𝑚
𝐶 ) 0.9756 0.9808 0.7723 1.0000 1.0000 0.5000 

𝑃(𝑡2|𝑦𝑚
𝐶 ) 0.0244 0.0192 0.2277 0.0000 0.0000 0.5000 

𝑃(𝑡3|𝑦𝑚
𝐶 ) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

𝑃(𝑦𝑚) 0.8647 0.8202 0.5523 0.5924 0.5834 0.3417 

𝑃(𝑦𝑚
𝐶 ) 0.1353 0.1798 0.4477 0.4076 0.4166 0.6583 

𝑃(𝑦𝑚|𝑦𝑚𝐶) 0.9952 0.9950 0.9997 0.7522 0.8044 0.5806 
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When Model 1 is updated by Model 2, the posterior probabilities are very high 

and very tightly grouped—once again indicating the Model 2 predicts higher yield 

strengths than does Model 1, and does so consistently. An interval created by examining 

the individual orientations is 𝑷(𝑦𝑚1|𝑦𝑚2)=[0.9950,0.9997]. GIBR Case 1 predicts a 

posterior probability interval of 𝑷(𝑦𝑚1|𝑦𝑚2)=[1.0000,0.9652], which fully encompasses 

the independent orientations’ interval, but is much wider and so implies more epistemic 

uncertainty than actually exists. While GIBR Case 2 did not contain its MC results as 

Case 1, it gave a posterior probability interval of 𝑷(𝑦𝑚1|𝑦𝑚2)=[0.9996,0.9962]. 

Although this is an improper interval, it is only slightly narrower than the interval 

predicted by examining the orientations independently, and it is in nearly the same 

location. 

When Model 2 is updated by Model 1, the independent orientations combine to 

give a posterior probability interval of 𝑷(𝑦𝑚2|𝑦𝑚1)=[0.5806,0.8044]. This only slightly 

wider and slightly higher than the GIBR result of Model 2, Case 3, for which 

𝑷(𝑦𝑚2|𝑦𝑚1)=[0.5408,0.7527]. In this instance, GIBR closely predicted the actual range 

of the results for each of the three orientations. 

5.5: Conclusions 

Within this chapter, GIBR was used to update the belief in a model’s results by 

using either experimental results for validation, or by using another model for verification 

and model aggregation. It was demonstrated that the selection of certain probabilities as 

focal or non-focal must be done on an application-by-application basis; when Model 1 

was updated by experimental results, Case 2 better contained the MC simulation results, 

but when Model 1 was updated by Model 2, Case 1 did a better job. For Model 2, 

however, Case 3 did better than Case 4 whether the model was updated by the experiment 

or by the other model. With the current level of understanding, the degree of 
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soundness/completeness of the posterior probability interval still cannot be anticipated 

without verification by Monte Carlo simulation or some other verification tool. 

In this chapter, the orientation of the specimen represented the epistemic 

uncertainty of each interval, where the three orientations considered were defined as the 

only possible orientations for the specimen. Out of the four GIBR examples 𝑷(𝑦𝑚1|𝑦𝑒), 

𝑷(𝑦𝑚2|𝑦𝑒), 𝑷(𝑦𝑚1|𝑦𝑚2), and 𝑷(𝑦𝑚2|𝑦𝑚1), only one gave a good estimate of the actual 

interval of posterior probabilities as determined by looking at the orientations 

individually. While this result was promising, arriving at the GIBR result involved some 

subjective decisions and more computations and comparisons than did examining the 

orientations individually. From this it can be concluded that, at least when the number of 

configurations represented by epistemic uncertainty is small, it is both more efficient and 

more reliable to examine each configuration and update it independently of the others, 

and then look at the range of results in order to determine a posterior probability interval. 

Some of the intervals used in this were surprisingly wide, exhibiting high amounts 

of epistemic uncertainty even though they were based on data rather than ignorance. 

Examples include four of the 𝑷(𝑡|𝑦𝑚2) intervals, with a width of 0.5, the initial 

calculation of 𝑷(𝑦𝑒|𝑡 = 195𝐾), with a width of 1, and 𝑷(𝑦𝑚2|𝑡 = 195𝐾), with a width of 

0.9991. The width of these intervals was due to the differences in behavior among the three 

orientations analyzed. If more orientations were included in the analysis, the intervals could only 

be made wider as long as the actual orientation of interest remained unknown—the epistemic 

uncertainty would actually increase because more orientations would be considered as 

possibilities. Similarly, increasing the number of temperatures examined in the discretization of 

the likelihoods would not change the variation among orientations already included at each 

temperature. It is possible that, with a larger number of mutually disjoint events involved, two or 

more probabilities would need to be designated as non-focal in order to ensure compliance with 

the Logic Coherence Constraint in the face of a few very wide focal probabilities. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1: Conclusions 

Early discussions of Generalized Interval Bayes’ Rule have included the hope that 

it could be used as a basic estimator of a range of outcomes in the face of large amounts 

of uncertainty. However, the research detailed in this thesis has revealed that GIBR has 

some of the same problems dealing with complete ignorance as do other probability 

theories. Complete ignorance is difficult to represent. The worst-case scenario is that the 

GIBR equation gives an update in the face of complete ignorance, shifting the posterior 

probability when no actual information has been added. Initial attempts to represent 

unknown probabilities with the total ignorance interval of [0,1] quickly run afoul of the 

Logic Coherence Constraint, which specifies that the probabilities of mutually disjoint 

events must sum to [1,1]. Alternatives include switching to equally-weighted point 

intervals, or ignoring the LCC and using all intervals of [0,1]. The best case scenario is 

that these representations of complete ignorance give no probability update. This is as it 

should be—if the evidence cannot be linked to the prior probability, then the probability 

should not be updated. In this case, simply filling out the links in the GIBR equation may 

be helpful in that it shows the analyst where the missing link is, and thus where they need 

to focus more effort in order to discover the value of that link. If further data cannot be 

obtained, the analyst may instead opt for an expert elicitation of a probability interval. If 

these options are not viable and a link of complete ignorance cannot be eliminated, then 

users of GIBR should not expect an update from it. 

Caution is also required when determining which probabilities are considered 

focal or non-focal in a GIBR equation. When all of the probabilities within an equation 

can be determined from the evidence at hand, it is easy to end up with an equation that 

does not conform to the Logic Coherence Constraint. In that case care must be exercised 
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in choosing which intervals should be considered non-focal and thus calculated by 

subtracting the sum of the other intervals from [1,1]—an incorrect choice may lead to 

results that are clearly impossible. Even when this is not the case, a subjective decision as 

to which event should be focal or non-focal can lead to large differences in not only the 

posterior probability interval, but also the range of possible results and the degree to 

which the posterior probability interval contains those results, both of which can be 

illustrated by Monte Carlo simulations. Where evidence is available for all events in a 

mutually disjoint group and the choice of focality is not obvious, analysts would be wise 

to calculate the results of each possible choice of non-focal event in order to make the 

best decision. 

GIBR gives a solution that is sound but typically not complete. As such, it is 

primarily a tool for very early investigations into a problem—a brief calculation that 

provides a general idea of where to focus further effort. It is a tool that can provide 

economical preliminary decision support analysis for modeling and simulation 

applications. When necessary, the complete solution can be determined by examining the 

range of results of 2𝑛 real-valued Bayes’ Rule calculations, where n is the number of 

independent intervals with nonzero width in the GIBR equation. In this case, GIBR is 

useful primarily as a way to organize data and to identify events for which information 

may be missing. If the actual distribution of the posterior probabilities is needed and so 

Monte Carlo sampling is required, then GIBR does not offer any great advantage over 

other sampling-based techniques. 

The proposed Bayesian approach for model validation based on K-L divergence 

incorporates interval probability. The example is the simplest case where only two 

possible event outcomes are available. These two probabilities are not independent. A 

underestimation of a posterior will lead to an overestimation of its complementary. In this 

case, the calculated K-L divergence is likely to be a compromise between completeness 

and soundness. This observation needs further investigation. 
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6.2: Future Work 

Because the posterior intervals predicted by GIBR can change significantly with  

the modality choices of the priors and likelihoods, it is still advisable to verify any GIBR 

update with a Monte Carlo simulation or  sensitivity analysis by variation as a much 

cheaper alternative. The ultimate goal is to make this verification step unnecessary. This 

requires a better understanding of the conditions under which certain probabilities should 

be focal or non-focal are better understood. Further research may reveal a more consistent 

procedure or rules for determining focality of events, rendering further verification 

unnecessary. This would in turn render GIBR as a computationally inexpensive method 

for predicting sound, reasonable posterior probability intervals. 

This thesis has served to confirm the presence of certain drawbacks to GIBR—

drawbacks that are common to many types of probability analysis. However, Bayes’ Rule 

is only one of many different probability analysis tools available to a savvy researcher. 

Generalized Interval Probability Theory should encompass all of these tools, and these 

have yet to be explored. This thesis has also demonstrated the de-coupled nature of the 

interval bounds within the GIBR equations. Other options for analyzing probabilities 

within GIPT have yet to be fully explored. 

Several of the challenges that have arisen with GIBR have been related to 

enforcing the Logic Coherence Constraint. However, the Logic Coherence Constraint 

represents one of the most restrictive constraints possible. Weaker constraints, such as 

avoiding sure loss or avoiding partial loss, have yet to be examined in the context of 

GIBR. Employing another constraint system may allow analysts to circumvent some of 

the subjective choices of GIBR and thus make it into a more easily applicable method. 

This thesis has largely focused on using GIBR in the face of large unknowns, 

even approaching complete ignorance. However, some of the results examined suggest 

that GIBR may be more reliable when used with relatively narrow intervals. This in turn 

leads to the possibility that GIPT may provide a viable method of sensitivity analysis. 
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Current sensitivity analysis techniques can be computationally expensive, requiring 

simulations similar to the Monte Carlo simulations used to verify GIBR here. Further 

refinement of the rules of GIPT, and further analysis of its behavior with narrower 

intervals should eliminate the need of verifying simulations, in which case it would 

provide a much simpler method of sensitivity analysis than is currently available. 
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APPENDIX A: MODEL 1 DATA 

The following abbreviations for orientations are used: O#4 is [1,1,16], O#5 is 

[-1,3,7], and O#6 is [-4,9,9]. 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 1 0.725 10000000 0.37 1 4 132 251 

143 K 2 0.725 10000000 0.37 1.1 4 115 251 

143 K 3 0.725 10000000 0.37 1.2 4 100 251 

143 K 4 0.725 10000000 0.42 1 4 158 251 

143 K 5 0.725 10000000 0.42 1.1 4 135 251 

143 K 6 0.725 10000000 0.42 1.2 4 120 251 

143 K 7 0.725 10000000 0.47 1 4 182 251 

143 K 8 0.725 10000000 0.47 1.1 4 159 251 

143 K 9 0.725 10000000 0.47 1.2 4 143 251 

143 K 10 0.725 13333333 0.37 1 4 130 251 

143 K 11 0.725 13333333 0.37 1.1 4 113 251 

143 K 12 0.725 13333333 0.37 1.2 4 98 251 

143 K 13 0.725 13333333 0.42 1 4 155 251 

143 K 14 0.725 13333333 0.42 1.1 4 134 251 

143 K 15 0.725 13333333 0.42 1.2 4 118 251 

143 K 16 0.725 13333333 0.47 1 4 176 251 

143 K 17 0.725 13333333 0.47 1.1 4 157 251 

143 K 18 0.725 13333333 0.47 1.2 4 141 251 

143 K 19 0.725 16666667 0.37 1 4 128 251 

143 K 20 0.725 16666667 0.37 1.1 4 108 251 

143 K 21 0.725 16666667 0.37 1.2 4 94 251 

143 K 22 0.725 16666667 0.42 1 4 154 251 

143 K 23 0.725 16666667 0.42 1.1 4 132 251 

143 K 24 0.725 16666667 0.42 1.2 4 117 251 

143 K 25 0.725 16666667 0.47 1 4 174 251 

143 K 26 0.725 16666667 0.47 1.1 4 156 251 

143 K 27 0.725 16666667 0.47 1.2 4 136 251 

143 K 28 0.775 10000000 0.37 1 4 148 251 

143 K 29 0.775 10000000 0.37 1.1 4 130 251 

143 K 30 0.775 10000000 0.37 1.2 4 114 251 

143 K 31 0.775 10000000 0.42 1 4 175 251 

143 K 32 0.775 10000000 0.42 1.1 4 155 251 

143 K 33 0.775 10000000 0.42 1.2 4 135 251 

143 K 34 0.775 10000000 0.47 1 4 200 251 

143 K 35 0.775 10000000 0.47 1.1 4 176 251 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 36 0.775 10000000 0.47 1.2 4 158 251 

143 K 37 0.775 13333333 0.37 1 4 146 251 

143 K 38 0.775 13333333 0.37 1.1 4 128 251 

143 K 39 0.775 13333333 0.37 1.2 4 112 251 

143 K 40 0.775 13333333 0.42 1 4 173 251 

143 K 41 0.775 13333333 0.42 1.1 4 149 251 

143 K 42 0.775 13333333 0.42 1.2 4 133 251 

143 K 43 0.775 13333333 0.47 1 4 197 251 

143 K 44 0.775 13333333 0.47 1.1 4 174 251 

143 K 45 0.775 13333333 0.47 1.2 4 156 251 

143 K 46 0.775 16666667 0.37 1 4 145 251 

143 K 47 0.775 16666667 0.37 1.1 4 126 251 

143 K 48 0.775 16666667 0.37 1.2 4 107 251 

143 K 49 0.775 16666667 0.42 1 4 171 251 

143 K 50 0.775 16666667 0.42 1.1 4 148 251 

143 K 51 0.775 16666667 0.42 1.2 4 131 251 

143 K 52 0.775 16666667 0.47 1 4 191 251 

143 K 53 0.775 16666667 0.47 1.1 4 172 251 

143 K 54 0.775 16666667 0.47 1.2 4 155 251 

143 K 55 0.825 10000000 0.37 1 4 168 251 

143 K 56 0.825 10000000 0.37 1.1 4 144 251 

143 K 57 0.825 10000000 0.37 1.2 4 127 251 

143 K 58 0.825 10000000 0.42 1 4 191 251 

143 K 59 0.825 10000000 0.42 1.1 4 170 251 

143 K 60 0.825 10000000 0.42 1.2 4 149 251 

143 K 61 0.825 10000000 0.47 1 4 216 251 

143 K 62 0.825 10000000 0.47 1.1 4 191 251 

143 K 63 0.825 10000000 0.47 1.2 4 173 251 

143 K 64 0.825 13333333 0.37 1 4 162 251 

143 K 65 0.825 13333333 0.37 1.1 4 142 251 

143 K 66 0.825 13333333 0.37 1.2 4 122 251 

143 K 67 0.825 13333333 0.42 1 4 189 251 

143 K 68 0.825 13333333 0.42 1.1 4 164 251 

143 K 69 0.825 13333333 0.42 1.2 4 147 251 

143 K 70 0.825 13333333 0.47 1 4 214 251 

143 K 71 0.825 13333333 0.47 1.1 4 189 251 

143 K 72 0.825 13333333 0.47 1.2 4 171 251 

143 K 73 0.825 16666667 0.37 1 4 161 251 

143 K 74 0.825 16666667 0.37 1.1 4 141 251 

143 K 75 0.825 16666667 0.37 1.2 4 120 251 

143 K 76 0.825 16666667 0.42 1 4 187 251 

143 K 77 0.825 16666667 0.42 1.1 4 163 251 

143 K 78 0.825 16666667 0.42 1.2 4 146 251 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 79 0.825 16666667 0.47 1 4 212 251 

143 K 80 0.825 16666667 0.47 1.1 4 188 251 

143 K 81 0.825 16666667 0.47 1.2 4 169 251 

143 K 1 0.725 10000000 0.37 1 5 144 250 

143 K 2 0.725 10000000 0.37 1.1 5 124 250 

143 K 3 0.725 10000000 0.37 1.2 5 107 250 

143 K 4 0.725 10000000 0.42 1 5 168 250 

143 K 5 0.725 10000000 0.42 1.1 5 147 250 

143 K 6 0.725 10000000 0.42 1.2 5 130 250 

143 K 7 0.725 10000000 0.47 1 5 191 250 

143 K 8 0.725 10000000 0.47 1.1 5 169 250 

143 K 9 0.725 10000000 0.47 1.2 5 151 250 

143 K 10 0.725 13333333 0.37 1 5 141 250 

143 K 11 0.725 13333333 0.37 1.1 5 121 250 

143 K 12 0.725 13333333 0.37 1.2 5 105 250 

143 K 13 0.725 13333333 0.42 1 5 166 250 

143 K 14 0.725 13333333 0.42 1.1 5 145 250 

143 K 15 0.725 13333333 0.42 1.2 5 127 250 

143 K 16 0.725 13333333 0.47 1 5 188 250 

143 K 17 0.725 13333333 0.47 1.1 5 167 250 

143 K 18 0.725 13333333 0.47 1.2 5 149 250 

143 K 19 0.725 16666667 0.37 1 5 139 250 

143 K 20 0.725 16666667 0.37 1.1 5 120 250 

143 K 21 0.725 16666667 0.37 1.2 5 104 250 

143 K 22 0.725 16666667 0.42 1 5 164 250 

143 K 23 0.725 16666667 0.42 1.1 5 143 250 

143 K 24 0.725 16666667 0.42 1.2 5 126 250 

143 K 25 0.725 16666667 0.47 1 5 186 250 

143 K 26 0.725 16666667 0.47 1.1 5 165 250 

143 K 27 0.725 16666667 0.47 1.2 5 147 250 

143 K 28 0.775 10000000 0.37 1 5 162 250 

143 K 29 0.775 10000000 0.37 1.1 5 140 250 

143 K 30 0.775 10000000 0.37 1.2 5 122 250 

143 K 31 0.775 10000000 0.42 1 5 187 250 

143 K 32 0.775 10000000 0.42 1.1 5 165 250 

143 K 33 0.775 10000000 0.42 1.2 5 145 250 

143 K 34 0.775 10000000 0.47 1 5 210 250 

143 K 35 0.775 10000000 0.47 1.1 5 187 250 

143 K 36 0.775 10000000 0.47 1.2 5 168 250 

143 K 37 0.775 13333333 0.37 1 5 159 250 

143 K 38 0.775 13333333 0.37 1.1 5 138 250 

143 K 39 0.775 13333333 0.37 1.2 5 120 250 

143 K 40 0.775 13333333 0.42 1 5 184 250 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 41 0.775 13333333 0.42 1.1 5 162 250 

143 K 42 0.775 13333333 0.42 1.2 5 143 250 

143 K 43 0.775 13333333 0.47 1 5 207 250 

143 K 44 0.775 13333333 0.47 1.1 5 185 250 

143 K 45 0.775 13333333 0.47 1.2 5 165 250 

143 K 46 0.775 16666667 0.37 1 5 157 250 

143 K 47 0.775 16666667 0.37 1.1 5 133 250 

143 K 48 0.775 16666667 0.37 1.2 5 118 250 

143 K 49 0.775 16666667 0.42 1 5 182 250 

143 K 50 0.775 16666667 0.42 1.1 5 160 250 

143 K 51 0.775 16666667 0.42 1.2 5 141 250 

143 K 52 0.775 16666667 0.47 1 5 206 250 

143 K 53 0.775 16666667 0.47 1.1 5 183 250 

143 K 54 0.775 16666667 0.47 1.2 5 164 250 

143 K 55 0.825 10000000 0.37 1 5 179 250 

143 K 56 0.825 10000000 0.37 1.1 5 152 250 

143 K 57 0.825 10000000 0.37 1.2 5 133 250 

143 K 58 0.825 10000000 0.42 1 5 205 250 

143 K 59 0.825 10000000 0.42 1.1 5 181 250 

143 K 60 0.825 10000000 0.42 1.2 5 160 250 

143 K 61 0.825 10000000 0.47 1 5 228 250 

143 K 62 0.825 10000000 0.47 1.1 5 204 250 

143 K 63 0.825 10000000 0.47 1.2 5 183 250 

143 K 64 0.825 13333333 0.37 1 5 173 250 

143 K 65 0.825 13333333 0.37 1.1 5 150 250 

143 K 66 0.825 13333333 0.37 1.2 5 131 250 

143 K 67 0.825 13333333 0.42 1 5 202 250 

143 K 68 0.825 13333333 0.42 1.1 5 178 250 

143 K 69 0.825 13333333 0.42 1.2 5 158 250 

143 K 70 0.825 13333333 0.47 1 5 225 250 

143 K 71 0.825 13333333 0.47 1.1 5 202 250 

143 K 72 0.825 13333333 0.47 1.2 5 181 250 

143 K 73 0.825 16666667 0.37 1 5 171 250 

143 K 74 0.825 16666667 0.37 1.1 5 149 250 

143 K 75 0.825 16666667 0.37 1.2 5 130 250 

143 K 76 0.825 16666667 0.42 1 5 200 250 

143 K 77 0.825 16666667 0.42 1.1 5 173 250 

143 K 78 0.825 16666667 0.42 1.2 5 153 250 

143 K 79 0.825 16666667 0.47 1 5 223 250 

143 K 80 0.825 16666667 0.47 1.1 5 200 250 

143 K 81 0.825 16666667 0.47 1.2 5 179 250 

143 K 1 0.725 10000000 0.37 1 6 199 295 

143 K 2 0.725 10000000 0.37 1.1 6 172 295 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 3 0.725 10000000 0.37 1.2 6 149 295 

143 K 4 0.725 10000000 0.42 1 6 239 295 

143 K 5 0.725 10000000 0.42 1.1 6 210 295 

143 K 6 0.725 10000000 0.42 1.2 6 185 295 

143 K 7 0.725 10000000 0.47 1 6 271 295 

143 K 8 0.725 10000000 0.47 1.1 6 241 295 

143 K 9 0.725 10000000 0.47 1.2 6 215 295 

143 K 10 0.725 13333333 0.37 1 6 196 295 

143 K 11 0.725 13333333 0.37 1.1 6 169 295 

143 K 12 0.725 13333333 0.37 1.2 6 146 295 

143 K 13 0.725 13333333 0.42 1 6 235 295 

143 K 14 0.725 13333333 0.42 1.1 6 201 295 

143 K 15 0.725 13333333 0.42 1.2 6 182 295 

143 K 16 0.725 13333333 0.47 1 6 268 295 

143 K 17 0.725 13333333 0.47 1.1 6 238 295 

143 K 18 0.725 13333333 0.47 1.2 6 212 295 

143 K 19 0.725 16666667 0.37 1 6 194 295 

143 K 20 0.725 16666667 0.37 1.1 6 167 295 

143 K 21 0.725 16666667 0.37 1.2 6 144 295 

143 K 22 0.725 16666667 0.42 1 6 232 295 

143 K 23 0.725 16666667 0.42 1.1 6 199 295 

143 K 24 0.725 16666667 0.42 1.2 6 175 295 

143 K 25 0.725 16666667 0.47 1 6 265 295 

143 K 26 0.725 16666667 0.47 1.1 6 235 295 

143 K 27 0.725 16666667 0.47 1.2 6 209 295 

143 K 28 0.775 10000000 0.37 1 6 225 295 

143 K 29 0.775 10000000 0.37 1.1 6 195 295 

143 K 30 0.775 10000000 0.37 1.2 6 170 295 

143 K 31 0.775 10000000 0.42 1 6 266 295 

143 K 32 0.775 10000000 0.42 1.1 6 234 295 

143 K 33 0.775 10000000 0.42 1.2 6 207 295 

143 K 34 0.775 10000000 0.47 1 6 298 295 

143 K 35 0.775 10000000 0.47 1.1 6 266 295 

143 K 36 0.775 10000000 0.47 1.2 6 239 295 

143 K 37 0.775 13333333 0.37 1 6 222 295 

143 K 38 0.775 13333333 0.37 1.1 6 192 295 

143 K 39 0.775 13333333 0.37 1.2 6 167 295 

143 K 40 0.775 13333333 0.42 1 6 262 295 

143 K 41 0.775 13333333 0.42 1.1 6 226 295 

143 K 42 0.775 13333333 0.42 1.2 6 200 295 

143 K 43 0.775 13333333 0.47 1 6 295 295 

143 K 44 0.775 13333333 0.47 1.1 6 263 295 

143 K 45 0.775 13333333 0.47 1.2 6 235 295 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 46 0.775 16666667 0.37 1 6 219 295 

143 K 47 0.775 16666667 0.37 1.1 6 190 295 

143 K 48 0.775 16666667 0.37 1.2 6 165 295 

143 K 49 0.775 16666667 0.42 1 6 259 295 

143 K 50 0.775 16666667 0.42 1.1 6 223 295 

143 K 51 0.775 16666667 0.42 1.2 6 197 295 

143 K 52 0.775 16666667 0.47 1 6 292 295 

143 K 53 0.775 16666667 0.47 1.1 6 260 295 

143 K 54 0.775 16666667 0.47 1.2 6 228 295 

143 K 55 0.825 10000000 0.37 1 6 249 295 

143 K 56 0.825 10000000 0.37 1.1 6 218 295 

143 K 57 0.825 10000000 0.37 1.2 6 190 295 

143 K 58 0.825 10000000 0.42 1 6 291 295 

143 K 59 0.825 10000000 0.42 1.1 6 252 295 

143 K 60 0.825 10000000 0.42 1.2 6 224 295 

143 K 61 0.825 10000000 0.47 1 6 324 295 

143 K 62 0.825 10000000 0.47 1.1 6 290 295 

143 K 63 0.825 10000000 0.47 1.2 6 261 295 

143 K 64 0.825 13333333 0.37 1 6 246 295 

143 K 65 0.825 13333333 0.37 1.1 6 214 295 

143 K 66 0.825 13333333 0.37 1.2 6 187 295 

143 K 67 0.825 13333333 0.42 1 6 287 295 

143 K 68 0.825 13333333 0.42 1.1 6 249 295 

143 K 69 0.825 13333333 0.42 1.2 6 221 295 

143 K 70 0.825 13333333 0.47 1 6 320 295 

143 K 71 0.825 13333333 0.47 1.1 6 287 295 

143 K 72 0.825 13333333 0.47 1.2 6 253 295 

143 K 73 0.825 16666667 0.37 1 6 243 295 

143 K 74 0.825 16666667 0.37 1.1 6 212 295 

143 K 75 0.825 16666667 0.37 1.2 6 185 295 

143 K 76 0.825 16666667 0.42 1 6 279 295 

143 K 77 0.825 16666667 0.42 1.1 6 247 295 

143 K 78 0.825 16666667 0.42 1.2 6 219 295 

143 K 79 0.825 16666667 0.47 1 6 317 295 

143 K 80 0.825 16666667 0.47 1.1 6 279 295 

143 K 81 0.825 16666667 0.47 1.2 6 251 295 

195 K 1 0.725 10000000 0.37 1 4 69 151 

195 K 2 0.725 10000000 0.37 1.1 4 59 151 

195 K 3 0.725 10000000 0.37 1.2 4 51 151 

195 K 4 0.725 10000000 0.42 1 4 87 151 

195 K 5 0.725 10000000 0.42 1.1 4 75 151 

195 K 6 0.725 10000000 0.42 1.2 4 68 151 

195 K 7 0.725 10000000 0.47 1 4 109 151 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 8 0.725 10000000 0.47 1.1 4 95 151 

195 K 9 0.725 10000000 0.47 1.2 4 84 151 

195 K 10 0.725 13333333 0.37 1 4 67 151 

195 K 11 0.725 13333333 0.37 1.1 4 57 151 

195 K 12 0.725 13333333 0.37 1.2 4 49 151 

195 K 13 0.725 13333333 0.42 1 4 85 151 

195 K 14 0.725 13333333 0.42 1.1 4 73 151 

195 K 15 0.725 13333333 0.42 1.2 4 64 151 

195 K 16 0.725 13333333 0.47 1 4 103 151 

195 K 17 0.725 13333333 0.47 1.1 4 90 151 

195 K 18 0.725 13333333 0.47 1.2 4 82 151 

195 K 19 0.725 16666667 0.37 1 4 63 151 

195 K 20 0.725 16666667 0.37 1.1 4 56 151 

195 K 21 0.725 16666667 0.37 1.2 4 48 151 

195 K 22 0.725 16666667 0.42 1 4 83 151 

195 K 23 0.725 16666667 0.42 1.1 4 72 151 

195 K 24 0.725 16666667 0.42 1.2 4 62 151 

195 K 25 0.725 16666667 0.47 1 4 101 151 

195 K 26 0.725 16666667 0.47 1.1 4 88 151 

195 K 27 0.725 16666667 0.47 1.2 4 77 151 

195 K 28 0.775 10000000 0.37 1 4 85 151 

195 K 29 0.775 10000000 0.37 1.1 4 73 151 

195 K 30 0.775 10000000 0.37 1.2 4 63 151 

195 K 31 0.775 10000000 0.42 1 4 104 151 

195 K 32 0.775 10000000 0.42 1.1 4 91 151 

195 K 33 0.775 10000000 0.42 1.2 4 82 151 

195 K 34 0.775 10000000 0.47 1 4 128 151 

195 K 35 0.775 10000000 0.47 1.1 4 113 151 

195 K 36 0.775 10000000 0.47 1.2 4 100 151 

195 K 37 0.775 13333333 0.37 1 4 83 151 

195 K 38 0.775 13333333 0.37 1.1 4 71 151 

195 K 39 0.775 13333333 0.37 1.2 4 61 151 

195 K 40 0.775 13333333 0.42 1 4 102 151 

195 K 41 0.775 13333333 0.42 1.1 4 89 151 

195 K 42 0.775 13333333 0.42 1.2 4 77 151 

195 K 43 0.775 13333333 0.47 1 4 125 151 

195 K 44 0.775 13333333 0.47 1.1 4 110 151 

195 K 45 0.775 13333333 0.47 1.2 4 98 151 

195 K 46 0.775 16666667 0.37 1 4 81 151 

195 K 47 0.775 16666667 0.37 1.1 4 69 151 

195 K 48 0.775 16666667 0.37 1.2 4 60 151 

195 K 49 0.775 16666667 0.42 1 4 101 151 

195 K 50 0.775 16666667 0.42 1.1 4 87 151 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 51 0.775 16666667 0.42 1.2 4 76 151 

195 K 52 0.775 16666667 0.47 1 4 123 151 

195 K 53 0.775 16666667 0.47 1.1 4 105 151 

195 K 54 0.775 16666667 0.47 1.2 4 96 151 

195 K 55 0.825 10000000 0.37 1 4 101 151 

195 K 56 0.825 10000000 0.37 1.1 4 87 151 

195 K 57 0.825 10000000 0.37 1.2 4 75 151 

195 K 58 0.825 10000000 0.42 1 4 126 151 

195 K 59 0.825 10000000 0.42 1.1 4 110 151 

195 K 60 0.825 10000000 0.42 1.2 4 96 151 

195 K 61 0.825 10000000 0.47 1 4 150 151 

195 K 62 0.825 10000000 0.47 1.1 4 130 151 

195 K 63 0.825 10000000 0.47 1.2 4 115 151 

195 K 64 0.825 13333333 0.37 1 4 99 151 

195 K 65 0.825 13333333 0.37 1.1 4 85 151 

195 K 66 0.825 13333333 0.37 1.2 4 73 151 

195 K 67 0.825 13333333 0.42 1 4 123 151 

195 K 68 0.825 13333333 0.42 1.1 4 104 151 

195 K 69 0.825 13333333 0.42 1.2 4 91 151 

195 K 70 0.825 13333333 0.47 1 4 144 151 

195 K 71 0.825 13333333 0.47 1.1 4 127 151 

195 K 72 0.825 13333333 0.47 1.2 4 113 151 

195 K 73 0.825 16666667 0.37 1 4 97 151 

195 K 74 0.825 16666667 0.37 1.1 4 83 151 

195 K 75 0.825 16666667 0.37 1.2 4 72 151 

195 K 76 0.825 16666667 0.42 1 4 118 151 

195 K 77 0.825 16666667 0.42 1.1 4 103 151 

195 K 78 0.825 16666667 0.42 1.2 4 90 151 

195 K 79 0.825 16666667 0.47 1 4 142 151 

195 K 80 0.825 16666667 0.47 1.1 4 126 151 

195 K 81 0.825 16666667 0.47 1.2 4 112 151 

195 K 1 0.725 10000000 0.37 1 5 76 148 

195 K 2 0.725 10000000 0.37 1.1 5 65 148 

195 K 3 0.725 10000000 0.37 1.2 5 57 148 

195 K 4 0.725 10000000 0.42 1 5 96 148 

195 K 5 0.725 10000000 0.42 1.1 5 83 148 

195 K 6 0.725 10000000 0.42 1.2 5 71 148 

195 K 7 0.725 10000000 0.47 1 5 116 148 

195 K 8 0.725 10000000 0.47 1.1 5 101 148 

195 K 9 0.725 10000000 0.47 1.2 5 89 148 

195 K 10 0.725 13333333 0.37 1 5 71 148 

195 K 11 0.725 13333333 0.37 1.1 5 63 148 

195 K 12 0.725 13333333 0.37 1.2 5 53 148 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 13 0.725 13333333 0.42 1 5 90 148 

195 K 14 0.725 13333333 0.42 1.1 5 80 148 

195 K 15 0.725 13333333 0.42 1.2 5 69 148 

195 K 16 0.725 13333333 0.47 1 5 110 148 

195 K 17 0.725 13333333 0.47 1.1 5 99 148 

195 K 18 0.725 13333333 0.47 1.2 5 86 148 

195 K 19 0.725 16666667 0.37 1 5 70 148 

195 K 20 0.725 16666667 0.37 1.1 5 61 148 

195 K 21 0.725 16666667 0.37 1.2 5 52 148 

195 K 22 0.725 16666667 0.42 1 5 89 148 

195 K 23 0.725 16666667 0.42 1.1 5 78 148 

195 K 24 0.725 16666667 0.42 1.2 5 68 148 

195 K 25 0.725 16666667 0.47 1 5 108 148 

195 K 26 0.725 16666667 0.47 1.1 5 97 148 

195 K 27 0.725 16666667 0.47 1.2 5 85 148 

195 K 28 0.775 10000000 0.37 1 5 90 148 

195 K 29 0.775 10000000 0.37 1.1 5 79 148 

195 K 30 0.775 10000000 0.37 1.2 5 68 148 

195 K 31 0.775 10000000 0.42 1 5 115 148 

195 K 32 0.775 10000000 0.42 1.1 5 99 148 

195 K 33 0.775 10000000 0.42 1.2 5 86 148 

195 K 34 0.775 10000000 0.47 1 5 137 148 

195 K 35 0.775 10000000 0.47 1.1 5 120 148 

195 K 36 0.775 10000000 0.47 1.2 5 105 148 

195 K 37 0.775 13333333 0.37 1 5 88 148 

195 K 38 0.775 13333333 0.37 1.1 5 77 148 

195 K 39 0.775 13333333 0.37 1.2 5 66 148 

195 K 40 0.775 13333333 0.42 1 5 109 148 

195 K 41 0.775 13333333 0.42 1.1 5 97 148 

195 K 42 0.775 13333333 0.42 1.2 5 84 148 

195 K 43 0.775 13333333 0.47 1 5 130 148 

195 K 44 0.775 13333333 0.47 1.1 5 117 148 

195 K 45 0.775 13333333 0.47 1.2 5 103 148 

195 K 46 0.775 16666667 0.37 1 5 86 148 

195 K 47 0.775 16666667 0.37 1.1 5 73 148 

195 K 48 0.775 16666667 0.37 1.2 5 64 148 

195 K 49 0.775 16666667 0.42 1 5 107 148 

195 K 50 0.775 16666667 0.42 1.1 5 92 148 

195 K 51 0.775 16666667 0.42 1.2 5 82 148 

195 K 52 0.775 16666667 0.47 1 5 128 148 

195 K 53 0.775 16666667 0.47 1.1 5 111 148 

195 K 54 0.775 16666667 0.47 1.2 5 101 148 

195 K 55 0.825 10000000 0.37 1 5 107 148 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 56 0.825 10000000 0.37 1.1 5 91 148 

195 K 57 0.825 10000000 0.37 1.2 5 80 148 

195 K 58 0.825 10000000 0.42 1 5 130 148 

195 K 59 0.825 10000000 0.42 1.1 5 116 148 

195 K 60 0.825 10000000 0.42 1.2 5 101 148 

195 K 61 0.825 10000000 0.47 1 5 156 148 

195 K 62 0.825 10000000 0.47 1.1 5 137 148 

195 K 63 0.825 10000000 0.47 1.2 5 121 148 

195 K 64 0.825 13333333 0.37 1 5 105 148 

195 K 65 0.825 13333333 0.37 1.1 5 89 148 

195 K 66 0.825 13333333 0.37 1.2 5 78 148 

195 K 67 0.825 13333333 0.42 1 5 127 148 

195 K 68 0.825 13333333 0.42 1.1 5 110 148 

195 K 69 0.825 13333333 0.42 1.2 5 99 148 

195 K 70 0.825 13333333 0.47 1 5 150 148 

195 K 71 0.825 13333333 0.47 1.1 5 135 148 

195 K 72 0.825 13333333 0.47 1.2 5 119 148 

195 K 73 0.825 16666667 0.37 1 5 103 148 

195 K 74 0.825 16666667 0.37 1.1 5 87 148 

195 K 75 0.825 16666667 0.37 1.2 5 77 148 

195 K 76 0.825 16666667 0.42 1 5 126 148 

195 K 77 0.825 16666667 0.42 1.1 5 108 148 

195 K 78 0.825 16666667 0.42 1.2 5 97 148 

195 K 79 0.825 16666667 0.47 1 5 148 148 

195 K 80 0.825 16666667 0.47 1.1 5 129 148 

195 K 81 0.825 16666667 0.47 1.2 5 117 148 

195 K 1 0.725 10000000 0.37 1 6 103 153 

195 K 2 0.725 10000000 0.37 1.1 6 87 153 

195 K 3 0.725 10000000 0.37 1.2 6 77 153 

195 K 4 0.725 10000000 0.42 1 6 130 153 

195 K 5 0.725 10000000 0.42 1.1 6 111 153 

195 K 6 0.725 10000000 0.42 1.2 6 96 153 

195 K 7 0.725 10000000 0.47 1 6 157 153 

195 K 8 0.725 10000000 0.47 1.1 6 136 153 

195 K 9 0.725 10000000 0.47 1.2 6 119 153 

195 K 10 0.725 13333333 0.37 1 6 95 153 

195 K 11 0.725 13333333 0.37 1.1 6 84 153 

195 K 12 0.725 13333333 0.37 1.2 6 75 153 

195 K 13 0.725 13333333 0.42 1 6 126 153 

195 K 14 0.725 13333333 0.42 1.1 6 108 153 

195 K 15 0.725 13333333 0.42 1.2 6 93 153 

195 K 16 0.725 13333333 0.47 1 6 153 153 

195 K 17 0.725 13333333 0.47 1.1 6 133 153 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 18 0.725 13333333 0.47 1.2 6 116 153 

195 K 19 0.725 16666667 0.37 1 6 94 153 

195 K 20 0.725 16666667 0.37 1.1 6 83 153 

195 K 21 0.725 16666667 0.37 1.2 6 70 153 

195 K 22 0.725 16666667 0.42 1 6 119 153 

195 K 23 0.725 16666667 0.42 1.1 6 106 153 

195 K 24 0.725 16666667 0.42 1.2 6 91 153 

195 K 25 0.725 16666667 0.47 1 6 145 153 

195 K 26 0.725 16666667 0.47 1.1 6 130 153 

195 K 27 0.725 16666667 0.47 1.2 6 114 153 

195 K 28 0.775 10000000 0.37 1 6 121 153 

195 K 29 0.775 10000000 0.37 1.1 6 107 153 

195 K 30 0.775 10000000 0.37 1.2 6 91 153 

195 K 31 0.775 10000000 0.42 1 6 155 153 

195 K 32 0.775 10000000 0.42 1.1 6 134 153 

195 K 33 0.775 10000000 0.42 1.2 6 116 153 

195 K 34 0.775 10000000 0.47 1 6 184 153 

195 K 35 0.775 10000000 0.47 1.1 6 161 153 

195 K 36 0.775 10000000 0.47 1.2 6 142 153 

195 K 37 0.775 13333333 0.37 1 6 118 153 

195 K 38 0.775 13333333 0.37 1.1 6 104 153 

195 K 39 0.775 13333333 0.37 1.2 6 89 153 

195 K 40 0.775 13333333 0.42 1 6 146 153 

195 K 41 0.775 13333333 0.42 1.1 6 131 153 

195 K 42 0.775 13333333 0.42 1.2 6 113 153 

195 K 43 0.775 13333333 0.47 1 6 181 153 

195 K 44 0.775 13333333 0.47 1.1 6 158 153 

195 K 45 0.775 13333333 0.47 1.2 6 139 153 

195 K 46 0.775 16666667 0.37 1 6 116 153 

195 K 47 0.775 16666667 0.37 1.1 6 102 153 

195 K 48 0.775 16666667 0.37 1.2 6 87 153 

195 K 49 0.775 16666667 0.42 1 6 144 153 

195 K 50 0.775 16666667 0.42 1.1 6 128 153 

195 K 51 0.775 16666667 0.42 1.2 6 111 153 

195 K 52 0.775 16666667 0.47 1 6 172 153 

195 K 53 0.775 16666667 0.47 1.1 6 155 153 

195 K 54 0.775 16666667 0.47 1.2 6 136 153 

195 K 55 0.825 10000000 0.37 1 6 144 153 

195 K 56 0.825 10000000 0.37 1.1 6 127 153 

195 K 57 0.825 10000000 0.37 1.2 6 109 153 

195 K 58 0.825 10000000 0.42 1 6 180 153 

195 K 59 0.825 10000000 0.42 1.1 6 156 153 

195 K 60 0.825 10000000 0.42 1.2 6 136 153 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 61 0.825 10000000 0.47 1 6 211 153 

195 K 62 0.825 10000000 0.47 1.1 6 186 153 

195 K 63 0.825 10000000 0.47 1.2 6 164 153 

195 K 64 0.825 13333333 0.37 1 6 141 153 

195 K 65 0.825 13333333 0.37 1.1 6 119 153 

195 K 66 0.825 13333333 0.37 1.2 6 106 153 

195 K 67 0.825 13333333 0.42 1 6 171 153 

195 K 68 0.825 13333333 0.42 1.1 6 153 153 

195 K 69 0.825 13333333 0.42 1.2 6 133 153 

195 K 70 0.825 13333333 0.47 1 6 207 153 

195 K 71 0.825 13333333 0.47 1.1 6 182 153 

195 K 72 0.825 13333333 0.47 1.2 6 161 153 

195 K 73 0.825 16666667 0.37 1 6 138 153 

195 K 74 0.825 16666667 0.37 1.1 6 117 153 

195 K 75 0.825 16666667 0.37 1.2 6 104 153 

195 K 76 0.825 16666667 0.42 1 6 169 153 

195 K 77 0.825 16666667 0.42 1.1 6 146 153 

195 K 78 0.825 16666667 0.42 1.2 6 131 153 

195 K 79 0.825 16666667 0.47 1 6 204 153 

195 K 80 0.825 16666667 0.47 1.1 6 179 153 

195 K 81 0.825 16666667 0.47 1.2 6 158 153 

250 K 1 0.725 10000000 0.37 1 4 28 72 

250 K 2 0.725 10000000 0.37 1.1 4 26 72 

250 K 3 0.725 10000000 0.37 1.2 4 24 72 

250 K 4 0.725 10000000 0.42 1 4 35 72 

250 K 5 0.725 10000000 0.42 1.1 4 32 72 

250 K 6 0.725 10000000 0.42 1.2 4 30 72 

250 K 7 0.725 10000000 0.47 1 4 44 72 

250 K 8 0.725 10000000 0.47 1.1 4 41 72 

250 K 9 0.725 10000000 0.47 1.2 4 36 72 

250 K 10 0.725 13333333 0.37 1 4 27 72 

250 K 11 0.725 13333333 0.37 1.1 4 25 72 

250 K 12 0.725 13333333 0.37 1.2 4 23 72 

250 K 13 0.725 13333333 0.42 1 4 33 72 

250 K 14 0.725 13333333 0.42 1.1 4 31 72 

250 K 15 0.725 13333333 0.42 1.2 4 28 72 

250 K 16 0.725 13333333 0.47 1 4 43 72 

250 K 17 0.725 13333333 0.47 1.1 4 39 72 

250 K 18 0.725 13333333 0.47 1.2 4 34 72 

250 K 19 0.725 16666667 0.37 1 4 26 72 

250 K 20 0.725 16666667 0.37 1.1 4 24 72 

250 K 21 0.725 16666667 0.37 1.2 4 23 72 

250 K 22 0.725 16666667 0.42 1 4 32 72 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 23 0.725 16666667 0.42 1.1 4 30 72 

250 K 24 0.725 16666667 0.42 1.2 4 27 72 

250 K 25 0.725 16666667 0.47 1 4 41 72 

250 K 26 0.725 16666667 0.47 1.1 4 36 72 

250 K 27 0.725 16666667 0.47 1.2 4 33 72 

250 K 28 0.775 10000000 0.37 1 4 36 72 

250 K 29 0.775 10000000 0.37 1.1 4 33 72 

250 K 30 0.775 10000000 0.37 1.2 4 30 72 

250 K 31 0.775 10000000 0.42 1 4 47 72 

250 K 32 0.775 10000000 0.42 1.1 4 43 72 

250 K 33 0.775 10000000 0.42 1.2 4 39 72 

250 K 34 0.775 10000000 0.47 1 4 60 72 

250 K 35 0.775 10000000 0.47 1.1 4 55 72 

250 K 36 0.775 10000000 0.47 1.2 4 48 72 

250 K 37 0.775 13333333 0.37 1 4 35 72 

250 K 38 0.775 13333333 0.37 1.1 4 32 72 

250 K 39 0.775 13333333 0.37 1.2 4 29 72 

250 K 40 0.775 13333333 0.42 1 4 46 72 

250 K 41 0.775 13333333 0.42 1.1 4 41 72 

250 K 42 0.775 13333333 0.42 1.2 4 36 72 

250 K 43 0.775 13333333 0.47 1 4 58 72 

250 K 44 0.775 13333333 0.47 1.1 4 52 72 

250 K 45 0.775 13333333 0.47 1.2 4 46 72 

250 K 46 0.775 16666667 0.37 1 4 34 72 

250 K 47 0.775 16666667 0.37 1.1 4 31 72 

250 K 48 0.775 16666667 0.37 1.2 4 28 72 

250 K 49 0.775 16666667 0.42 1 4 44 72 

250 K 50 0.775 16666667 0.42 1.1 4 40 72 

250 K 51 0.775 16666667 0.42 1.2 4 35 72 

250 K 52 0.775 16666667 0.47 1 4 56 72 

250 K 53 0.775 16666667 0.47 1.1 4 49 72 

250 K 54 0.775 16666667 0.47 1.2 4 45 72 

250 K 55 0.825 10000000 0.37 1 4 48 72 

250 K 56 0.825 10000000 0.37 1.1 4 43 72 

250 K 57 0.825 10000000 0.37 1.2 4 37 72 

250 K 58 0.825 10000000 0.42 1 4 61 72 

250 K 59 0.825 10000000 0.42 1.1 4 55 72 

250 K 60 0.825 10000000 0.42 1.2 4 48 72 

250 K 61 0.825 10000000 0.47 1 4 80 72 

250 K 62 0.825 10000000 0.47 1.1 4 69 72 

250 K 63 0.825 10000000 0.47 1.2 4 61 72 

250 K 64 0.825 13333333 0.37 1 4 46 72 

250 K 65 0.825 13333333 0.37 1.1 4 41 72 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 66 0.825 13333333 0.37 1.2 4 36 72 

250 K 67 0.825 13333333 0.42 1 4 59 72 

250 K 68 0.825 13333333 0.42 1.1 4 53 72 

250 K 69 0.825 13333333 0.42 1.2 4 47 72 

250 K 70 0.825 13333333 0.47 1 4 74 72 

250 K 71 0.825 13333333 0.47 1.1 4 67 72 

250 K 72 0.825 13333333 0.47 1.2 4 59 72 

250 K 73 0.825 16666667 0.37 1 4 45 72 

250 K 74 0.825 16666667 0.37 1.1 4 40 72 

250 K 75 0.825 16666667 0.37 1.2 4 35 72 

250 K 76 0.825 16666667 0.42 1 4 58 72 

250 K 77 0.825 16666667 0.42 1.1 4 50 72 

250 K 78 0.825 16666667 0.42 1.2 4 45 72 

250 K 79 0.825 16666667 0.47 1 4 72 72 

250 K 80 0.825 16666667 0.47 1.1 4 62 72 

250 K 81 0.825 16666667 0.47 1.2 4 58 72 

250 K 1 0.725 10000000 0.37 1 5 31 58 

250 K 2 0.725 10000000 0.37 1.1 5 28 58 

250 K 3 0.725 10000000 0.37 1.2 5 25 58 

250 K 4 0.725 10000000 0.42 1 5 40 58 

250 K 5 0.725 10000000 0.42 1.1 5 35 58 

250 K 6 0.725 10000000 0.42 1.2 5 32 58 

250 K 7 0.725 10000000 0.47 1 5 51 58 

250 K 8 0.725 10000000 0.47 1.1 5 44 58 

250 K 9 0.725 10000000 0.47 1.2 5 40 58 

250 K 10 0.725 13333333 0.37 1 5 29 58 

250 K 11 0.725 13333333 0.37 1.1 5 26 58 

250 K 12 0.725 13333333 0.37 1.2 5 24 58 

250 K 13 0.725 13333333 0.42 1 5 38 58 

250 K 14 0.725 13333333 0.42 1.1 5 34 58 

250 K 15 0.725 13333333 0.42 1.2 5 31 58 

250 K 16 0.725 13333333 0.47 1 5 47 58 

250 K 17 0.725 13333333 0.47 1.1 5 42 58 

250 K 18 0.725 13333333 0.47 1.2 5 38 58 

250 K 19 0.725 16666667 0.37 1 5 28 58 

250 K 20 0.725 16666667 0.37 1.1 5 25 58 

250 K 21 0.725 16666667 0.37 1.2 5 23 58 

250 K 22 0.725 16666667 0.42 1 5 36 58 

250 K 23 0.725 16666667 0.42 1.1 5 32 58 

250 K 24 0.725 16666667 0.42 1.2 5 30 58 

250 K 25 0.725 16666667 0.47 1 5 44 58 

250 K 26 0.725 16666667 0.47 1.1 5 40 58 

250 K 27 0.725 16666667 0.47 1.2 5 37 58 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 28 0.775 10000000 0.37 1 5 41 58 

250 K 29 0.775 10000000 0.37 1.1 5 36 58 

250 K 30 0.775 10000000 0.37 1.2 5 32 58 

250 K 31 0.775 10000000 0.42 1 5 51 58 

250 K 32 0.775 10000000 0.42 1.1 5 46 58 

250 K 33 0.775 10000000 0.42 1.2 5 41 58 

250 K 34 0.775 10000000 0.47 1 5 66 58 

250 K 35 0.775 10000000 0.47 1.1 5 59 58 

250 K 36 0.775 10000000 0.47 1.2 5 51 58 

250 K 37 0.775 13333333 0.37 1 5 39 58 

250 K 38 0.775 13333333 0.37 1.1 5 34 58 

250 K 39 0.775 13333333 0.37 1.2 5 31 58 

250 K 40 0.775 13333333 0.42 1 5 50 58 

250 K 41 0.775 13333333 0.42 1.1 5 44 58 

250 K 42 0.775 13333333 0.42 1.2 5 40 58 

250 K 43 0.775 13333333 0.47 1 5 63 58 

250 K 44 0.775 13333333 0.47 1.1 5 56 58 

250 K 45 0.775 13333333 0.47 1.2 5 49 58 

250 K 46 0.775 16666667 0.37 1 5 37 58 

250 K 47 0.775 16666667 0.37 1.1 5 33 58 

250 K 48 0.775 16666667 0.37 1.2 5 30 58 

250 K 49 0.775 16666667 0.42 1 5 47 58 

250 K 50 0.775 16666667 0.42 1.1 5 43 58 

250 K 51 0.775 16666667 0.42 1.2 5 38 58 

250 K 52 0.775 16666667 0.47 1 5 61 58 

250 K 53 0.775 16666667 0.47 1.1 5 55 58 

250 K 54 0.775 16666667 0.47 1.2 5 48 58 

250 K 55 0.825 10000000 0.37 1 5 51 58 

250 K 56 0.825 10000000 0.37 1.1 5 45 58 

250 K 57 0.825 10000000 0.37 1.2 5 40 58 

250 K 58 0.825 10000000 0.42 1 5 67 58 

250 K 59 0.825 10000000 0.42 1.1 5 59 58 

250 K 60 0.825 10000000 0.42 1.2 5 51 58 

250 K 61 0.825 10000000 0.47 1 5 83 58 

250 K 62 0.825 10000000 0.47 1.1 5 74 58 

250 K 63 0.825 10000000 0.47 1.2 5 65 58 

250 K 64 0.825 13333333 0.37 1 5 49 58 

250 K 65 0.825 13333333 0.37 1.1 5 43 58 

250 K 66 0.825 13333333 0.37 1.2 5 38 58 

250 K 67 0.825 13333333 0.42 1 5 64 58 

250 K 68 0.825 13333333 0.42 1.1 5 57 58 

250 K 69 0.825 13333333 0.42 1.2 5 49 58 

250 K 70 0.825 13333333 0.47 1 5 81 58 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 71 0.825 13333333 0.47 1.1 5 69 58 

250 K 72 0.825 13333333 0.47 1.2 5 63 58 

250 K 73 0.825 16666667 0.37 1 5 48 58 

250 K 74 0.825 16666667 0.37 1.1 5 42 58 

250 K 75 0.825 16666667 0.37 1.2 5 37 58 

250 K 76 0.825 16666667 0.42 1 5 63 58 

250 K 77 0.825 16666667 0.42 1.1 5 55 58 

250 K 78 0.825 16666667 0.42 1.2 5 48 58 

250 K 79 0.825 16666667 0.47 1 5 78 58 

250 K 80 0.825 16666667 0.47 1.1 5 68 58 

250 K 81 0.825 16666667 0.47 1.2 5 61 58 

250 K 1 0.725 10000000 0.37 1 6 41 66 

250 K 2 0.725 10000000 0.37 1.1 6 36 66 

250 K 3 0.725 10000000 0.37 1.2 6 33 66 

250 K 4 0.725 10000000 0.42 1 6 52 66 

250 K 5 0.725 10000000 0.42 1.1 6 47 66 

250 K 6 0.725 10000000 0.42 1.2 6 43 66 

250 K 7 0.725 10000000 0.47 1 6 64 66 

250 K 8 0.725 10000000 0.47 1.1 6 57 66 

250 K 9 0.725 10000000 0.47 1.2 6 52 66 

250 K 10 0.725 13333333 0.37 1 6 38 66 

250 K 11 0.725 13333333 0.37 1.1 6 35 66 

250 K 12 0.725 13333333 0.37 1.2 6 32 66 

250 K 13 0.725 13333333 0.42 1 6 50 66 

250 K 14 0.725 13333333 0.42 1.1 6 45 66 

250 K 15 0.725 13333333 0.42 1.2 6 39 66 

250 K 16 0.725 13333333 0.47 1 6 61 66 

250 K 17 0.725 13333333 0.47 1.1 6 55 66 

250 K 18 0.725 13333333 0.47 1.2 6 50 66 

250 K 19 0.725 16666667 0.37 1 6 37 66 

250 K 20 0.725 16666667 0.37 1.1 6 34 66 

250 K 21 0.725 16666667 0.37 1.2 6 31 66 

250 K 22 0.725 16666667 0.42 1 6 48 66 

250 K 23 0.725 16666667 0.42 1.1 6 43 66 

250 K 24 0.725 16666667 0.42 1.2 6 38 66 

250 K 25 0.725 16666667 0.47 1 6 59 66 

250 K 26 0.725 16666667 0.47 1.1 6 54 66 

250 K 27 0.725 16666667 0.47 1.2 6 49 66 

250 K 28 0.775 10000000 0.37 1 6 53 66 

250 K 29 0.775 10000000 0.37 1.1 6 48 66 

250 K 30 0.775 10000000 0.37 1.2 6 43 66 

250 K 31 0.775 10000000 0.42 1 6 67 66 

250 K 32 0.775 10000000 0.42 1.1 6 60 66 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 33 0.775 10000000 0.42 1.2 6 55 66 

250 K 34 0.775 10000000 0.47 1 6 86 66 

250 K 35 0.775 10000000 0.47 1.1 6 77 66 

250 K 36 0.775 10000000 0.47 1.2 6 67 66 

250 K 37 0.775 13333333 0.37 1 6 51 66 

250 K 38 0.775 13333333 0.37 1.1 6 45 66 

250 K 39 0.775 13333333 0.37 1.2 6 40 66 

250 K 40 0.775 13333333 0.42 1 6 65 66 

250 K 41 0.775 13333333 0.42 1.1 6 58 66 

250 K 42 0.775 13333333 0.42 1.2 6 52 66 

250 K 43 0.775 13333333 0.47 1 6 83 66 

250 K 44 0.775 13333333 0.47 1.1 6 74 66 

250 K 45 0.775 13333333 0.47 1.2 6 65 66 

250 K 46 0.775 16666667 0.37 1 6 50 66 

250 K 47 0.775 16666667 0.37 1.1 6 44 66 

250 K 48 0.775 16666667 0.37 1.2 6 39 66 

250 K 49 0.775 16666667 0.42 1 6 63 66 

250 K 50 0.775 16666667 0.42 1.1 6 56 66 

250 K 51 0.775 16666667 0.42 1.2 6 50 66 

250 K 52 0.775 16666667 0.47 1 6 80 66 

250 K 53 0.775 16666667 0.47 1.1 6 68 66 

250 K 54 0.775 16666667 0.47 1.2 6 63 66 

250 K 55 0.825 10000000 0.37 1 6 67 66 

250 K 56 0.825 10000000 0.37 1.1 6 59 66 

250 K 57 0.825 10000000 0.37 1.2 6 53 66 

250 K 58 0.825 10000000 0.42 1 6 87 66 

250 K 59 0.825 10000000 0.42 1.1 6 77 66 

250 K 60 0.825 10000000 0.42 1.2 6 67 66 

250 K 61 0.825 10000000 0.47 1 6 109 66 

250 K 62 0.825 10000000 0.47 1.1 6 93 66 

250 K 63 0.825 10000000 0.47 1.2 6 85 66 

250 K 64 0.825 13333333 0.37 1 6 64 66 

250 K 65 0.825 13333333 0.37 1.1 6 57 66 

250 K 66 0.825 13333333 0.37 1.2 6 51 66 

250 K 67 0.825 13333333 0.42 1 6 84 66 

250 K 68 0.825 13333333 0.42 1.1 6 75 66 

250 K 69 0.825 13333333 0.42 1.2 6 64 66 

250 K 70 0.825 13333333 0.47 1 6 106 66 

250 K 71 0.825 13333333 0.47 1.1 6 91 66 

250 K 72 0.825 13333333 0.47 1.2 6 82 66 

250 K 73 0.825 16666667 0.37 1 6 62 66 

250 K 74 0.825 16666667 0.37 1.1 6 55 66 

250 K 75 0.825 16666667 0.37 1.2 6 49 66 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 76 0.825 16666667 0.42 1 6 82 66 

250 K 77 0.825 16666667 0.42 1.1 6 69 66 

250 K 78 0.825 16666667 0.42 1.2 6 63 66 

250 K 79 0.825 16666667 0.47 1 6 103 66 

250 K 80 0.825 16666667 0.47 1.1 6 88 66 

250 K 81 0.825 16666667 0.47 1.2 6 80 66 
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APPENDIX B: MODEL 2 DATA 

The following abbreviations for orientations are used: O#4 is [1,1,16], O#5 is 

[-1,3,7], and O#6 is [-4,9,9]. 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 1 0.65 50000 0.23 1.34 4 208 251 

143 K 2 0.65 50000 0.23 1.44 4 204 251 

143 K 3 0.65 50000 0.23 1.54 4 200 251 

143 K 4 0.65 50000 0.255 1.34 4 219 251 

143 K 5 0.65 50000 0.255 1.44 4 210 251 

143 K 6 0.65 50000 0.255 1.54 4 206 251 

143 K 7 0.65 50000 0.28 1.34 4 231 251 

143 K 8 0.65 50000 0.28 1.44 4 221 251 

143 K 9 0.65 50000 0.28 1.54 4 216 251 

143 K 10 0.65 66667 0.23 1.34 4 207 251 

143 K 11 0.65 66667 0.23 1.44 4 203 251 

143 K 12 0.65 66667 0.23 1.54 4 196 251 

143 K 13 0.65 66667 0.255 1.34 4 218 251 

143 K 14 0.65 66667 0.255 1.44 4 209 251 

143 K 15 0.65 66667 0.255 1.54 4 205 251 

143 K 16 0.65 66667 0.28 1.34 4 229 251 

143 K 17 0.65 66667 0.28 1.44 4 220 251 

143 K 18 0.65 66667 0.28 1.54 4 215 251 

143 K 19 0.65 83333 0.23 1.34 4 206 251 

143 K 20 0.65 83333 0.23 1.44 4 202 251 

143 K 21 0.65 83333 0.23 1.54 4 195 251 

143 K 22 0.65 83333 0.255 1.34 4 217 251 

143 K 23 0.65 83333 0.255 1.44 4 208 251 

143 K 24 0.65 83333 0.255 1.54 4 204 251 

143 K 25 0.65 83333 0.28 1.34 4 228 251 

143 K 26 0.65 83333 0.28 1.44 4 219 251 

143 K 27 0.65 83333 0.28 1.54 4 214 251 

143 K 28 0.675 50000 0.23 1.34 4 214 251 

143 K 29 0.675 50000 0.23 1.44 4 206 251 

143 K 30 0.675 50000 0.23 1.54 4 202 251 

143 K 31 0.675 50000 0.255 1.34 4 222 251 

143 K 32 0.675 50000 0.255 1.44 4 217 251 

143 K 33 0.675 50000 0.255 1.54 4 208 251 

143 K 34 0.675 50000 0.28 1.34 4 234 251 

143 K 35 0.675 50000 0.28 1.44 4 228 251 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 36 0.675 50000 0.28 1.54 4 219 251 

143 K 37 0.675 66667 0.23 1.34 4 209 251 

143 K 38 0.675 66667 0.23 1.44 4 205 251 

143 K 39 0.675 66667 0.23 1.54 4 201 251 

143 K 40 0.675 66667 0.255 1.34 4 221 251 

143 K 41 0.675 66667 0.255 1.44 4 216 251 

143 K 42 0.675 66667 0.255 1.54 4 207 251 

143 K 43 0.675 66667 0.28 1.34 4 233 251 

143 K 44 0.675 66667 0.28 1.44 4 223 251 

143 K 45 0.675 66667 0.28 1.54 4 218 251 

143 K 46 0.675 83333 0.23 1.34 4 209 251 

143 K 47 0.675 83333 0.23 1.44 4 204 251 

143 K 48 0.675 83333 0.23 1.54 4 201 251 

143 K 49 0.675 83333 0.255 1.34 4 220 251 

143 K 50 0.675 83333 0.255 1.44 4 215 251 

143 K 51 0.675 83333 0.255 1.54 4 207 251 

143 K 52 0.675 83333 0.28 1.34 4 232 251 

143 K 53 0.675 83333 0.28 1.44 4 222 251 

143 K 54 0.675 83333 0.28 1.54 4 217 251 

143 K 55 0.7 50000 0.23 1.34 4 217 251 

143 K 56 0.7 50000 0.23 1.44 4 208 251 

143 K 57 0.7 50000 0.23 1.54 4 204 251 

143 K 58 0.7 50000 0.255 1.34 4 229 251 

143 K 59 0.7 50000 0.255 1.44 4 219 251 

143 K 60 0.7 50000 0.255 1.54 4 214 251 

143 K 61 0.7 50000 0.28 1.34 4 242 251 

143 K 62 0.7 50000 0.28 1.44 4 231 251 

143 K 63 0.7 50000 0.28 1.54 4 221 251 

143 K 64 0.7 66667 0.23 1.34 4 216 251 

143 K 65 0.7 66667 0.23 1.44 4 207 251 

143 K 66 0.7 66667 0.23 1.54 4 203 251 

143 K 67 0.7 66667 0.255 1.34 4 228 251 

143 K 68 0.7 66667 0.255 1.44 4 218 251 

143 K 69 0.7 66667 0.255 1.54 4 209 251 

143 K 70 0.7 66667 0.28 1.34 4 236 251 

143 K 71 0.7 66667 0.28 1.44 4 230 251 

143 K 72 0.7 66667 0.28 1.54 4 220 251 

143 K 73 0.7 83333 0.23 1.34 4 215 251 

143 K 74 0.7 83333 0.23 1.44 4 207 251 

143 K 75 0.7 83333 0.23 1.54 4 203 251 

143 K 76 0.7 83333 0.255 1.34 4 223 251 

143 K 77 0.7 83333 0.255 1.44 4 217 251 

143 K 78 0.7 83333 0.255 1.54 4 209 251 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 79 0.7 83333 0.28 1.34 4 235 251 

143 K 80 0.7 83333 0.28 1.44 4 229 251 

143 K 81 0.7 83333 0.28 1.54 4 220 251 

143 K 1 0.65 50000 0.23 1.34 5 215 250 

143 K 2 0.65 50000 0.23 1.44 5 209 250 

143 K 3 0.65 50000 0.23 1.54 5 205 250 

143 K 4 0.65 50000 0.255 1.34 5 227 250 

143 K 5 0.65 50000 0.255 1.44 5 220 250 

143 K 6 0.65 50000 0.255 1.54 5 212 250 

143 K 7 0.65 50000 0.28 1.34 5 240 250 

143 K 8 0.65 50000 0.28 1.44 5 229 250 

143 K 9 0.65 50000 0.28 1.54 5 223 250 

143 K 10 0.65 66667 0.23 1.34 5 214 250 

143 K 11 0.65 66667 0.23 1.44 5 208 250 

143 K 12 0.65 66667 0.23 1.54 5 204 250 

143 K 13 0.65 66667 0.255 1.34 5 226 250 

143 K 14 0.65 66667 0.255 1.44 5 219 250 

143 K 15 0.65 66667 0.255 1.54 5 211 250 

143 K 16 0.65 66667 0.28 1.34 5 235 250 

143 K 17 0.65 66667 0.28 1.44 5 228 250 

143 K 18 0.65 66667 0.28 1.54 5 221 250 

143 K 19 0.65 83333 0.23 1.34 5 213 250 

143 K 20 0.65 83333 0.23 1.44 5 207 250 

143 K 21 0.65 83333 0.23 1.54 5 203 250 

143 K 22 0.65 83333 0.255 1.34 5 225 250 

143 K 23 0.65 83333 0.255 1.44 5 215 250 

143 K 24 0.65 83333 0.255 1.54 5 210 250 

143 K 25 0.65 83333 0.28 1.34 5 234 250 

143 K 26 0.65 83333 0.28 1.44 5 227 250 

143 K 27 0.65 83333 0.28 1.54 5 220 250 

143 K 28 0.675 50000 0.23 1.34 5 221 250 

143 K 29 0.675 50000 0.23 1.44 5 212 250 

143 K 30 0.675 50000 0.23 1.54 5 207 250 

143 K 31 0.675 50000 0.255 1.34 5 231 250 

143 K 32 0.675 50000 0.255 1.44 5 224 250 

143 K 33 0.675 50000 0.255 1.54 5 215 250 

143 K 34 0.675 50000 0.28 1.34 5 245 250 

143 K 35 0.675 50000 0.28 1.44 5 233 250 

143 K 36 0.675 50000 0.28 1.54 5 226 250 

143 K 37 0.675 66667 0.23 1.34 5 220 250 

143 K 38 0.675 66667 0.23 1.44 5 211 250 

143 K 39 0.675 66667 0.23 1.54 5 206 250 

143 K 40 0.675 66667 0.255 1.34 5 230 250 



 

152 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 41 0.675 66667 0.255 1.44 5 222 250 

143 K 42 0.675 66667 0.255 1.54 5 214 250 

143 K 43 0.675 66667 0.28 1.34 5 243 250 

143 K 44 0.675 66667 0.28 1.44 5 232 250 

143 K 45 0.675 66667 0.28 1.54 5 225 250 

143 K 46 0.675 83333 0.23 1.34 5 218 250 

143 K 47 0.675 83333 0.23 1.44 5 210 250 

143 K 48 0.675 83333 0.23 1.54 5 205 250 

143 K 49 0.675 83333 0.255 1.34 5 229 250 

143 K 50 0.675 83333 0.255 1.44 5 221 250 

143 K 51 0.675 83333 0.255 1.54 5 213 250 

143 K 52 0.675 83333 0.28 1.34 5 241 250 

143 K 53 0.675 83333 0.28 1.44 5 231 250 

143 K 54 0.675 83333 0.28 1.54 5 224 250 

143 K 55 0.7 50000 0.23 1.34 5 225 250 

143 K 56 0.7 50000 0.23 1.44 5 215 250 

143 K 57 0.7 50000 0.23 1.54 5 210 250 

143 K 58 0.7 50000 0.255 1.34 5 235 250 

143 K 59 0.7 50000 0.255 1.44 5 227 250 

143 K 60 0.7 50000 0.255 1.54 5 221 250 

143 K 61 0.7 50000 0.28 1.34 5 249 250 

143 K 62 0.7 50000 0.28 1.44 5 240 250 

143 K 63 0.7 50000 0.28 1.54 5 230 250 

143 K 64 0.7 66667 0.23 1.34 5 223 250 

143 K 65 0.7 66667 0.23 1.44 5 214 250 

143 K 66 0.7 66667 0.23 1.54 5 209 250 

143 K 67 0.7 66667 0.255 1.34 5 234 250 

143 K 68 0.7 66667 0.255 1.44 5 226 250 

143 K 69 0.7 66667 0.255 1.54 5 219 250 

143 K 70 0.7 66667 0.28 1.34 5 247 250 

143 K 71 0.7 66667 0.28 1.44 5 235 250 

143 K 72 0.7 66667 0.28 1.54 5 228 250 

143 K 73 0.7 83333 0.23 1.34 5 222 250 

143 K 74 0.7 83333 0.23 1.44 5 213 250 

143 K 75 0.7 83333 0.23 1.54 5 208 250 

143 K 76 0.7 83333 0.255 1.34 5 232 250 

143 K 77 0.7 83333 0.255 1.44 5 225 250 

143 K 78 0.7 83333 0.255 1.54 5 216 250 

143 K 79 0.7 83333 0.28 1.34 5 246 250 

143 K 80 0.7 83333 0.28 1.44 5 234 250 

143 K 81 0.7 83333 0.28 1.54 5 227 250 

143 K 1 0.65 50000 0.23 1.34 6 307 295 

143 K 2 0.65 50000 0.23 1.44 6 300 295 



 

153 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 3 0.65 50000 0.23 1.54 6 294 295 

143 K 4 0.65 50000 0.255 1.34 6 325 295 

143 K 5 0.65 50000 0.255 1.44 6 315 295 

143 K 6 0.65 50000 0.255 1.54 6 304 295 

143 K 7 0.65 50000 0.28 1.34 6 343 295 

143 K 8 0.65 50000 0.28 1.44 6 328 295 

143 K 9 0.65 50000 0.28 1.54 6 319 295 

143 K 10 0.65 66667 0.23 1.34 6 306 295 

143 K 11 0.65 66667 0.23 1.44 6 299 295 

143 K 12 0.65 66667 0.23 1.54 6 293 295 

143 K 13 0.65 66667 0.255 1.34 6 323 295 

143 K 14 0.65 66667 0.255 1.44 6 309 295 

143 K 15 0.65 66667 0.255 1.54 6 302 295 

143 K 16 0.65 66667 0.28 1.34 6 335 295 

143 K 17 0.65 66667 0.28 1.44 6 326 295 

143 K 18 0.65 66667 0.28 1.54 6 317 295 

143 K 19 0.65 83333 0.23 1.34 6 305 295 

143 K 20 0.65 83333 0.23 1.44 6 298 295 

143 K 21 0.65 83333 0.23 1.54 6 292 295 

143 K 22 0.65 83333 0.255 1.34 6 321 295 

143 K 23 0.65 83333 0.255 1.44 6 308 295 

143 K 24 0.65 83333 0.255 1.54 6 301 295 

143 K 25 0.65 83333 0.28 1.34 6 334 295 

143 K 26 0.65 83333 0.28 1.44 6 324 295 

143 K 27 0.65 83333 0.28 1.54 6 316 295 

143 K 28 0.675 50000 0.23 1.34 6 317 295 

143 K 29 0.675 50000 0.23 1.44 6 304 295 

143 K 30 0.675 50000 0.23 1.54 6 297 295 

143 K 31 0.675 50000 0.255 1.34 6 330 295 

143 K 32 0.675 50000 0.255 1.44 6 320 295 

143 K 33 0.675 50000 0.255 1.54 6 308 295 

143 K 34 0.675 50000 0.28 1.34 6 349 295 

143 K 35 0.675 50000 0.28 1.44 6 333 295 

143 K 36 0.675 50000 0.28 1.54 6 324 295 

143 K 37 0.675 66667 0.23 1.34 6 310 295 

143 K 38 0.675 66667 0.23 1.44 6 302 295 

143 K 39 0.675 66667 0.23 1.54 6 296 295 

143 K 40 0.675 66667 0.255 1.34 6 328 295 

143 K 41 0.675 66667 0.255 1.44 6 318 295 

143 K 42 0.675 66667 0.255 1.54 6 306 295 

143 K 43 0.675 66667 0.28 1.34 6 347 295 

143 K 44 0.675 66667 0.28 1.44 6 331 295 

143 K 45 0.675 66667 0.28 1.54 6 322 295 



 

154 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

143 K 46 0.675 83333 0.23 1.34 6 309 295 

143 K 47 0.675 83333 0.23 1.44 6 301 295 

143 K 48 0.675 83333 0.23 1.54 6 295 295 

143 K 49 0.675 83333 0.255 1.34 6 327 295 

143 K 50 0.675 83333 0.255 1.44 6 317 295 

143 K 51 0.675 83333 0.255 1.54 6 305 295 

143 K 52 0.675 83333 0.28 1.34 6 345 295 

143 K 53 0.675 83333 0.28 1.44 6 329 295 

143 K 54 0.675 83333 0.28 1.54 6 321 295 

143 K 55 0.7 50000 0.23 1.34 6 321 295 

143 K 56 0.7 50000 0.23 1.44 6 308 295 

143 K 57 0.7 50000 0.23 1.54 6 301 295 

143 K 58 0.7 50000 0.255 1.34 6 335 295 

143 K 59 0.7 50000 0.255 1.44 6 325 295 

143 K 60 0.7 50000 0.255 1.54 6 316 295 

143 K 61 0.7 50000 0.28 1.34 6 355 295 

143 K 62 0.7 50000 0.28 1.44 6 343 295 

143 K 63 0.7 50000 0.28 1.54 6 329 295 

143 K 64 0.7 66667 0.23 1.34 6 319 295 

143 K 65 0.7 66667 0.23 1.44 6 306 295 

143 K 66 0.7 66667 0.23 1.54 6 299 295 

143 K 67 0.7 66667 0.255 1.34 6 333 295 

143 K 68 0.7 66667 0.255 1.44 6 323 295 

143 K 69 0.7 66667 0.255 1.54 6 310 295 

143 K 70 0.7 66667 0.28 1.34 6 353 295 

143 K 71 0.7 66667 0.28 1.44 6 336 295 

143 K 72 0.7 66667 0.28 1.54 6 327 295 

143 K 73 0.7 83333 0.23 1.34 6 318 295 

143 K 74 0.7 83333 0.23 1.44 6 305 295 

143 K 75 0.7 83333 0.23 1.54 6 298 295 

143 K 76 0.7 83333 0.255 1.34 6 332 295 

143 K 77 0.7 83333 0.255 1.44 6 322 295 

143 K 78 0.7 83333 0.255 1.54 6 309 295 

143 K 79 0.7 83333 0.28 1.34 6 351 295 

143 K 80 0.7 83333 0.28 1.44 6 334 295 

143 K 81 0.7 83333 0.28 1.54 6 325 295 

195 K 1 0.65 50000 0.23 1.34 4 127 151 

195 K 2 0.65 50000 0.23 1.44 4 122 151 

195 K 3 0.65 50000 0.23 1.54 4 120 151 

195 K 4 0.65 50000 0.255 1.34 4 131 151 

195 K 5 0.65 50000 0.255 1.44 4 129 151 

195 K 6 0.65 50000 0.255 1.54 4 127 151 

195 K 7 0.65 50000 0.28 1.34 4 136 151 



 

155 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 8 0.65 50000 0.28 1.44 4 133 151 

195 K 9 0.65 50000 0.28 1.54 4 131 151 

195 K 10 0.65 66667 0.23 1.34 4 127 151 

195 K 11 0.65 66667 0.23 1.44 4 122 151 

195 K 12 0.65 66667 0.23 1.54 4 120 151 

195 K 13 0.65 66667 0.255 1.34 4 130 151 

195 K 14 0.65 66667 0.255 1.44 4 128 151 

195 K 15 0.65 66667 0.255 1.54 4 127 151 

195 K 16 0.65 66667 0.28 1.34 4 135 151 

195 K 17 0.65 66667 0.28 1.44 4 132 151 

195 K 18 0.65 66667 0.28 1.54 4 130 151 

195 K 19 0.65 83333 0.23 1.34 4 123 151 

195 K 20 0.65 83333 0.23 1.44 4 121 151 

195 K 21 0.65 83333 0.23 1.54 4 120 151 

195 K 22 0.65 83333 0.255 1.34 4 130 151 

195 K 23 0.65 83333 0.255 1.44 4 128 151 

195 K 24 0.65 83333 0.255 1.54 4 123 151 

195 K 25 0.65 83333 0.28 1.34 4 134 151 

195 K 26 0.65 83333 0.28 1.44 4 131 151 

195 K 27 0.65 83333 0.28 1.54 4 129 151 

195 K 28 0.675 50000 0.23 1.34 4 129 151 

195 K 29 0.675 50000 0.23 1.44 4 127 151 

195 K 30 0.675 50000 0.23 1.54 4 122 151 

195 K 31 0.675 50000 0.255 1.34 4 133 151 

195 K 32 0.675 50000 0.255 1.44 4 131 151 

195 K 33 0.675 50000 0.255 1.54 4 129 151 

195 K 34 0.675 50000 0.28 1.34 4 142 151 

195 K 35 0.675 50000 0.28 1.44 4 135 151 

195 K 36 0.675 50000 0.28 1.54 4 132 151 

195 K 37 0.675 66667 0.23 1.34 4 128 151 

195 K 38 0.675 66667 0.23 1.44 4 123 151 

195 K 39 0.675 66667 0.23 1.54 4 121 151 

195 K 40 0.675 66667 0.255 1.34 4 132 151 

195 K 41 0.675 66667 0.255 1.44 4 130 151 

195 K 42 0.675 66667 0.255 1.54 4 127 151 

195 K 43 0.675 66667 0.28 1.34 4 141 151 

195 K 44 0.675 66667 0.28 1.44 4 134 151 

195 K 45 0.675 66667 0.28 1.54 4 132 151 

195 K 46 0.675 83333 0.23 1.34 4 128 151 

195 K 47 0.675 83333 0.23 1.44 4 123 151 

195 K 48 0.675 83333 0.23 1.54 4 121 151 

195 K 49 0.675 83333 0.255 1.34 4 132 151 

195 K 50 0.675 83333 0.255 1.44 4 129 151 



 

156 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 51 0.675 83333 0.255 1.54 4 128 151 

195 K 52 0.675 83333 0.28 1.34 4 136 151 

195 K 53 0.675 83333 0.28 1.44 4 134 151 

195 K 54 0.675 83333 0.28 1.54 4 131 151 

195 K 55 0.7 50000 0.23 1.34 4 131 151 

195 K 56 0.7 50000 0.23 1.44 4 128 151 

195 K 57 0.7 50000 0.23 1.54 4 123 151 

195 K 58 0.7 50000 0.255 1.34 4 135 151 

195 K 59 0.7 50000 0.255 1.44 4 133 151 

195 K 60 0.7 50000 0.255 1.54 4 130 151 

195 K 61 0.7 50000 0.28 1.34 4 145 151 

195 K 62 0.7 50000 0.28 1.44 4 141 151 

195 K 63 0.7 50000 0.28 1.54 4 134 151 

195 K 64 0.7 66667 0.23 1.34 4 130 151 

195 K 65 0.7 66667 0.23 1.44 4 128 151 

195 K 66 0.7 66667 0.23 1.54 4 123 151 

195 K 67 0.7 66667 0.255 1.34 4 135 151 

195 K 68 0.7 66667 0.255 1.44 4 132 151 

195 K 69 0.7 66667 0.255 1.54 4 130 151 

195 K 70 0.7 66667 0.28 1.34 4 143 151 

195 K 71 0.7 66667 0.28 1.44 4 136 151 

195 K 72 0.7 66667 0.28 1.54 4 134 151 

195 K 73 0.7 83333 0.23 1.34 4 129 151 

195 K 74 0.7 83333 0.23 1.44 4 127 151 

195 K 75 0.7 83333 0.23 1.54 4 122 151 

195 K 76 0.7 83333 0.255 1.34 4 134 151 

195 K 77 0.7 83333 0.255 1.44 4 131 151 

195 K 78 0.7 83333 0.255 1.54 4 129 151 

195 K 79 0.7 83333 0.28 1.34 4 143 151 

195 K 80 0.7 83333 0.28 1.44 4 136 151 

195 K 81 0.7 83333 0.28 1.54 4 133 151 

195 K 1 0.65 50000 0.23 1.34 5 123 148 

195 K 2 0.65 50000 0.23 1.44 5 121 148 

195 K 3 0.65 50000 0.23 1.54 5 119 148 

195 K 4 0.65 50000 0.255 1.34 5 129 148 

195 K 5 0.65 50000 0.255 1.44 5 125 148 

195 K 6 0.65 50000 0.255 1.54 5 123 148 

195 K 7 0.65 50000 0.28 1.34 5 136 148 

195 K 8 0.65 50000 0.28 1.44 5 131 148 

195 K 9 0.65 50000 0.28 1.54 5 127 148 

195 K 10 0.65 66667 0.23 1.34 5 122 148 

195 K 11 0.65 66667 0.23 1.44 5 120 148 

195 K 12 0.65 66667 0.23 1.54 5 118 148 



 

157 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 13 0.65 66667 0.255 1.34 5 127 148 

195 K 14 0.65 66667 0.255 1.44 5 124 148 

195 K 15 0.65 66667 0.255 1.54 5 122 148 

195 K 16 0.65 66667 0.28 1.34 5 133 148 

195 K 17 0.65 66667 0.28 1.44 5 130 148 

195 K 18 0.65 66667 0.28 1.54 5 127 148 

195 K 19 0.65 83333 0.23 1.34 5 122 148 

195 K 20 0.65 83333 0.23 1.44 5 119 148 

195 K 21 0.65 83333 0.23 1.54 5 118 148 

195 K 22 0.65 83333 0.255 1.34 5 127 148 

195 K 23 0.65 83333 0.255 1.44 5 124 148 

195 K 24 0.65 83333 0.255 1.54 5 121 148 

195 K 25 0.65 83333 0.28 1.34 5 132 148 

195 K 26 0.65 83333 0.28 1.44 5 129 148 

195 K 27 0.65 83333 0.28 1.54 5 126 148 

195 K 28 0.675 50000 0.23 1.34 5 125 148 

195 K 29 0.675 50000 0.23 1.44 5 122 148 

195 K 30 0.675 50000 0.23 1.54 5 120 148 

195 K 31 0.675 50000 0.255 1.34 5 131 148 

195 K 32 0.675 50000 0.255 1.44 5 128 148 

195 K 33 0.675 50000 0.255 1.54 5 125 148 

195 K 34 0.675 50000 0.28 1.34 5 140 148 

195 K 35 0.675 50000 0.28 1.44 5 133 148 

195 K 36 0.675 50000 0.28 1.54 5 130 148 

195 K 37 0.675 66667 0.23 1.34 5 124 148 

195 K 38 0.675 66667 0.23 1.44 5 122 148 

195 K 39 0.675 66667 0.23 1.54 5 120 148 

195 K 40 0.675 66667 0.255 1.34 5 130 148 

195 K 41 0.675 66667 0.255 1.44 5 127 148 

195 K 42 0.675 66667 0.255 1.54 5 124 148 

195 K 43 0.675 66667 0.28 1.34 5 138 148 

195 K 44 0.675 66667 0.28 1.44 5 132 148 

195 K 45 0.675 66667 0.28 1.54 5 129 148 

195 K 46 0.675 83333 0.23 1.34 5 124 148 

195 K 47 0.675 83333 0.23 1.44 5 121 148 

195 K 48 0.675 83333 0.23 1.54 5 119 148 

195 K 49 0.675 83333 0.255 1.34 5 129 148 

195 K 50 0.675 83333 0.255 1.44 5 126 148 

195 K 51 0.675 83333 0.255 1.54 5 123 148 

195 K 52 0.675 83333 0.28 1.34 5 137 148 

195 K 53 0.675 83333 0.28 1.44 5 132 148 

195 K 54 0.675 83333 0.28 1.54 5 128 148 

195 K 55 0.7 50000 0.23 1.34 5 128 148 



 

158 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 56 0.7 50000 0.23 1.44 5 124 148 

195 K 57 0.7 50000 0.23 1.54 5 122 148 

195 K 58 0.7 50000 0.255 1.34 5 134 148 

195 K 59 0.7 50000 0.255 1.44 5 130 148 

195 K 60 0.7 50000 0.255 1.54 5 127 148 

195 K 61 0.7 50000 0.28 1.34 5 143 148 

195 K 62 0.7 50000 0.28 1.44 5 138 148 

195 K 63 0.7 50000 0.28 1.54 5 132 148 

195 K 64 0.7 66667 0.23 1.34 5 127 148 

195 K 65 0.7 66667 0.23 1.44 5 124 148 

195 K 66 0.7 66667 0.23 1.54 5 121 148 

195 K 67 0.7 66667 0.255 1.34 5 133 148 

195 K 68 0.7 66667 0.255 1.44 5 129 148 

195 K 69 0.7 66667 0.255 1.54 5 126 148 

195 K 70 0.7 66667 0.28 1.34 5 142 148 

195 K 71 0.7 66667 0.28 1.44 5 137 148 

195 K 72 0.7 66667 0.28 1.54 5 131 148 

195 K 73 0.7 83333 0.23 1.34 5 126 148 

195 K 74 0.7 83333 0.23 1.44 5 123 148 

195 K 75 0.7 83333 0.23 1.54 5 121 148 

195 K 76 0.7 83333 0.255 1.34 5 132 148 

195 K 77 0.7 83333 0.255 1.44 5 128 148 

195 K 78 0.7 83333 0.255 1.54 5 125 148 

195 K 79 0.7 83333 0.28 1.34 5 141 148 

195 K 80 0.7 83333 0.28 1.44 5 136 148 

195 K 81 0.7 83333 0.28 1.54 5 131 148 

195 K 1 0.65 50000 0.23 1.34 6 169 153 

195 K 2 0.65 50000 0.23 1.44 6 167 153 

195 K 3 0.65 50000 0.23 1.54 6 164 153 

195 K 4 0.65 50000 0.255 1.34 6 176 153 

195 K 5 0.65 50000 0.255 1.44 6 172 153 

195 K 6 0.65 50000 0.255 1.54 6 169 153 

195 K 7 0.65 50000 0.28 1.34 6 187 153 

195 K 8 0.65 50000 0.28 1.44 6 182 153 

195 K 9 0.65 50000 0.28 1.54 6 175 153 

195 K 10 0.65 66667 0.23 1.34 6 169 153 

195 K 11 0.65 66667 0.23 1.44 6 166 153 

195 K 12 0.65 66667 0.23 1.54 6 164 153 

195 K 13 0.65 66667 0.255 1.34 6 175 153 

195 K 14 0.65 66667 0.255 1.44 6 171 153 

195 K 15 0.65 66667 0.255 1.54 6 168 153 

195 K 16 0.65 66667 0.28 1.34 6 185 153 

195 K 17 0.65 66667 0.28 1.44 6 177 153 



 

159 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 18 0.65 66667 0.28 1.54 6 174 153 

195 K 19 0.65 83333 0.23 1.34 6 168 153 

195 K 20 0.65 83333 0.23 1.44 6 165 153 

195 K 21 0.65 83333 0.23 1.54 6 163 153 

195 K 22 0.65 83333 0.255 1.34 6 174 153 

195 K 23 0.65 83333 0.255 1.44 6 170 153 

195 K 24 0.65 83333 0.255 1.54 6 168 153 

195 K 25 0.65 83333 0.28 1.34 6 184 153 

195 K 26 0.65 83333 0.28 1.44 6 176 153 

195 K 27 0.65 83333 0.28 1.54 6 173 153 

195 K 28 0.675 50000 0.23 1.34 6 172 153 

195 K 29 0.675 50000 0.23 1.44 6 169 153 

195 K 30 0.675 50000 0.23 1.54 6 166 153 

195 K 31 0.675 50000 0.255 1.34 6 183 153 

195 K 32 0.675 50000 0.255 1.44 6 175 153 

195 K 33 0.675 50000 0.255 1.54 6 171 153 

195 K 34 0.675 50000 0.28 1.34 6 191 153 

195 K 35 0.675 50000 0.28 1.44 6 186 153 

195 K 36 0.675 50000 0.28 1.54 6 181 153 

195 K 37 0.675 66667 0.23 1.34 6 171 153 

195 K 38 0.675 66667 0.23 1.44 6 168 153 

195 K 39 0.675 66667 0.23 1.54 6 165 153 

195 K 40 0.675 66667 0.255 1.34 6 181 153 

195 K 41 0.675 66667 0.255 1.44 6 174 153 

195 K 42 0.675 66667 0.255 1.54 6 170 153 

195 K 43 0.675 66667 0.28 1.34 6 190 153 

195 K 44 0.675 66667 0.28 1.44 6 184 153 

195 K 45 0.675 66667 0.28 1.54 6 176 153 

195 K 46 0.675 83333 0.23 1.34 6 170 153 

195 K 47 0.675 83333 0.23 1.44 6 167 153 

195 K 48 0.675 83333 0.23 1.54 6 165 153 

195 K 49 0.675 83333 0.255 1.34 6 177 153 

195 K 50 0.675 83333 0.255 1.44 6 173 153 

195 K 51 0.675 83333 0.255 1.54 6 170 153 

195 K 52 0.675 83333 0.28 1.34 6 188 153 

195 K 53 0.675 83333 0.28 1.44 6 183 153 

195 K 54 0.675 83333 0.28 1.54 6 176 153 

195 K 55 0.7 50000 0.23 1.34 6 175 153 

195 K 56 0.7 50000 0.23 1.44 6 171 153 

195 K 57 0.7 50000 0.23 1.54 6 168 153 

195 K 58 0.7 50000 0.255 1.34 6 187 153 

195 K 59 0.7 50000 0.255 1.44 6 181 153 

195 K 60 0.7 50000 0.255 1.54 6 174 153 



 

160 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

195 K 61 0.7 50000 0.28 1.34 6 196 153 

195 K 62 0.7 50000 0.28 1.44 6 190 153 

195 K 63 0.7 50000 0.28 1.54 6 185 153 

195 K 64 0.7 66667 0.23 1.34 6 174 153 

195 K 65 0.7 66667 0.23 1.44 6 170 153 

195 K 66 0.7 66667 0.23 1.54 6 167 153 

195 K 67 0.7 66667 0.255 1.34 6 185 153 

195 K 68 0.7 66667 0.255 1.44 6 177 153 

195 K 69 0.7 66667 0.255 1.54 6 173 153 

195 K 70 0.7 66667 0.28 1.34 6 194 153 

195 K 71 0.7 66667 0.28 1.44 6 188 153 

195 K 72 0.7 66667 0.28 1.54 6 183 153 

195 K 73 0.7 83333 0.23 1.34 6 173 153 

195 K 74 0.7 83333 0.23 1.44 6 169 153 

195 K 75 0.7 83333 0.23 1.54 6 167 153 

195 K 76 0.7 83333 0.255 1.34 6 184 153 

195 K 77 0.7 83333 0.255 1.44 6 176 153 

195 K 78 0.7 83333 0.255 1.54 6 172 153 

195 K 79 0.7 83333 0.28 1.34 6 193 153 

195 K 80 0.7 83333 0.28 1.44 6 187 153 

195 K 81 0.7 83333 0.28 1.54 6 182 153 

250 K 1 0.65 50000 0.23 1.34 4 58 72 

250 K 2 0.65 50000 0.23 1.44 4 57 72 

250 K 3 0.65 50000 0.23 1.54 4 58 72 

250 K 4 0.65 50000 0.255 1.34 4 60 72 

250 K 5 0.65 50000 0.255 1.44 4 59 72 

250 K 6 0.65 50000 0.255 1.54 4 58 72 

250 K 7 0.65 50000 0.28 1.34 4 62 72 

250 K 8 0.65 50000 0.28 1.44 4 62 72 

250 K 9 0.65 50000 0.28 1.54 4 61 72 

250 K 10 0.65 66667 0.23 1.34 4 57 72 

250 K 11 0.65 66667 0.23 1.44 4 57 72 

250 K 12 0.65 66667 0.23 1.54 4 57 72 

250 K 13 0.65 66667 0.255 1.34 4 60 72 

250 K 14 0.65 66667 0.255 1.44 4 61 72 

250 K 15 0.65 66667 0.255 1.54 4 58 72 

250 K 16 0.65 66667 0.28 1.34 4 63 72 

250 K 17 0.65 66667 0.28 1.44 4 62 72 

250 K 18 0.65 66667 0.28 1.54 4 61 72 

250 K 19 0.65 83333 0.23 1.34 4 59 72 

250 K 20 0.65 83333 0.23 1.44 4 59 72 

250 K 21 0.65 83333 0.23 1.54 4 58 72 

250 K 22 0.65 83333 0.255 1.34 4 59 72 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 23 0.65 83333 0.255 1.44 4 61 72 

250 K 24 0.65 83333 0.255 1.54 4 0 72 

250 K 25 0.65 83333 0.28 1.34 4 62 72 

250 K 26 0.65 83333 0.28 1.44 4 61 72 

250 K 27 0.65 83333 0.28 1.54 4 60 72 

250 K 28 0.675 50000 0.23 1.34 4 59 72 

250 K 29 0.675 50000 0.23 1.44 4 59 72 

250 K 30 0.675 50000 0.23 1.54 4 57 72 

250 K 31 0.675 50000 0.255 1.34 4 62 72 

250 K 32 0.675 50000 0.255 1.44 4 61 72 

250 K 33 0.675 50000 0.255 1.54 4 59 72 

250 K 34 0.675 50000 0.28 1.34 4 64 72 

250 K 35 0.675 50000 0.28 1.44 4 63 72 

250 K 36 0.675 50000 0.28 1.54 4 62 72 

250 K 37 0.675 66667 0.23 1.34 4 59 72 

250 K 38 0.675 66667 0.23 1.44 4 59 72 

250 K 39 0.675 66667 0.23 1.54 4 58 72 

250 K 40 0.675 66667 0.255 1.34 4 61 72 

250 K 41 0.675 66667 0.255 1.44 4 60 72 

250 K 42 0.675 66667 0.255 1.54 4 59 72 

250 K 43 0.675 66667 0.28 1.34 4 64 72 

250 K 44 0.675 66667 0.28 1.44 4 63 72 

250 K 45 0.675 66667 0.28 1.54 4 62 72 

250 K 46 0.675 83333 0.23 1.34 4 61 72 

250 K 47 0.675 83333 0.23 1.44 4 59 72 

250 K 48 0.675 83333 0.23 1.54 4 59 72 

250 K 49 0.675 83333 0.255 1.34 4 61 72 

250 K 50 0.675 83333 0.255 1.44 4 62 72 

250 K 51 0.675 83333 0.255 1.54 4 59 72 

250 K 52 0.675 83333 0.28 1.34 4 64 72 

250 K 53 0.675 83333 0.28 1.44 4 61 72 

250 K 54 0.675 83333 0.28 1.54 4 61 72 

250 K 55 0.7 50000 0.23 1.34 4 60 72 

250 K 56 0.7 50000 0.23 1.44 4 59 72 

250 K 57 0.7 50000 0.23 1.54 4 58 72 

250 K 58 0.7 50000 0.255 1.34 4 64 72 

250 K 59 0.7 50000 0.255 1.44 4 63 72 

250 K 60 0.7 50000 0.255 1.54 4 60 72 

250 K 61 0.7 50000 0.28 1.34 4 68 72 

250 K 62 0.7 50000 0.28 1.44 4 65 72 

250 K 63 0.7 50000 0.28 1.54 4 64 72 

250 K 64 0.7 66667 0.23 1.34 4 60 72 

250 K 65 0.7 66667 0.23 1.44 4 59 72 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 66 0.7 66667 0.23 1.54 4 58 72 

250 K 67 0.7 66667 0.255 1.34 4 62 72 

250 K 68 0.7 66667 0.255 1.44 4 61 72 

250 K 69 0.7 66667 0.255 1.54 4 60 72 

250 K 70 0.7 66667 0.28 1.34 4 65 72 

250 K 71 0.7 66667 0.28 1.44 4 64 72 

250 K 72 0.7 66667 0.28 1.54 4 63 72 

250 K 73 0.7 83333 0.23 1.34 4 59 72 

250 K 74 0.7 83333 0.23 1.44 4 61 72 

250 K 75 0.7 83333 0.23 1.54 4 60 72 

250 K 76 0.7 83333 0.255 1.34 4 63 72 

250 K 77 0.7 83333 0.255 1.44 4 60 72 

250 K 78 0.7 83333 0.255 1.54 4 60 72 

250 K 79 0.7 83333 0.28 1.34 4 65 72 

250 K 80 0.7 83333 0.28 1.44 4 64 72 

250 K 81 0.7 83333 0.28 1.54 4 63 72 

250 K 1 0.65 50000 0.23 1.34 5 55 58 

250 K 2 0.65 50000 0.23 1.44 5 54 58 

250 K 3 0.65 50000 0.23 1.54 5 53 58 

250 K 4 0.65 50000 0.255 1.34 5 57 58 

250 K 5 0.65 50000 0.255 1.44 5 56 58 

250 K 6 0.65 50000 0.255 1.54 5 55 58 

250 K 7 0.65 50000 0.28 1.34 5 59 58 

250 K 8 0.65 50000 0.28 1.44 5 58 58 

250 K 9 0.65 50000 0.28 1.54 5 57 58 

250 K 10 0.65 66667 0.23 1.34 5 54 58 

250 K 11 0.65 66667 0.23 1.44 5 54 58 

250 K 12 0.65 66667 0.23 1.54 5 53 58 

250 K 13 0.65 66667 0.255 1.34 5 57 58 

250 K 14 0.65 66667 0.255 1.44 5 56 58 

250 K 15 0.65 66667 0.255 1.54 5 55 58 

250 K 16 0.65 66667 0.28 1.34 5 59 58 

250 K 17 0.65 66667 0.28 1.44 5 58 58 

250 K 18 0.65 66667 0.28 1.54 5 57 58 

250 K 19 0.65 83333 0.23 1.34 5 54 58 

250 K 20 0.65 83333 0.23 1.44 5 53 58 

250 K 21 0.65 83333 0.23 1.54 5 53 58 

250 K 22 0.65 83333 0.255 1.34 5 56 58 

250 K 23 0.65 83333 0.255 1.44 5 55 58 

250 K 24 0.65 83333 0.255 1.54 5 54 58 

250 K 25 0.65 83333 0.28 1.34 5 58 58 

250 K 26 0.65 83333 0.28 1.44 5 57 58 

250 K 27 0.65 83333 0.28 1.54 5 56 58 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 28 0.675 50000 0.23 1.34 5 56 58 

250 K 29 0.675 50000 0.23 1.44 5 55 58 

250 K 30 0.675 50000 0.23 1.54 5 54 58 

250 K 31 0.675 50000 0.255 1.34 5 58 58 

250 K 32 0.675 50000 0.255 1.44 5 57 58 

250 K 33 0.675 50000 0.255 1.54 5 56 58 

250 K 34 0.675 50000 0.28 1.34 5 61 58 

250 K 35 0.675 50000 0.28 1.44 5 60 58 

250 K 36 0.675 50000 0.28 1.54 5 58 58 

250 K 37 0.675 66667 0.23 1.34 5 56 58 

250 K 38 0.675 66667 0.23 1.44 5 55 58 

250 K 39 0.675 66667 0.23 1.54 5 54 58 

250 K 40 0.675 66667 0.255 1.34 5 58 58 

250 K 41 0.675 66667 0.255 1.44 5 57 58 

250 K 42 0.675 66667 0.255 1.54 5 56 58 

250 K 43 0.675 66667 0.28 1.34 5 61 58 

250 K 44 0.675 66667 0.28 1.44 5 59 58 

250 K 45 0.675 66667 0.28 1.54 5 58 58 

250 K 46 0.675 83333 0.23 1.34 5 55 58 

250 K 47 0.675 83333 0.23 1.44 5 54 58 

250 K 48 0.675 83333 0.23 1.54 5 53 58 

250 K 49 0.675 83333 0.255 1.34 5 57 58 

250 K 50 0.675 83333 0.255 1.44 5 56 58 

250 K 51 0.675 83333 0.255 1.54 5 56 58 

250 K 52 0.675 83333 0.28 1.34 5 60 58 

250 K 53 0.675 83333 0.28 1.44 5 59 58 

250 K 54 0.675 83333 0.28 1.54 5 58 58 

250 K 55 0.7 50000 0.23 1.34 5 57 58 

250 K 56 0.7 50000 0.23 1.44 5 56 58 

250 K 57 0.7 50000 0.23 1.54 5 55 58 

250 K 58 0.7 50000 0.255 1.34 5 60 58 

250 K 59 0.7 50000 0.255 1.44 5 58 58 

250 K 60 0.7 50000 0.255 1.54 5 57 58 

250 K 61 0.7 50000 0.28 1.34 5 63 58 

250 K 62 0.7 50000 0.28 1.44 5 61 58 

250 K 63 0.7 50000 0.28 1.54 5 60 58 

250 K 64 0.7 66667 0.23 1.34 5 57 58 

250 K 65 0.7 66667 0.23 1.44 5 56 58 

250 K 66 0.7 66667 0.23 1.54 5 55 58 

250 K 67 0.7 66667 0.255 1.34 5 59 58 

250 K 68 0.7 66667 0.255 1.44 5 58 58 

250 K 69 0.7 66667 0.255 1.54 5 57 58 

250 K 70 0.7 66667 0.28 1.34 5 63 58 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 71 0.7 66667 0.28 1.44 5 61 58 

250 K 72 0.7 66667 0.28 1.54 5 59 58 

250 K 73 0.7 83333 0.23 1.34 5 56 58 

250 K 74 0.7 83333 0.23 1.44 5 56 58 

250 K 75 0.7 83333 0.23 1.54 5 54 58 

250 K 76 0.7 83333 0.255 1.34 5 59 58 

250 K 77 0.7 83333 0.255 1.44 5 58 58 

250 K 78 0.7 83333 0.255 1.54 5 57 58 

250 K 79 0.7 83333 0.28 1.34 5 62 58 

250 K 80 0.7 83333 0.28 1.44 5 60 58 

250 K 81 0.7 83333 0.28 1.54 5 59 58 

250 K 1 0.65 50000 0.23 1.34 6 76 66 

250 K 2 0.65 50000 0.23 1.44 6 75 66 

250 K 3 0.65 50000 0.23 1.54 6 74 66 

250 K 4 0.65 50000 0.255 1.34 6 78 66 

250 K 5 0.65 50000 0.255 1.44 6 77 66 

250 K 6 0.65 50000 0.255 1.54 6 76 66 

250 K 7 0.65 50000 0.28 1.34 6 80 66 

250 K 8 0.65 50000 0.28 1.44 6 79 66 

250 K 9 0.65 50000 0.28 1.54 6 78 66 

250 K 10 0.65 66667 0.23 1.34 6 75 66 

250 K 11 0.65 66667 0.23 1.44 6 74 66 

250 K 12 0.65 66667 0.23 1.54 6 72 66 

250 K 13 0.65 66667 0.255 1.34 6 77 66 

250 K 14 0.65 66667 0.255 1.44 6 76 66 

250 K 15 0.65 66667 0.255 1.54 6 76 66 

250 K 16 0.65 66667 0.28 1.34 6 80 66 

250 K 17 0.65 66667 0.28 1.44 6 78 66 

250 K 18 0.65 66667 0.28 1.54 6 77 66 

250 K 19 0.65 83333 0.23 1.34 6 74 66 

250 K 20 0.65 83333 0.23 1.44 6 73 66 

250 K 21 0.65 83333 0.23 1.54 6 73 66 

250 K 22 0.65 83333 0.255 1.34 6 77 66 

250 K 23 0.65 83333 0.255 1.44 6 75 66 

250 K 24 0.65 83333 0.255 1.54 6 75 66 

250 K 25 0.65 83333 0.28 1.34 6 79 66 

250 K 26 0.65 83333 0.28 1.44 6 78 66 

250 K 27 0.65 83333 0.28 1.54 6 77 66 

250 K 28 0.675 50000 0.23 1.34 6 77 66 

250 K 29 0.675 50000 0.23 1.44 6 76 66 

250 K 30 0.675 50000 0.23 1.54 6 74 66 

250 K 31 0.675 50000 0.255 1.34 6 79 66 

250 K 32 0.675 50000 0.255 1.44 6 78 66 
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Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 33 0.675 50000 0.255 1.54 6 76 66 

250 K 34 0.675 50000 0.28 1.34 6 83 66 

250 K 35 0.675 50000 0.28 1.44 6 81 66 

250 K 36 0.675 50000 0.28 1.54 6 79 66 

250 K 37 0.675 66667 0.23 1.34 6 76 66 

250 K 38 0.675 66667 0.23 1.44 6 76 66 

250 K 39 0.675 66667 0.23 1.54 6 75 66 

250 K 40 0.675 66667 0.255 1.34 6 79 66 

250 K 41 0.675 66667 0.255 1.44 6 77 66 

250 K 42 0.675 66667 0.255 1.54 6 77 66 

250 K 43 0.675 66667 0.28 1.34 6 82 66 

250 K 44 0.675 66667 0.28 1.44 6 80 66 

250 K 45 0.675 66667 0.28 1.54 6 79 66 

250 K 46 0.675 83333 0.23 1.34 6 75 66 

250 K 47 0.675 83333 0.23 1.44 6 75 66 

250 K 48 0.675 83333 0.23 1.54 6 75 66 

250 K 49 0.675 83333 0.255 1.34 6 78 66 

250 K 50 0.675 83333 0.255 1.44 6 77 66 

250 K 51 0.675 83333 0.255 1.54 6 76 66 

250 K 52 0.675 83333 0.28 1.34 6 81 66 

250 K 53 0.675 83333 0.28 1.44 6 79 66 

250 K 54 0.675 83333 0.28 1.54 6 78 66 

250 K 55 0.7 50000 0.23 1.34 6 78 66 

250 K 56 0.7 50000 0.23 1.44 6 77 66 

250 K 57 0.7 50000 0.23 1.54 6 76 66 

250 K 58 0.7 50000 0.255 1.34 6 81 66 

250 K 59 0.7 50000 0.255 1.44 6 79 66 

250 K 60 0.7 50000 0.255 1.54 6 78 66 

250 K 61 0.7 50000 0.28 1.34 6 84 66 

250 K 62 0.7 50000 0.28 1.44 6 83 66 

250 K 63 0.7 50000 0.28 1.54 6 81 66 

250 K 64 0.7 66667 0.23 1.34 6 77 66 

250 K 65 0.7 66667 0.23 1.44 6 76 66 

250 K 66 0.7 66667 0.23 1.54 6 75 66 

250 K 67 0.7 66667 0.255 1.34 6 80 66 

250 K 68 0.7 66667 0.255 1.44 6 78 66 

250 K 69 0.7 66667 0.255 1.54 6 78 66 

250 K 70 0.7 66667 0.28 1.34 6 84 66 

250 K 71 0.7 66667 0.28 1.44 6 82 66 

250 K 72 0.7 66667 0.28 1.54 6 80 66 

250 K 73 0.7 83333 0.23 1.34 6 77 66 

250 K 74 0.7 83333 0.23 1.44 6 76 66 

250 K 75 0.7 83333 0.23 1.54 6 75 66 



 

166 

 

Temp Case 
ΔG 

(eV) 

γ̇₀ 
(s⁻¹) 

p q O# 
Simulated 

Yield, MPa 

Experimental 

Yield, MPa 

250 K 76 0.7 83333 0.255 1.34 6 80 66 

250 K 77 0.7 83333 0.255 1.44 6 78 66 

250 K 78 0.7 83333 0.255 1.54 6 77 66 

250 K 79 0.7 83333 0.28 1.34 6 83 66 

250 K 80 0.7 83333 0.28 1.44 6 81 66 

250 K 81 0.7 83333 0.28 1.54 6 80 66 
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APPENDIX C: MODEL 3 DATA 

143 K, Orientation #4  195 K, Orientation #4 

Simulation 

Time, s 
Strain 

Stress, 

MPa 
 

Simulation 

Time, s 
Strain 

Stress, 

MPa 

0.00E+00 0.00E+00 0.0  0.00E+00 0.00E+00 0.0 

1.93E-01 1.93E-05 2.8  1.93E-01 1.93E-05 2.7 

1.19E+00 1.19E-04 17.0  1.19E+00 1.19E-04 16.7 

2.19E+00 2.19E-04 31.3  2.19E+00 2.19E-04 30.7 

3.19E+00 3.19E-04 45.6  3.19E+00 3.19E-04 44.6 

4.19E+00 4.19E-04 59.9  4.19E+00 4.19E-04 58.2 

5.19E+00 5.19E-04 74.2  5.19E+00 5.19E-04 71.5 

6.19E+00 6.19E-04 88.5  6.19E+00 6.19E-04 84.2 

7.19E+00 7.19E-04 102.8  7.19E+00 7.19E-04 95.9 

8.19E+00 8.19E-04 117.1  8.19E+00 8.19E-04 106.4 

9.19E+00 9.19E-04 131.5  9.19E+00 9.19E-04 115.4 

1.02E+01 1.02E-03 145.8  1.02E+01 1.02E-03 122.6 

1.12E+01 1.12E-03 160.2  1.12E+01 1.12E-03 128.2 

1.22E+01 1.22E-03 174.5  1.22E+01 1.22E-03 132.3 

1.32E+01 1.32E-03 188.8  1.32E+01 1.32E-03 135.3 

1.42E+01 1.42E-03 203.2  1.42E+01 1.42E-03 137.4 

1.52E+01 1.52E-03 217.5  1.52E+01 1.52E-03 138.9 

1.62E+01 1.62E-03 231.8  1.62E+01 1.62E-03 140.1 

1.72E+01 1.72E-03 246.0  1.72E+01 1.72E-03 141.0 

1.82E+01 1.82E-03 260.0  1.82E+01 1.82E-03 141.7 

1.92E+01 1.92E-03 273.9  1.92E+01 1.92E-03 142.3 

2.02E+01 2.02E-03 287.3  2.00E+01 2.00E-03 142.7 
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143 K, Orientation #5  195 K, Orientation #5 

Simulation 

Time, s 
Strain 

Stress, 

MPa 
 

Simulation 

Time, s 
Strain 

Stress, 

MPa 

0.00E+00 0.00E+00 0.0  0.00E+00 0.00E+00 0.0 

1.93E-01 1.93E-05 3.9  2.56E-01 2.56E-05 5.1 

1.19E+00 1.19E-04 23.9  1.26E+00 1.26E-04 24.9 

2.19E+00 2.19E-04 44.1  2.26E+00 2.26E-04 44.6 

3.19E+00 3.19E-04 64.2  3.26E+00 3.26E-04 64.0 

4.19E+00 4.19E-04 84.3  4.26E+00 4.26E-04 83.1 

5.19E+00 5.19E-04 104.5  5.26E+00 5.25E-04 101.2 

6.19E+00 6.19E-04 124.7  6.26E+00 6.25E-04 117.8 

7.19E+00 7.19E-04 144.8  7.26E+00 7.25E-04 131.9 

8.19E+00 8.19E-04 165.0  8.26E+00 8.25E-04 143.0 

9.19E+00 9.19E-04 185.2  9.26E+00 9.25E-04 150.9 

1.02E+01 1.02E-03 205.4  1.03E+01 1.03E-03 156.2 

1.12E+01 1.12E-03 225.5  1.13E+01 1.12E-03 159.6 

1.22E+01 1.22E-03 245.7  1.23E+01 1.22E-03 161.8 

1.32E+01 1.32E-03 265.7  1.33E+01 1.32E-03 163.3 

1.42E+01 1.42E-03 285.5  1.43E+01 1.42E-03 164.4 

1.52E+01 1.52E-03 304.9  1.53E+01 1.52E-03 165.3 

1.62E+01 1.62E-03 323.4  1.63E+01 1.62E-03 166.0 

1.72E+01 1.72E-03 340.2  1.73E+01 1.72E-03 166.6 

1.82E+01 1.82E-03 354.5  1.83E+01 1.82E-03 167.2 

1.92E+01 1.92E-03 365.7  1.93E+01 1.92E-03 167.8 

2.02E+01 2.02E-03 373.8  2.00E+01 2.00E-03 168.2 
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143 K, Orientation #6  195 K, Orientation #6 

Simulation 

Time, s 
Strain 

Stress, 

MPa 
 

Simulation 

Time, s 
Strain 

Stress, 

MPa 

0.00E+00 0.00E+00 0.0  0.00E+00 0.00E+00 0.0 

2.56E-01 2.56E-05 6.8  2.56E-01 2.56E-05 6.7 

1.26E+00 1.26E-04 33.3  1.26E+00 1.26E-04 32.9 

2.26E+00 2.26E-04 59.7  2.26E+00 2.26E-04 58.9 

3.26E+00 3.26E-04 86.2  3.26E+00 3.26E-04 84.7 

4.26E+00 4.26E-04 112.7  4.26E+00 4.26E-04 110.0 

5.26E+00 5.25E-04 139.2  5.26E+00 5.25E-04 134.1 

6.26E+00 6.25E-04 165.8  6.26E+00 6.25E-04 156.1 

7.26E+00 7.25E-04 192.3  7.26E+00 7.25E-04 175.1 

8.26E+00 8.25E-04 218.8  8.26E+00 8.25E-04 190.2 

9.26E+00 9.25E-04 245.4  9.26E+00 9.25E-04 201.4 

1.03E+01 1.03E-03 271.9  1.03E+01 1.03E-03 209.1 

1.13E+01 1.12E-03 298.5  1.13E+01 1.12E-03 214.4 

1.23E+01 1.22E-03 325.0  1.23E+01 1.22E-03 218.0 

1.33E+01 1.32E-03 351.5  1.33E+01 1.32E-03 220.8 

1.43E+01 1.42E-03 377.8  1.43E+01 1.42E-03 222.9 

1.53E+01 1.52E-03 403.8  1.53E+01 1.52E-03 224.7 

1.63E+01 1.62E-03 429.2  1.63E+01 1.62E-03 226.2 

1.73E+01 1.72E-03 453.5  1.73E+01 1.72E-03 227.6 

1.83E+01 1.82E-03 475.8  1.83E+01 1.82E-03 228.8 

1.93E+01 1.92E-03 495.2  1.93E+01 1.92E-03 229.9 

2.03E+01 2.02E-03 510.8  2.00E+01 2.00E-03 230.7 
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APPENDIX D: EXAMPLE EXCEL FORMULAS 

The Monte Carlo simulations in this thesis were complete using Microsoft Excel. 

Representative examples of the formulas used are given in this appendix. The following 

examples use equation ( 8 ), repeated here: 

𝑷(𝛾|𝛼) =

[𝛼𝛽1 𝛼𝛽2 𝛼𝛽3 𝛼𝛽4]

[
 
 
 
 
𝛽1𝛾
𝛽2𝛾
𝛽3𝛾
𝛽4𝛾]

 
 
 
 

∙ 𝛾

𝑑𝑢𝑎𝑙

(

 
 
[𝛼𝛽1 𝛼𝛽2 𝛼𝛽3 𝛼𝛽4]

[
 
 
 
 
𝛽1𝛾 𝛽1𝛾𝐶

𝛽2𝛾 𝛽2𝛾𝐶

𝛽3𝛾 𝛽3𝛾𝐶

𝛽4𝛾 𝛽4𝛾𝐶]
 
 
 
 

[
𝛾

𝛾𝐶]

)

 
 

 ( 8 ) 

Uniform inputs 

When the intervals populating equation ( 8 ) needed to be simulated with uniform 

inputs, the following formulas were used: 
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The “Rand()” function generates random numbers uniformly distributed between 

zero and one, and the values following “Rand” in each of the formulas simply scale the 

result according to the interval bounds. Variables whose value was determined by the 

LCC were calculated by subtraction from the randomly generated values. With these 

formulas in place, row 5 was repeated 100,000 times, and then the values from column R 

were re-generated and copied 10 times in order to generate a one million run simulation. 

Normal Inputs 

When the intervals populating equation ( 8 ) needed to be simulated with normal 

inputs, the following formulas were used: 
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The inverse normal function “Norm.Inv()” calculates the probability of a value 

within a normal distribution. The distribution was centered on each input interval, where 

the bounds of the input interval represented ±3σ limits of the distribution. The “IfError()” 

function replaces calculation errors with the mean of the interval bounds. With these 

formulas in place, row 5 was repeated 100,000 times, and then the values from column R 

were re-generated and copied 10 times in order to generate a one million run simulation. 

Uniform Inputs without the LCC 

When the intervals populating equation ( 8 ) needed to be simulated with uniform 

inputs, and the interval equation was not subject to the LCC, the following formulas were 

used to ensure that the real-valued calculations would still be properly normalized: 
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Columns B through E and I through L generate uniformly distributed random 

numbers scaled to be complementary. Columns F through H and M through O serve to 

determine the order in which those random values with be inserted into the real-valued 

equation. The random values are ordered in columns T through W and X through AA. 

This double-sampling process avoids favoring any one variable over another when the 

intervals represent complete ignorance. With these formulas in place, row 5 was repeated 

100,000 times, and then the values from column AF were re-generated and copied 10 

times in order to generate a one million run simulation. 
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