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information integration and exchange in a collaborative engineering environment. The use of CAD data
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exchange. In this paper, a hybrid ontology approach is proposed to allow for the full exchange of both
feature definition semantics and geometric construction data. A shared base ontology is used to convey
the most fundamental elements of CAD systems for geometry and topology, which is to both maximize
flexibility and minimize information loss. A three-branch hybrid CAD feature model that includes feature
operation information at the boundary representation level is constructed. Instance-level feature infor-
mation in the form of the base ontology is then translated to local ontologies of individual CAD systems
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1. Introduction

One of the most common and costly problems impeding collab-
orative design environments is the difficulty involved in data ex-
change between heterogeneous engineering software systems. In
practice, it is not uncommon to have to exchange computer-aided
design (CAD) model data between different systems, as a company
may use different software packages at different stages of the de-
sign process, or it may use a different one from their suppliers or
business partners. Resources spent translating data between differ-
ent CAD formats, reprocessing the data in different applications,
redesigning due to information loss, or error checking and correc-
tion can become very costly. Neutral data exchange standards such
as the Standard for the Exchange of Product Model Data (STEP)
have been developed to facilitate CAD data exchange. Yet the stan-
dards have remained largely restricted to the representation of fi-
nal geometry, causing the design intent portrayed through
construction history, features, parameters, and constraints to be
discarded in the exchange process. The inclusion of feature data
in the STEP neutral format (ISO 10303) has been in discussion
and under development in the past decade. During its implemen-
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tation and industry practice, a neutral feature format to which all
CAD systems must conform still has various practical issues. Some
commercial translators, such as TTI's Accu-u-Trans [1] and Tran-
scenData’s Proficiency [2], offer feature-based conversion between
CAD systems. They are often prohibitively expensive, and the num-
bers of supported systems are also limited. In such translators,
problems often arise because of incongruous feature sets which re-
quire resolution from human user. A general, robust, and auto-
mated solution for feature-based exchange is still an active
research area.

We differentiate two kinds of mapping processes in feature data
exchange, each with their own advantages and disadvantages. One
approach, shown in Fig. 1a, involves the static mapping of two
class-level libraries to create a translator for one-to-one matches.
This translator could then be used to directly translate an in-
stance-level file from the source system to the target one. The
other approach, shown in Fig. 1b, is a dynamic mapping process,
where an instance-level file from the source system is compared
to the class-level library of the target system, with an instance-le-
vel file being generated in the target system once the match is
found.

The static mapping approach is currently used in industry
practice. Based on the libraries of source and target systems, the
analysis of feature similarity would only have to be done once.
The feature classes then are stored as matching pairs, and the
resultant translator could directly convert from one instance-level
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Fig. 1. Two approaches of CAD data translation.

representation into another. However, there are some obstacles
with the static mapping for its general use. The first one is that it
requires full access to both of the systems’ class-level libraries
and they must be kept up to date. This may be difficult when CAD
vendors are not forthcoming about the proprietary information
about their software. In addition, the one-to-one static mapping
requires that one translator should be developed for each pair of
CAD systems. Another major obstacle is the lack of a practical meth-
od to verify that each match between the source and target feature
classes is valid. Unless there is a perfect one-to-one match, there is
no guarantee that the use of the class pair with the highest similar-
ity will result in a correct recreation of the feature. This is because
the evaluated geometry of a feature is history-dependent. It relies
on the prior geometry and the input parameters, both of which
cannot be fully described in a general class-level sense. Therefore,
the static mapping approach requires the two class-level libraries
to be very similar to each other. Without verification tools, the only
way to ensure a match would be human involvement, which offers
few benefits over the ad hoc and case-by-case approaches.

Different from the static mapping, the dynamic mapping does
not require the library of the source system in the process. This
is helpful when new features or new CAD systems are introduced
and no library is available. This is also useful to synchronize data
in a client-server collaborative environment. When the client up-
dates the parameters of a feature, the updated feature can be
stored in an instance-level document and uploaded to the server.
The dynamic mapping process then can locate the specific feature
in the old instance-level document and update the parameters.
More importantly, with the dynamic mapping, it is possible to
implement a feature verification process after a target feature is
created. When working with instance-level source and target files
with geometry data simultaneously during the mapping, the re-
created geometry after the translation can be checked and com-
pared to the original one. Additionally, because the dynamic map-
ping only requires the library of the target system, it can be
integrated into the data import process of any CAD system without
knowledge of the source system library. It is helpful for individual
companies to protect their intellectual property such as their un-
ique features. Yet the dynamic mapping would be inherently less
efficient than the static one, because similarity assessment has to
be made every time a file is translated, which is the cost of the flex-
ibility it offers.

In this paper, we propose an approach to support the dynamic
mapping of features such that geometry can be verified automati-
cally. This approach uses a new feature data structure that stores
both the instance-level feature definition and boundary represen-
tation (B-Rep) data from the source system as the input. The infor-
mation is converted to a neutral format based on a shared base
CAD ontology that includes the fundamental and widely accepted
concepts of geometry in the entire knowledge domain of CAD.
The fundamental geometric information of features can then be

automatically mapped to the features defined in the target systems
according to their local ontologies and some necessary and suffi-
cient conditions coded as rules. The output of the rule-based map-
ping is the feature data defined in the target systems. The proposed
approach addresses the limitations of the purely semantics based
mapping methods in other approaches for feature-based data ex-
change. We are able to store all the available feature data from
the source system using a set of very basic ontology classes. Thus
information loss would only occur when the target system cannot
support specific feature data. The reproduced geometry can be
verified.

The major contribution of the paper is a new and robust ap-
proach for CAD ontology generation by fully storing feature data
including geometry such that verification can be performed in par-
allel during the feature matching process. It uses ontologies to
characterize features via geometry-oriented operations that con-
vert the semantics of feature definitions to specific shapes, which
is different from other ontology-based feature mapping ap-
proaches that simply define feature ontologies as classes that re-
quire a certain set of attribute types and focus only on semantic
level comparisons of domain specific feature class definitions.
Those approaches would require all CAD feature data to fully con-
form to a prescribed standard, which is overly restrictive from the
perspective of CAD vendors. In contrast, our approach enables fea-
ture information sharing only at the fundamental level of two-
dimensional sketches and B-Rep data. By applying sets of rules that
a particular target system uses, feature-level information is in-
ferred locally from the fundamental elements of geometry and
topology. The rules also provide additional inference and verifica-
tion capability for matching local features that are uniquely de-
fined beyond relying on semantic similarity of class definitions.
Our approach requires a less restrictive standard data format with-
out mandating a shared set of standardized features. It provides
more flexibility that individual CAD systems would need, improves
the robustness of feature information matching with the verifica-
tion, and reduces the amount of human input that is required.

In the rest of the paper, the most relevant work in feature map-
ping for interoperability and their limitations are reviewed in Sec-
tion 2. Section 3 discusses our approach with the ontology
representation and rules defined to model features. Section 4 de-
scribes the implementation and demonstration of our approach.
Section 5 will conclude with a summary and discussions of future
work.

2. Background
2.1. Relevant work of feature mapping between CAD systems
Historically, feature mapping has been researched to translate

from one domain to another [3,4], particularly from design to man-
ufacturing and process planning [5,6]. As feature-based modeling
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become dominant, feature mapping has been applied to convert
from one CAD system to another. The core question is the lossless
feature information exchange between systems via certain media
or forms other than their native formats. Editable Representation
(E-Rep) [7,8] developed by Hoffmann et al. was an early attempt
at exchange of construction information. It specified models as a
sequence of feature insertion, modification, and deletion processes.
Han and colleagues [9-11] captured the construction history by a
journal file created by CAD systems. This journal file contains a re-
cord of the commands utilized by the user, which is then converted
into a non-STEP neutral macro format. More recently, the neutral
macro format was updated to support geometry-based data to
avoid the problem of part reference based on creation order [12],
although the issue of persistent naming [13-17] still exists.
Rappoport et al. [18-20] represented features using a B-Rep
structure. A concept of feature rewrite was used to compute the
changes in geometry before and after a feature operation so that
the history of construction can be exchanged. The research focused
on the retention of geometric information and has been
implemented in the commercial translator package Proficiency. Li
et al. [21] established a real-time collaborative design environment
based on the use of neutral modeling commands. Application
programming interfaces (APIs) of the source and target systems
were used to exchange construction information across networks
in real-time through the neutral commands. The above approaches
achieve feature interoperability by recording the construction
history in the source system and using it as the instruction guide
for the target system, instead of exchanging actual model data.

A different approach is to model and exchange the actual model
data. The Project ENGEN (Enabling Next GENeration design) [22]
involved the extension of the STEP standard to more than the pure
geometric information. The focus of project ENGEN was the ex-
change of geometric constraints. The exchange of two-dimensional
(2D) data containing constraint information was demonstrated.
Some research has also been done to translate feature data includ-
ing constraints across heterogeneous systems using files with the
extensible markup language (XML) format. The import and export
are accomplished by APIs of CAD systems. Examples are the work
from He et al. [23,24], Zhang and Luo, [25] and Sun et al. [26]. In
these efforts, feature mapping was done manually.

Research has also been sought to add constraint data to the
most recent STEP standard to convey design intent. Kim et al.
[27] proposed to enhance the STEP standard with exchangeable
construction history and shapes with parameterization and con-
straints. They noted a common problem that most researchers
have experienced when attempting to create exchange programs
using CAD systems’ APIs is that the APIs of commercial CAD soft-
ware are not primarily intended as an interface for model ex-
change. The future research of an ontological approach for the
semantic mapping of modeling elements between CAD systems
was emphasized, such as the early work of Patil et al. [28] that cap-
tured feature semantics with ontology. Ontology is a formal repre-
sentation of a set of concepts, their properties, and the
relationships between those concepts within a given domain. Such
common language is essentially a neutral format to enable transla-
tion between domains, which reduces the number of translators
and helps resolve semantic differences. Some tools that have also
been created to support inferencing in ontologies are highly useful
when working with heterogeneous data sets.

The use of ontologies has become increasingly favored in
approaches for exchange of the complete semantics of feature
data. Seo et al. [11] exchanged the history of feature construction
with a macro-parametric approach through an ontology using
the F-Logic format. Wang and Nnaji [29] demonstrated that the
semantics of features in different CAD systems can be captured
through the ontological approach and inferencing tools can be used

in automatic reasoning and mapping. Dartigues et al. [30] showed
that data exchange between a CAD ontology and a computer aided
process planning ontology through the use of a common domain
ontology can be achieved, even though the CAD ontology only con-
tained geometric data instead of the complete construction history
and parameters. Jayaram et al. [31,32] illustrated the ontology-
based interoperability between product design and assembly
simulation domains, where cross-domain translation can be done
through a bridge ontology only if one-to-one matches of semantics
are identified. In our previous work [33,34], the feature mapping
was based on semantics of feature definitions and also relied much
on CAD system APIs.

2.2. Importance of comparing both feature semantics and geometry in
mapping

The feature mapping approach proposed in this paper also takes
advantage of ontological tools. However, it differs from the above
ontology based approaches by examining the individual instance-
level features from both viewpoints of feature semantics and the
instantiated geometry. Our approach focuses more on describing
features as interactions between their basic parameters and the
evaluated geometry, instead of simply defining features with some
presumed standard feature definitions. This approach contains a
generalization of feature representation developed for the auto-
mated feature mapping [33,34]. Here, we employ rule-based rea-
soning techniques similar to the ones proposed by Henderson
et al. [35,36] for feature recognition. Instead of applying between
CAD and other application domains, the use of inference rules here
is to find instances of individual features in different CAD systems
from the information of both feature semantics and geometry. Each
feature instance is recognized in comparison with the local ontol-
ogy in the target system'’s feature library, before any automated
feature mapping occurs. This is an important distinction from other
feature mapping approaches, which rely solely upon semantics of
feature definitions. Our approach more accurately identify a fea-
ture instance as an object of a particular feature class even when
there are semantic differences in feature definitions. This is a crit-
ical characteristic because comparing feature definitions alone
does not always give one-to-one matches between heterogeneous
systems.

Other approaches that use purely semantics mapping just com-
pare attribute labels and graph structures of feature definitions.
When a match is found, all instances are directly translated accord-
ing to the target definition. When a match is not found, it would
attempt to determine the best match by running similarity calcu-
lations. The semantic similarity is calculated at the class level be-
tween source and target features. What these approaches are
lacking is the fundamental shape information that a feature repre-
sents at the instance level, which can cause ambiguity. Two simple
examples are used here to illustrate the semantic ambiguity issue.
In Fig. 2, an edge fillet from one system is mapped to another. Sup-
pose we had no prior knowledge that the round feature in the tar-
get system generates the same geometry as the fillet feature in the
source system. The semantic approach would have to resort to
attribute type comparison. In the target system, a round and cham-
fer feature have the same set of attribute types, as shown in Fig. 2b.
Both features take a float value to describe the dimension, and a
single edge as a reference. If purely based on the feature definition,
the mapping process would be unable to determine whether round
or chamfer the fillet should be mapped to, and would have to rely
on the human user, who ultimately has to compare the actual
geometry of some feature instances and make the decision.

Another example that could be problematic involves two types
of round features with slightly different options within the feature
definition. Suppose the source system has a ‘blend intersection’
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Fig. 2. Ambiguity of feature semantics between round and chamfer.

attribute stored as a Boolean value whereas the target system has
no such attribute. As shown in Fig. 3, the geometries at the edge
intersection area are different, with and without this single option.
The mapping process could simply provide the match between the
two round features instead of providing a better solution (e.g. a
combination of features to capture the blend intersection informa-
tion). The system cannot verify if the translated feature recreates
the original geometry. Again, the user would have to check in-
stance-level geometry manually. In both examples, the mapping
would require a great deal of user input and negate the benefits
of using ontologies.

To overcome this dilemma, it is necessary to examine the ambi-
guity problem from more than just a semantic viewpoint. It is
essential to build the connection between the semantic input and
the expected geometric output, in order to reduce the human user
involvement and better automate the mapping process. By adding
B-Rep data into the ontology-based feature representation, we can
give the computer a basic means to verify geometry and enable
feature mapping with particular instances. However this is still
not enough to provide an efficient solution because it would re-
quire a large number of tests and feature evaluations to eliminate
wrong matches and recreate a specific geometry. The ideal ap-
proach would emulate a human translator who conceptually
understands features in the target system and predicts the geomet-
ric output without actually having to create it completely. The per-
son might not know exactly how all attributes should be mapped
in the target system, but he/she could still reduce the search to
only those features that can generate similar geometry.

In general, data interoperability problems are due to structural
and semantic heterogeneity. Structural heterogeneity is the incom-
patibility because of the different data structures being used,

(a) with blend intersection  (b) without blend intersection

Fig. 3. Ambiguity in feature semantics between two round features with different
intersection options.

whereas semantic heterogeneity is the incompatibility that arises
from naming or terminology differences. Most interoperability ap-
proaches mainly focus on the semantic heterogeneity because of
its prevalence. It is important to note that structural heterogeneity
is also a major problem and must be addressed. It is fairly easy to
automatically map feature data from one system to another when
equivalent features are structurally identical with some semantic
differences through the use of ontologies, such as when one-
to-one matches are identified. The real challenge is determining
how to automatically map features that are equivalent but are de-
fined with different data structures. This task is usually delegated
to a human user to provide solutions. The existing ontology-based
approaches in Section 2.1 focused more on the semantic heteroge-
neity when one-to-one matches are available. In contrast, our ap-
proach also addresses the process of identifying equivalent
features automatically in cases when no such straightforward
matches are available.

3. The proposed ontology-based feature mapping and
verification

When ontologies are applied to integrate data and specify
semantics, three types of approaches can be taken [37]. They are
single-ontology, multiple-ontology, and hybrid-ontology ap-
proaches. The single-ontology approach specifies a single global
ontology for the entire knowledge domain. The multiple-ontology
approach specifies a separate local ontology for each source of
data. The single global ontology approach is too rigid since it re-
quires that all sources of data have the exactly same vocabulary,
whereas the multiple local ontology approach is too unstructured
since the lack of a shared vocabulary among the ontologies means
that mapping data between different systems is difficult and inef-
ficient. The hybrid-ontology approach resolves the issues of both
single and multiple ontology approaches by combining them. In
this approach, a globally shared base vocabulary contains the basic
concepts of the knowledge domain, which is complemented by lo-
cal domain ontologies for more complex concepts with respect to
individual sources of data. The use of a shared base ontology allows
information to be exchanged in a vocabulary that is domain inde-
pendent, from which each local ontology can be interpreted.

Here, we take the hybrid-ontology approach to enable interop-
erability of CAD feature data. As shown in Fig. 4, the proposed pro-
cess of data exchange would work as a dynamic mapping process.
First the data for a specific model instance from the source system
are extracted from the system format and parsed into the shared
global base ontology format. The data contain the construction se-
quences of features in the form of a proposed three-branch hybrid
CAD feature model, which stores all relevant data with both fea-
ture semantics and geometry. Once the data have been exported,
they can be used by any CAD system that is able to import data
from the shared base ontology format. During the import process,
the reasoner of the target system examines each feature being im-
ported from the shared base ontology file, and runs a series of tests.
For each imported feature, these tests check which feature subclass
in the target feature library contains rules that have not been vio-
lated, and therefore possibly recreating the original geometry spec-
ified by the target features. Once these tests have eliminated all
feature subclasses which cannot reproduce the source geometry,
then more traditional similarity mapping can be applied to resolve
the remaining semantic problem if there is any. In cases of struc-
tural heterogeneity, additional rules are needed to check if some
types of feature data are superfluous, if additional information is
required and what form it must take, or if a feature has no equiv-
alent and cannot be reproduced. With the B-Rep information
stored in the neutral file of shared base ontology, the generated
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Fig. 4. The proposed general mapping and verification approach for feature interoperability.

target geometry could be used to verify if the match is correct.
Once a match has been found, the mapping can be stored, and
the translation could be performed without the testing from then
on.

A shared global base ontology for the feature-based CAD do-
main is necessary for efficient dynamic mapping and data ex-
change between systems. However, it should be noted that the
global base ontology only creates a set of base concepts and prop-
erties which all features in any system can use in their definitions.
It should not specify how features should be defined. In the CAD
domain, the base concepts and properties that all systems can
understand turn out to be geometry and topology related. There-
fore, the shared base ontology contains these common terminolo-
gies. In parallel, we also need the local ontologies that simply store
combinations of those base concepts to define the features for each
CAD system. Creating a single global ontology that goes beyond the
base for all CAD systems is practically not possible, as it would re-
quire each system to agree on a standard shared set of features and
a universal way to define them. It is very difficult to make decisions
such as how the global ontology should build feature class hierar-
chies, what the supported minimum set of features must be, and
how detailed each feature definition must be, because there is no
“right” way to define a feature and it is a matter of individuals’
and companies’ opinions. History has shown that establishing a
universally accepted industry standard for one neutral format is
an intricate task.

Each CAD system will have its own ontology that can work to-
gether with the shared base ontology. Local ontologies have the
advantage of allowing each system to store data as they see fit,
and are not restricted to a limit number of feature types. In our
approach, feature data are parsed directly into the shared base
ontology, and then mapped into the specific local ontology by
rule-based inferencing. The shared global base ontology acts as
the instance-level neutral format. The class-level library of features
is stored in the local ontology of the target system, where the sys-
tem-specific features can be represented as combinations of con-
cepts from the shared global base ontology. By expressing feature
data through this ontology-based representation, feature seman-
tics can be stored and processed using various software tools.

Instead of the purely semantic mapping approach, our new ap-
proach uses a set of rules stored within the local ontology to derive
which features are capable of reproducing the source feature
geometry before any semantic mapping similarities are made.
These rules represent the necessary and sufficient conditions that

must be true for a given feature type to have a valid representation.
They uniquely identify features by the output types that must be
generated given particular sets of input, which is how features
are distinguished at a conceptual level by human users. These rules
are similar to a rule based approach to feature recognition. Because
these rules are written in a class-level representation, they should
closely match the internal code and algorithms that the CAD sys-
tem uses to determine what shape the feature generates, given a
particular set of input. By using rules to define geometric validity,
features from other systems can be identified as matches even if
there are significant semantic differences. In order to support this
new approach, we need to develop a feature model that incorpo-
rates B-Rep data, as described in Section 3.1.

3.1. Three-branch hybrid feature model

The three-branch hybrid feature model proposed here is to
model a CAD feature in terms of the individual settings and param-
eter values selected by the user during feature definition. As shown
in the general diagram in Fig. 5, there are three major branches of
data in defining each feature. They are reference attributes, param-
eter attributes, and B-Rep operations. Reference and parameter attri-
butes are explicitly distinguished to better classify their data types
in the definition. The reference attributes pertain to information
that is necessary to the definition, but is defined externally outside
the feature. This can be a pointer to an existing reference datum,
face, edge, vertex, or sketch data for sketch-based features. Con-
versely, the parameter attributes refer to information that belongs
exclusively to the feature, such as an option or numerical value
that the user specifies, which is independent of other features. This
distinction is important because the parameter attributes can be
compared and converted directly by using the established

‘ FEATURE TYPE ’

REFERENCE
ATTRIBUTES \
B-REP
@ OPERATIONS
PARAMETER /
ATTRIBUTES

Fig. 5. General structure of the three-branch hybrid feature model.
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datatypes such as floats and integers, whereas the reference attri-
butes will likely have different identifiers in different systems. For
example, consider a feature that rounds an edge. The parameter
attributes identify the type of rounding and the value of radius.
The reference attribute is the specific edge identifier, which would
differ between CAD systems without a persistent naming conven-
tion. These two sets of attributes make it possible to describe a
class-level representation of the feature, as the types and numbers
of reference attributes should be independent of the specific values
entered at the instance-level.

The third branch of the feature model represents the B-Rep
operations, which stores the changes the feature makes to the
geometry at the instance-level representation. This cannot be de-
scribed in a class-level representation because the changes to the
B-Rep can only be determined when the reference and parameter
attributes have specific values. These instance-level data are also
used as a verification measure. Some feature definition rules can
be used to verify the number and type of certain B-Rep entities.
The extra feature type attribute in the hybrid feature model may
be used to store the possible names of the feature in some systems
as aliases (e.g. extrusion and protrusion) so that a match is re-
corded for ease of use in the future. The feature type attribute is
unnecessary for feature classification. But it allows the target sys-
tem to know what type of feature it has been mapped to so that fu-
ture instances of the same feature type can be recognized without
going through the rules again.

The three-branch hybrid feature model serves as a template to
describe a feature using the shared base ontology language. The
goal of the hybrid feature model is to strike a balance between pre-
scribing a neutral format through which all features can be de-
scribed and maintaining the expressiveness and individuality of
each CAD system. Base classes for three branches are defined and
shared globally. The unique local ontologies of individual CAD sys-
tems specify the types and quantities of class instances described
by each feature. Descriptions of the classes from the shared base
ontology will be provided in Section 3.2. This template is necessary
to reduce the amount of semantic and structural heterogeneity as
much as possible without constraining the expressiveness of the
feature definitions from the CAD systems. This has two major
advantages over other ontology-based feature models which con-
centrate only on feature semantics. First, the added expressiveness
allows the comparison of more factors than the names and data-
types of parameter and reference attributes, because the base
ontology can contain more geometry-oriented concepts for various
common parameter classes, such as radius and length, which will
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ensure that semantic ambiguity is avoided as much as possible.
Second, the definitions of reference attributes and B-Rep opera-
tions can be potentially standardized because they are only based
on geometric concepts that have been well established and are
fairly universal amongst different CAD systems. Specifying a stan-
dard structure and nomenclature for these reference attributes and
B-Rep operations does not restrict the expressiveness of features
and in most cases would be a direct process. In other words, our
approach does not mandate that standard features follow shared
definitions. Rather, the existing feature definitions are parsed into
a shared format with a basic geometric-level vocabulary. Although
the persistent naming will still be a problem with reference param-
eters and B-Rep operations, this issue is likely to be resolved by
comparing the geometry itself to determine the equivalency
[16,38]. But it is out of this paper’s scope.

Fig. 6 shows an example of the hybrid feature model for an ex-
trude feature. The reference attributes are the reference plane used
to define the orientation and the sketch. Parameter attributes
determine whether it creates a solid or surface model, the option
to set the depth type, the depth value (if blind or symmetric is cho-
sen), whether to flip the direction of the sketch normal, and
whether the extrude feature is being used to add or remove mate-
rial (i.e. Boolean union or difference).

Similarly, Fig. 7 shows an example of a revolve feature, where
the sketch is rotated about an axis to create geometry. As such, it
has the same reference attributes, with the addition of an axis of
rotation to determine the line about which the sketch is rotated.
It has fewer parameter attributes, because revolves are specified
using the angle of rotation rather than depth.

The two examples shown here only have the basic classes of
B-Rep operations at the class level. More detailed operations
specifically on geometric and topological elements depend on the
instance level information. Nevertheless, with this generic struc-
ture of what information is included for each feature, all features
can be defined in a similar vein.

More rigorously, the syntax model of the three-branch hybrid
feature is defined as a directed labeled graph X = (N, &€, 1), where
N = {N§, N, Np, N} is a set of feature nodes Ny, reference attri-
bute nodes A, parameter attribute nodes N, and B-Rep operation
nodes NV,. ECN x 7 x N is a set of edges connecting nodes with
the corresponding edge types 7 = {Ts, Tq, Tg} where Ts = ‘specializa-
tion’, T, = ‘aggregation’, and T = ‘general association’. | : Ni—L is a la-
bel function that defines the label of each node where
L ={Lc,Lr,Ly,Le} is a set of labels for the nodes with four types,
including textual characters L, identifiers or references Ly, real,
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Fig. 6. Three-branch hybrid feature model of extrude.
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Fig. 7. Three-branch hybrid feature model of revolve.

integer, or Boolean values Ly, and geometric and topological enti-
ties and operations Lg. Particularly, for node n with its label L = I(n),
LeLcifneNy LelrgifneN, Le Ly if neN, and L € Lg if
ne N,.

With the necessary information elements, the next step is to
generate the shared base ontology language through which these
three-branch CAD feature models can be described, as discussed
in the next section.

3.2. Shared base CAD ontology

The shared base CAD ontology should carefully define classes
that represent the very basic concepts and properties in CAD. To
create the shared base ontology, we made use of the Ontology
Web Language (OWL) [39], because it adds more vocabulary to de-
scribe properties and classes than the Resource Description Frame-
work (RDF) [40] used in our previous research. It also has a variety
of reasoning tools readily available. The formal specifications of the
OWL language were based on the SH family of description logic,
particularly SHZQ and SHOQ(D), which include the Attributive
Concept Language with Complements (.A£C) by intersection, union,
and complement operations, universal and existential quantifiers,
and transitive property; the class and property hierarchy support
(H); inverse function (Z); enumerated instances (0); generalized
cardinality restrictions (Q); and the use of datatype properties (D).

The semantic model of the feature ontology is defined as
O = (K,P,H,Q,c,r,i), where K= {C,D} is a set of feature con-
cepts, with C as the subset of classes and D as the subset of data-
types. P = {Pc,Pp} is a set of properties, with Pc CC x C as the
subset of object properties and P, CC x D as the subset of data-
type properties. H = {Hc,Hp} is the set of hierarchical relations,
including class hierarchies Hc CC x C and property hierarchies
HpCPxP.Q={A, V, -, -, V, 3} is a set of logic operations and
quantifiers that form set-based logic statements, including con-
junction A, disjunction Vv, negation -, implication —, universal
quantifier Vv, and existential quantifier 3. ¢ : P—Z is a cardinality
function that maps a property to one or many integer values.
r:c(-) x Q x P x Ki—K is a restriction function that narrows down
the class domain. i : Ki—I is an interpretation function that maps
the semantic model to a SHOZQ(D) interpretation I.

With the notation of description logic [41], i(C) = 4' and
i(D) = AL, where 4 and Ap are the interpretation domains of object
and datatype respectively, and ! is the SHOZQ(D) interpretation
function. i(A)=A!, {(AUB)=A'V B, i(AnB)=A'AB', and i(-A) =
A"\ A", where A, B e ¢. With individual instances a€A and b € B
where A€ C and Be K, as well as an object property (a,b)
RC P, 1(3,R, B) ={a € A|Fi(b), i((a, b)) € i(R) A i(b) € i(B)}, 1(V,R,B) =

{a € A|Vi(b),i((a, b)) € i(R) — i(b) € i(B)}, and r(c(-), R, B) = {a € A|c(b),
i((a, b)) €i(R)Ai(b)€i(B)}. It is obvious that r(3,R,B) C A,
r(V,R,B) C A, and r(c(-),R,B) C A, where C denotes the class
hierarchy.

3.2.1. Class hierarchy

The shared CAD global ontology is created such that the classes
represent the fundamental geometry-oriented concepts that
should be universal amongst different CAD systems. The major
class hierarchy is shown in Fig. 8, where the arrows illustrate
‘is-a’ relationships and are used to show subclasses as specialized
subsets of the main classes. Sibling classes are disjoint with one
another and mutually exclusive.

The shared base CAD ontology classes in Fig. 8 are described as
follows. The PartFile class stores the fully exported part from a CAD
system, and is composed of a set of reference attributes, such as the
coordinate system and three orthogonal reference planes, and ref-
erences to a series of features. An instance of this class contains ob-
ject properties that point to specific reference attributes and
feature class instances. The Feature class acts as a general place
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Fig. 8. Major classes of the shared base CAD ontology.
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holder, with only three basic rules indicating that it must have at
least one reference attribute, parameter attribute, and B-Rep oper-
ation. Further subclasses of feature are not defined in the shared
base CAD ontology. Rather, it is the local ontologies for individual
CAD systems that will define them to correspond to their particular
feature sets. The ReferenceAttribute class describes the various
types of references, such as sketches, reference planes, coordinate
systems, and existing part reference types, used in a feature defini-
tion. An object of the Sketch class is composed of parts of the
SketchComponent class, which includes fairly universal concepts
of entities, dimensions, and constrains. These SketchComponents
are items that are used to define a sketch and thus related to a
Sketch object via object properties. The parameter attributes are
not stored as classes because they are composed of datatypes al-
ready supported by OWL, such as integers, floats, Booleans, and
strings. They are handled through datatype properties. Finally,
the BRepEntity class is composed of the well established concepts
of geometry and topology entities as TopologyEntity and
GeometryEntity.

There are more subclasses that are not shown in Fig. 8. The exam-
ple subclasses of SketchConstraint are SamePointConstraint2D,
ColinearConstraint2D, PerpendicularEntitiesConstraint2D, Hori-
zontalEntityConstraint2D, VerticalEntityConstraint2D, PointOnEn-
tityConstraint2D, EqualRadiiConstraint2D, etc. The example
subclasses of SketchDimension are ArcToArcHorizontalTangent-
Dim2D, ArcToArcVerticalTangentDim2D, LineLengthDim2D, Line-
ToPointDim2D, RadiusDim2D, DiameterDim2D, etc. The subclasses
of TopologyEntity include Shell, Face, Loop, Edge, Coedge, and
Vertex. The subclasses of GeometryEntity include Surface, Curve,
and Point. Furthermore, the subclasses of Surface may include
PlanarSurface, SphericalSurface, ConicalSurface, ToroidalSurface,
and SplineSurface. The subclasses of Curve may include Linear-
Curve, EllipticalCurve, HelicalCurve, and InterpolatedCurve (e.g.
B-SplineCurve, ParameterSpaceCurve, SurfacelntersectionCurve) to
represent the specific types of each.

Table 1
SketchEntity subclasses and their properties.

Domain Property Range Cardinality

PointEntity2D hasXCoord [float] =
hasYCoord [float] =

CoordSys2D hasPoint PointEntity2D =

CoordAxisEntity2D hasStartPoint
hasEndPoint
hasStartPoint
hasEndPoint
hasStartPoint

hasEndPoint

PointEntity2D
PointEntity2D
PointEntity2D
PointEntity2D
PointEntity2D
PointEntity2D

ConstructionLineEntity2D

LineEntity2D

ArcEntity2D hasCenterPoint PointEntity2D =
hasStartAngle [float] =
hasStartPoint PointEntity2D =
hasEndAngle [float] =
hasEndPoint PointEntity2D =
hasRadius [float] =

CircleEntity2D hasCenterPoint PointEntity2D
hasRadius [float] =

EllipseEntity2D hasCenterPoint PointEntity2D =
hasXradius [float] =
hasYradius [float] =

hasStartPoint
hasEndPoint
hasShoulderPoint

ConicEntity2D PointEntity2D
PointEntity2D

PointEntity2D

hasConicParameter [float] =
PointArray2D hasN_Points [integer] =
hasPoint PointEntity2D =

PolylineEntity2D
SplineEntity2D

hasPointArray
hasPointArray
hasStartAngle
hasEndAngle

PointArray2D
PointArray2D
[float]
[float]

Il
B T T~ R R = W = e R T e e e e - L

The SketchComponent class has three main subclasses, grouped
as SketchEntity, SketchConstraint, and SketchDimension. The sub-
classes of SketchEntity are listed in Table 1. The first column of
the table lists the names or domains of the subclasses. The second
column lists the object properties and datatype properties of the
subclasses. Object properties link an individual to another,
whereas datatype properties link an individual to a specific type
of value. The datatype properties are italicized and their ranges
of value domain in brackets. Note that these properties must apply
to every instance of the entity. The cardinality specifies the number
of instances that are subject to the property. Therefore, each class
is connected to the other classes through various properties with
‘has-a’ relationships. The way in which features use properties in
their definitions is a major source of heterogeneity. Yet the stan-
dard set of basic properties defined in the proposed base ontology
is generic enough and acceptable for all CAD systems, because they
are no more than the fundamental elements of geometry, topology,
sketch dimensions and constraints which formed the foundation of
modern CAD systems.

3.2.2. Property hierarchy

The property hierarchy also needs to be established. Here, the
properties related to B-Rep operations are used to illustrate the
hierarchical structure. Every B-Rep property is described as a sub-
property of the hasBRepOperation parent property, which has the
BRepEntity class as its range. This parent property splits into the
hasTopologyOperation and hasGeometryOperation subproperties,
with ranges of the TopologyEntity and GeomertyEntity classes
respectively. These subproperties are then divided into creation
and deletion subproperties, which are then further specialized to
refer to the various subclasses of topology and geometry entities.
For example, denoted as createsPlanarSurface C createsSurface C
createsGeometry where createsPlanarSurface, createsSurface, creates-
Geometry € P, createsPlanarSurface is a subproperty of createsSur-
face, which itself is a subproperty of createsGeometry. The ranges
also follow this hierarchy, as the range of createsPlanarSurface is
the PlanarSurface class, which is a subclass of Surface, which in turn
is a subclass of the GeometryEntity class. B-Rep operations were di-
vided into creation and deletion operations. Because without a per-
sistent naming convention, B-Rep entities can only be uniquely
identified by their specific definition. Tracking changes is much
simpler if the modification is always by a deletion followed by a
creation.

Notice that parameter attributes are slightly more problematic
than the reference attributes. Parameter attributes are defined
using datatype properties. Instead of linking the feature to an in-
stance of a particular class by object properties, datatype proper-
ties are linking to a specific value of integer, float, string, or
Boolean value. Similar to the reference attributes, a major problem
of semantic mapping arises when more than one property is using
data from the same range. This problem is compounded in param-
eter attributes because features often have multiple parameters
that use the same datatype and a datatype contains very little con-
ceptual information. Fortunately, datatype properties can also have
subproperties, so long as the subproperty has the same datatype as
its range. Therefore, multiple subproperties can be used to distin-
guish between different parameter properties that use the same
datatype. The problem then becomes a matter of creating a param-
eter attribute subproperty hierarchy that defines the common
types of parameters. It is important to note, however, that even
establishing a set of common parameters may not prevent seman-
tic heterogeneity. For example, one program may describe the dis-
tance of an extrude feature using a float parameter called ‘depth’
whereas another program uses ‘length’, ‘D1’, or any other names.
In this case, setting a common vocabulary may become difficult.
This problem has to be resolved through collaboration to
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determine a specific set of concepts, and through the clever use of
subproperties. For example, the hasDimensionAttribute property
which stores float values could include subclasses such as has-
LengthTypeDimension and hasAngleTypeDimension, which are used
to distinguish values expressed in units of length from those ex-
pressed in units of degrees or radians. The hasLengthTypeDimension
property could have further subproperties such as hasDepth, hasRa-
dius, hasDiameter, hasThickness, hasLength and other common ways
in which lengths can be recognized. The benefit of this approach is
that more information is available to work with than simply the
datatype during semantic similarity mapping. When attempting
to compare a feature that uses hasLength to one that uses hasDepth,
we could move up one level and find that both are instances of a
property which measures length. That is, a higher similarity can
be found other than simply checking two float values. Other rela-
tionships could also be included such as simple conversions. Com-
mon terms could be related through conversion rules. For example,
diameter equals two times radius, or arc length equals radius times
angle (in radians). In summary, the main idea here is to use prop-
erty hierarchies to provide more information about the stored data.
Other general principles of practices include using Boolean val-
ues when there is a choice between two options such as a check
box, and using string values when there are multiple options such
as a dropdown menu. Integers should only be used when dealing
with options that require integers, such as when features that copy
parts or create patterns. Using integers to store options types (e.g.
in an enumerated list) or Boolean operation should be avoided, be-
cause it makes the information ambiguous, and is counterproduc-
tive for data interoperability. The goal is to present data in a way
that can be easily understood both by a human and ontology rea-
soner with as little knowledge of the source system as possible.
The last property to note is the feature type attribute in the
three-branch hybrid feature model assigned to allow for faster
mapping once a valid match has been already established. This fea-
ture type attribute is stored as a simple string datatype property.
Once a feature match has been established via the dynamic map-
ping process and verified as correct, a new rule could be created
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to automatically map all features with the same value for the fea-
ture type property directly to the matching target feature, forgoing
the computations used in dynamic mapping.

With the shared base ontology established, the framework for
exporting CAD data from any system into a neutral format is com-
plete. The task of the export process only requires the data from a
given CAD system be parsed into instances of the shared base
ontology classes. To complete the data exchange process at the tar-
get system side, the feature data must be mapped from the funda-
mental elements of geometry and topology with the shared base
ontology format into the feature classes defined by the local ontol-
ogy of the target CAD system. This classification process is de-
scribed in the following section. Nevertheless, it should be
acknowledged that the shared base ontology described in this pa-
per is not meant to be definitive or all-encompassing, but simply to
illustrate how a shared base ontology language could be con-
structed for the CAD domain. It would be more appropriate for a
definitive CAD base ontology to be established by an organization
such as the National Institute of Standards and Technology (NIST)
with input from the various CAD vendors.

3.3. Rule-based feature classification in local ontologies

The shared base CAD ontology does not specify any details
about how individual features are defined, except for the basic
information of 2D sketch and B-Rep geometry. To allow for auto-
mated mapping of any feature instance defined according to the
shared base ontology, the local ontology of the target system
should contain a feature hierarchy with the Feature class from
the shared base ontology as the top-most base class. From there,
the local ontology should define subclasses corresponding to dif-
ferent families of features, in an organization that is the most log-
ical for the target system, effectively creating a comprehensive
feature set.

There is no correct or single way to define features. Each CAD
system can have its own internal class hierarchy. For instance,
Fig. 9 shows one definition of feature class hierarchy (similar to
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IntersectingCornerRoundFeature

BlendedCornerRoundFeature

RevolveAddFeature

RevolveCutFeature
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Fig. 9. Example A of feature hierarchy.
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Fig. 10. Example B of feature hierarchy with extrude and revolve as subclasses of sweep.

the one in Pro/Engineer), where all features that require a sketch
are grouped as SketchBasedFeatures, and the features that effect
edge geometry are grouped as EdgeFeatures. Additionally, revolve,
extrude, and sweep are treated as separate features. This feature
hierarchy may not be suitable for other systems. For example, con-
sider that a constant section sweep takes a 2D sketch and extends
it along a designated path. One can consider the extrude and re-
volve feature as simply special cases of the sweep feature. An ex-
trude can be considered a sweep along a linear path normal to
the sketch, while a revolve is a sweep along a circular path. In that
case, it is conceivable that a CAD system may want to treat the ex-
trude and revolve features as subclasses of the constant section
sweep. Similarly, very simple hole features can be considered a
special case of an extrude feature in that the sketch is replaced
with a circle of given radius. If a CAD system were set up this
way, it would be better to use a local ontology with a feature hier-
archy displayed in Fig. 10. The groupings in this example do not
work with Pro/Engineer, since all sweep features require a path
in Pro/Engineer and an extrude could not be a subclass without

Feature

A
EdgeTransition

CornerTransition

<
SubtractiveVolumeFeature

that information. Yet in a third system, it may not deem necessary
to code extrude and revolve features separately if the sweep in-
cluded easy options to generate linear and circular paths, such as
the one proposed by Dartigues et al. [30] and shown in Fig. 11. Fea-
tures are separated into the ones that affect volume directly and
those that deal with face transitions. This type of hierarchy would
also work efficiently with systems that were built based on the
constructive solid geometry. The additive features would be used
to represent features that use the Boolean union, whereas the sub-
tractive features use Boolean difference and intersection.

The goal of local ontologies is to conceptualize features in a way
that an ontology reasoner can understand. A set of necessary and
sufficient rules can be defined such that they must always hold
true for a specific feature. For example, consider a simple solid ex-
trude feature created by projecting a 2D sketch linearly in a direc-
tion normal to the sketch plane. Every entity in the sketch is going
to create a surface and there will be two planar surfaces on each
end. Every line entity in the sketch is going to create a planar sur-
face, each circle or arc will create a cylindrical surface, and each

CircularEdgeTransition

Slandalone\l@

Passage

Fig. 11. Example C of feature hierarchy (proposed by Dartigues et al.).
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spline in the sketch will create a spline surface. Therefore a gener-
alized rule for the extrude feature including the case when the so-
lid extrude intersects another object is that for N sketch entities,
extrude will create at most N + 2 surfaces. By correlating specific
sketch inputs to specific geometry output values, rules of creating
all feature types allow a reasoner to automatically determine
which classes the feature being translated belong to, without rely-
ing on exactly matching semantic data. All features have a set of
rules that define them conceptually and they must obey, so estab-
lishing these rules as necessary and sufficient conditions allows
semantically unmatched instances of a feature to be automatically
classified in the target system, if these conditions are met. In es-
sence, the comprehensive set of rules that define a feature in its lo-
cal ontology are the same rules that are being implemented
internally within the specific CAD system to automatically convert
the user input to the geometry that is displayed.

The use of feature hierarchies helps facilitate feature mapping
and classification based on the local ontologies tailored to individ-
ual CAD systems. To classify a feature that is imported into the tar-
get system, a series of rules are used to progress down the class
hierarchy in the local ontology. Use the hierarchy in Fig. 9 as an
example. The feature from the source system is imported as a gen-
eral and unclassified instance of the top level Feature class. From
there, the feature is tested with certain rules to determine which
of the next level of subclasses it can belong to. For instance, the test
to see if a feature is a SketchBasedFeature would check the number
of hasSketch properties. If Cardinality(hasSketch) > 1, it is assigned
to the subclass, and no longer tested for the other branches.

Rules are specified such that statements of features can be de-
rived. Generally speaking, given feature class A, feature concept
B, and property R, if a restriction function r(3,R,B)=A; or
r(c(-), R, B) = A; can be established, then A; C A. That is, the feature
class A can be further classified as A;. For instance, in the above
sketch feature example, a € Feature, b € SketchEntity, and
(a, b) € hasSketch. If a restriction ry(cq(-), hasSketch, SketchEntity)
where c(hasSketch)={1, 2, ...} exists, then a Feature is also a
SketchBasedFeature.

To further classify the SketchBasedFeature, more tests are run on
every instance of that class. The test for a basic ExtrudeFeature
checks every instances of SketchBasedFeature class to see if ‘the
number of surfaces is equal to the number of sketch entities plus
two’; ‘the number of planar surfaces equal to the number of line
entities plus two’; ‘the number of conical surfaces equal the total
number of circle and arc entities’; and finally that ‘the total number
of spline surfaces equals the total number of 2D polyline, spline,
ellipse, and conic entities’. If all of the above is true, then the
SketchBasedFeature instance becomes a member of the ExtrudeFea-
ture class. The respective cardinality restrictions are ry(cy(-), has-
Surface, Surface) where c,(hasSurface) = ci(hasSketch) +2; r3(cs(-),
hasLineEntity, LineEntity2D) where cs(hasLineEntity)={0, 1, ...} and
r4(c4(-), hasPlanarSurface, PlanarSurface) where c4(hasPlanarSur-
face) = c3(hasLineEntity) + 2; rs(cs(-), hasCircle, CircleEntity2D) where
cs(hasCircle) = {0, 1, ...}, re(ce(+), hasArc, ArcEntity2D) where cg(has-
Arc)={0, 1, ...}, r7(c4(+), hasConicalSurface, ConicalSurface) where c;.
(hasConicalSurface) = cs(hasCircle) + cg(hasArc). The corresponding
existential restrictions are ‘sketch-based feature has surfaces’,
‘sketch-based feature has sketches’, ‘sketch has line entities’,
‘sketch-based feature has planar surfaces’, ‘sketch has circle enti-
ties’, ‘sketch has arcs’, and ‘sketch-based feature has conical sur-
faces’. Notice that restriction functions return classes. Therefore,
the conjunction of multiple rules for one classification step is by
recursively assigning restrictions so that the resulted subset of
sketch-based feature is a more specialized extrude feature. Simi-
larly, the rules to verify the instance of the RevolveFeature class
are those to see if specific sketch entities are correlated to specific
surface types. They include ‘line entities that are perpendicular to

the axis of rotation would create planar surfaces and all other lines
would create conical surfaces’; ‘circular arcs centered on the axis of
rotation would create spherical surfaces and those that are off-
center would create toroidal surfaces’; and ‘all other 2D curve enti-
ties should result in spline surfaces and all points not on the axis of
rotation should create circular curves’. Members of the SweepFea-
ture class would have to be composed of surfaces that are corre-
lated to the swept path, with planar surfaces on both ends and a
curve duplicating the path for every 2D point entity in the sketch.

These rules could still be far from being necessary and sufficient
conditions for classifying a feature. They are a simplification of the
more comprehensive process needed for feature recognition in the
setting of commercial software. For example, conditional state-
ments with more if-then branches would be needed when the fea-
ture is interacting with existing geometry, where union,
intersection, or difference is applied. If additional detailed informa-
tion is needed, new rules can be defined. For instance, a reasoner
could not only check if the right types of surfaces are created,
but also confirm that the surface is defined with the right param-
eters. However, such rules would require very detailed knowledge
of how the feature is locally defined. In summary, the feature rec-
ognition rules would have to emulate the internal feature creation
and validation rules as used in the target system. We argue that the
rule-based tests can be done with any feature, as features are al-
ways defined in a CAD system by the predictable way such that
user input is transformed into geometry based on some internal
rule schemes. Those rules already exist and are used in individual
CAD systems.

Let us use the EdgeFeature subclass from Fig. 9 as the second
example of the rule-based classification. The test to determine if
a feature is a member of this subclass, rules would determine if
all the instances of reference attributes of the feature are members
of only the ReferenceEdge class. It would also check if ‘every Refer-
enceEdge selected is accompanied by at least one surface creation
and the selected edge is deleted from the B-Rep by the feature
operation’. To distinguish between RoundFeatures and ChamferFea-
tures, the types of surfaces would again be tested. To be considered
an instance of the RoundFeature class, there must be ‘a conical sur-
face creation for every linear curve selected’, ‘a toroidal surface cre-
ation for every circular curve selected’, and ‘a spline surface created
for every elliptical and interpolated curve selected’. Similarly, to be
a member of the ChamferFeature class, there must be ‘a planar sur-
face creation for every linear curve’, ‘a conical surface for every cir-
cular curve selected’, and ‘ribbon like spline surfaces for all other
curve types’. To test for the different corner blending options for
both of these features, the rules would simply check for additional
surfaces. For instance, ‘if more planar surfaces are created than lin-
ear curves were selected, then the ChamferFeature will most likely
have corner planes’, and ‘if there are spherical or additional spline
surfaces in a RoundFeature, then there is likely some corner blend-
ing’. Once the list of possible feature matches have been narrowed
down in this way, the mapping process becomes much easier.
More rules and rigorous tests could be performed to ensure that
the curvatures of the resulted surfaces match those of the edges,
and there could be conditional rules when the geometry of the part
causes exceptions.

The third example to illustrate is a HoleFeature. The best test to
run on any hole feature is to check if ‘all conical surfaces created
share the same central axis, and all planar surfaces are centered
on and normal to that axis’, regardless of whether the hole has a
counter bore, countersink, or tapered end. If this rule is satisfied,
the number and types of surfaces can be tested to determine what
kind of hole options were used. These rules are available because
holes are easily distinguished in commercial automatic feature rec-
ognition software. Again, it is important to stress that the rules rep-
resent the knowledge to create these features in each of the target
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CAD systems and have been encoded into the software programs.
Therefore they are ready to be applied if this approach of ontolog-
ical mapping and verification would be employed.

The major advantage of our approach is that if the classification
rules properly reflect the necessary and sufficient conditions for
the target feature, it should always work provided the target sys-
tem has a feature that can replicate the geometry of the source fea-
ture. The simple tests described above require very little
calculation but are capable of partially determining which feature
subclass the imported feature is. In an ideal case, the feature rules
need to be as rigorous and complete as those used to define and
generate geometry inside the target CAD system. Highly details
of how the CAD system operates must be known. Defining the
complete set of rules could be a costly and laborious task for those
who do not have the direct access to this knowledge base. It makes
reverse engineering by a third party very difficult. Such an ideal
case is likely to be only implementable by the CAD vendor itself.
As a result, this approach of ontological mapping from the shared
base to local ones preserve the uniqueness of each CAD program.
There is no need for a CAD vendor to share proprietary information
with others, so long as the CAD companies agree on the shared
base ontology format and are willing to develop a hierarchy of fea-
tures with a series of tests to evaluate and check for each type of
feature class.

There are potential cases when our approach will fail to find the
match in the local system. It will fail when there is no feature in the
target system that adequately resembles the shape concept con-
veyed by the original feature, but such an instance would cause
problems for any semantic based approach as well. In spite of this,
if the local ontology uses a branching hierarchy as in the examples
above, this approach still has a benefit over other semantic map-
ping processes, because it classifies the source feature as the low-
est feature subclass that the rules proved was valid, which has
narrowed down the number of choices for manual mapping. An-
other case when this approach would fail is when one system uses
a compound feature, which would have to be replicated by more
than one feature in another system. For example, Solidworks al-
lows the option to include a draft angle in their extrude feature
definition which tapers all sides in by the given angle. Pro/Engineer
has no such option in their extrude feature. To replicate the design
intent, the users of Pro/Engineer have to first extrude the shape,
then use a separate draft feature. Here, the rule-based approach
would fail because no version of the Pro/Engineer extrude would
be able to create B-Rep in which surfaces are not perpendicular
to the sketch plane. In this case, the classification rules stop after
listing the feature as an instance of the SketchBasedFeature class
and would be unable to proceed. A purely semantic based ap-
proach may be able to classify it as an ExtrudeFeature, but it too
would be unable to reconcile the difference between the shape
types. Nevertheless, with the full B-Rep information included in
the exchange file in our feature model, the geometry of any feature
that is incapable of being mapped could still be recreated by insert-
ing “dummy” surface that are not defined parametrically, which is
also an approach taken by some commercial translators.

Ontology of source and target features may be changed or up-
dated as time evolves. If the change is initiated by the source sys-
tem, the effort of ontology update is negligible because the shared
base ontology is B-Rep geometry focused and most likely it re-
mains unchanged. The source system only needs to ensure that it
can export B-Rep geometry of new features in order to make the
share base ontology complete. For the target system, classification
rules may need some update to better match the newly introduced
source features. Otherwise, “dummy” surface as B-Rep geometry is
still a viable alternative. If the change is initiated by the target sys-
tem, the local classification rules in the reasoner need to be up-
dated so that the mapping from generic features to specific local

ones is valid. The change however does not affect the source
system.

4. Implementation and demonstration

To demonstrate that the proposed approach is viable, we imple-
mented the core part of the approach as outlined by the dotted line
in Fig. 4, where feature information required for the three-branch
hybrid model is extracted from the source system, data are parsed
into the shared base ontology format, and then individual features
are recognized and classified using local ontological rules defined
in the target system. In our implementation, the Semantic Web
Rule Language (SWRL) rules [42] are used to implement the classi-
fication rules in combination with the OWL representation. The
additional step of attribute mapping via similarity calculation
module is a pure semantic mapping that was done in our previous
work [33,34]. In this work, a shared base CAD ontology was created
using Protégé-OWL [43]. PTC's Pro/Engineer CAD software was
used to demonstrate export of features into the shared base CAD
ontology format. A sample set of feature classes were created to
demonstrate a local ontology feature hierarchy. The SWRL rules
were implemented in Protégé-OWL's SWRLTab and run using the
Jess rule engine [44].

OWL describes classes with at least one necessary and sufficient
condition as a defined class, while those without are described as
primitive classes. Therefore, if one can represent a feature in a local
CAD ontology as an OWL class, and properly define the set of nec-
essary and sufficient conditions based on restrictions of global
ontology properties, then any feature that has the set of properties
satisfying those conditions could automatically be inferred as a
member of that class, regardless of the source system. This imple-
mentation serves only as a proof of concept, as the export process
only supports single feature models, and the rule-based classifica-
tion is severely limited by the lack of non-monotonic reasoning in
OWL and SWRL. Despite these limitations, the classification of ex-
trude features from Pro/Engineer to a sample local ontology of an-
other system demonstrates that this approach is viable given a
robust rule-based reasoning language.

4.1. Shared base ontology

Classes and properties in the OWL format are fairly easy to cre-
ate using the Protégé-OWL interface. As stated in Section 3.2.1, the
five categories of classes and subclasses were created. They are the
Partfile and Feature classes used to store the exported part and the
top of the feature tree, the ReferenceAttribute class used to define
the various types of reference attributes, the SketchComponent
class, where various sketch entities, constraints, and dimensions
are defined, and finally a BRepEntity class, where the different types
of B-Rep concepts used by the ACIS format are defined.

Once the classes are created, the next step is to create the prop-
erties that relate the different classes to each other and are used to
define the features. This is handled in the Properties tab of Protégé-
OWL, where the properties, subproperties, the domains and ranges
of the properties are defined. For an object property, it can be as-
signed with the options of function, inverse function, symmetric,
or transitive. For a datatype property, it can only be a function in-
stead of an inverse function, nor can it be symmetric or transitive.
See Appendix A of Ref. [45] for the complete set of the shared base
ontology.

4.2. Feature data export from source system

We use Pro/Engineer as the source system to demonstrate. The
example in Fig. 12 is used to illustrate. Source feature data are
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Fig. 12. An example model built in Pro/Engineer.

extracted from part models in Pro/Engineer through the use of its
API, Pro/TOOLKIT. Pro/TOOLKIT provides functions to automatically
export each feature in the construction history tree as an XML file,
which however does not contain 2D sketch data. A C++ program
was thus developed to export 2D sketch data including entities,
constraints, and dimensions from Pro/Engineer to a file in the
shared base ontology OWL format, shown in Fig. 13. A separate code
was also developed to create a log file of each feature operation and
to export the B-Rep data in ACIS format. The ACIS format was
chosen because of its fairly straightforward data structure. A third
program reads in the XML feature files, the OWL sketch files, and
the ACIS B-Rep files and appends them all into a single global
CAD ontology part file stored in the OWL format. A sample section
of the fully formatted OWL file is presented in Fig. 14. This OWL file
has an ontology import tag recognizable by Protégé.

The reading, parsing, converting, and exporting process need to
be done separately for each feature. Only the extrude feature and
the features that define the reference datum and coordinate sys-

tem are used in this example. Other feature types can be done sim-
ilarly. Once the feature construction history has been appended to
the OWL file, the program checks the 2D sketches and adds them to
the appropriate extrude feature based on the given reference. Fi-
nally the B-Rep data are read in, line by line, with each ACIS class
type examined. The geometric information is appended to the OWL
file as a series of B-Rep entity creations. The complete B-Rep data
can be examined from within Protégé-OWL, as shown in Fig. 15.
But only a generic Feature class is recognized. Again, the issue of
persistent naming for the B-Rep model is ignored here as it is out
of the scope of this work. A simple scheme of numerical identifiers
is used in the implementation.

4.3. Local ontology feature definitions and classification with SWRL
rules

Once the shared CAD information in the OWL format is ex-
ported from the source system, it can be automatically mapped

CAD:Sketch rdf:ID="S2D0003">
<CAD:hasCoordAxisEntity2D>

<CAD:hasStartPoint>

</CAD:PointEntity2D>
</CAD:hasStartPoint>
<CAD:hasEndPoint>

</CAD:PointEntity2D>
</CAD:hasEndPoint>
</CAD:CoordAxisEntity2D>
</CAD:hasCoordAxisEntity2D>
<CAD:hasCoordAxisEntity2D>

<CAD:hasStartPoint>

</CAD:PointEntity2D>
</CAD:hasStartPoint>
<CAD:hasEndPoint>

</CAD:PointEntity2D>
</CAD:hasEndPoint>

<CAD:CoordAxisEntity2D rdf:ID="Section_S2D0003_Entity 0">

<CRD:PointEntity2D rdf:ID="Section_sS2D0003_Entity 0_startPoint">
<CAD:hasXCoord rdf:datatype="http://www.w3.0oxrg/2001/XMLSchema§float">0.00</CAD:hasXCoord>
<CAD:hasYCoord rdf:datatype="http://www.w3.org/2001/XxMLSchemaffloat">0.00</CAD: hasYCoord>

<CAD:PointEntity2D rdf:ID="Section_$2D0003_Entity 0_EndPoint">
<CAD:hasXCoord rdf:datatype="http://www.w3.oxrg/2001/XMLSchema§float">0.00</CAD:hasXCoord>
<CAD:hasYCoord rdf:datatype="http://www.w3.oxrg/2001/XMLSchema§float”>-100.00</CAD:hasYCoord>

<CAD:CoordAxisEntity2D rdf:ID="Section_S2D0003_Entity 1">

<CAD:PointEntity2D rdf:ID="Section_S$2D0003 Entity 1 StartPoint">
<CAD:hasXCoord rdf:datatype="http://www.w3.org/2001/XMLSchemafloat">0.00</CAD: hasXCoord>
<CAD:hasYCoord rdf:datatype="http://www.w3.org/2001/XMLSchema§float">0.00</CAD:hasYCoord>

<CAD:PointEntity2D rdf:ID="Section_S2D0003_Entity_1_EndPoint">
<CAD:hasXCoord rdf:datatype="http://www.w3.0org/2001/XMLSchema$float”>100.00</CAD: hasXCoord>
<CAD:hasYCoord rdf:datatype="http://www.w3.org/2001/XMLSchemaffloat">0.00</CAD:hasYCoord>

Fig. 13. A sample section of OWL sketch file.
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<CAD:hasFeature>
<CAD:Feature rdf:ID="EXTRUDE_1">
<CAD:hasReferenceSketch>
<CAD:Sketch rdf:ID="5S2D0002">
</CAD:hasReferenceSketch>
<CAD:hasExtSurfaceType rdf:datatype="http://www.w3.o0rg/2001/XMLSchema#string">Solid</CAD:hasEXtSur
<CAD:removesMaterial rdf:datatype="http://www.w3.0rg/2001/XMLSchemafboolean">False</CAD: removesMat
<CAD:isThinShellPart rdf:datatype="http://www.w3.0xrg/2001/XMLSchemafboolean">False</CAD:isThinShel
<CAD:hasDepthDimension rdf:datatype="http://www.w3.0xrg/2001/XMLSchema§float">100.000000</CAD:hasDe
<CAD:hasPrimaryReferenceDatumPlane rdf:resource="#FRONT" />
<CAD:hasSecondaryReferenceDatumPlane rdf:resource="§RIGHT" />
<CAD:hasNumberReferenceSketchInstances rdf:datatype="http://www.w3.0xrg/2001/XMLSchema§int">1</CAD:
<CAD:createsShell>
<CAD:Shell rdf:ID="BRepID=-3" />
</CAD:createsShell>
<CAD:createsFace>
<CAD:Face rdf:ID="BRepID-4">
<CAD:hasLoop rdf:resource="#BRepID-6" />
<CAD:isFaceOf rdf:resource="#BRepID-3" />
<CAD:hasGeometryOfsSurface rdf:resource="#§BRepID-7" />

</CAD:Face>
</CAD:createsFace>
<CAD:createsFace>

<CAD:Face rdf:ID="BRepID-5">

</CAD:Face>
</CAD:createsFace>

<CAD:hasLoop rdf:resource="#BRepID-9" />
<CAD:isFaceOf rdf:resource="#BRepID-3" />
<CAD:hasGeometryOfSurface rdf:resource="#BRepID-10" />

Fig. 14. A sample section of OWL exchange file as shared base ontology.
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Fig. 15. Protégé-OWL recognizes the shared OWL file as a generic Feature.

to local systems according to the local feature definitions and rules.
A local feature hierarchy was created similar to the one in Fig. 9.
SWRL rules to classify SketchBasedFeature, EdgeFeature, and
ExtrudeFeature were implemented. Besides rules to define local fea-
tures, additional rules were created to compute the inverse proper-
ties of some of the B-Rep properties. This was necessary because
when instances are imported from an external file, inverse proper-
ties are not automatically created unless they were previously de-
fined in the imported file. The ontology reasoners built into
Protégé-OWL do not automatically infer the inverse properties
either, which means that the rules have to be added to ensure
some of the B-Rep entities are fully defined.

When the shared OWL part file is imported in the local CAD
ontology file in Protégé-OWL, the feature has not been classified
and it is merely an instance of the Feature parent class. To classify
it, the SWRL rules must be run using the Jess rule engine. The test
to check if a feature is an instance of the SketchBasedFeature class is

to see if the feature has one reference sketch associated with it. If
this is true, then the feature becomes an instance of the Sketch-
BasedFeature class. The test to determine an instance of the Edge-
Feature class is similarly simple. This rule checks if all reference
attributes are of type ReferenceEdge. Proceeding downwards in
the class hierarchy, the test to determine if an individual of the
SketchBasedFeature class is a member of the ExtrudeFeature class
is slightly more complex. This test compares the number of 2D
sketch entities to the number of specific surface types with only
B-Rep creation operations, and the exact number of surface cre-
ations could be predicted. The test for the ExtrudeFeature in SWRL
format is displayed in Fig. 16, where the variable ‘F’ stores in-
stances of SketchBasedFeature class, and ‘S’ stores the instances of
the sketches for each feature in Line 1. Line 2 to Line 4 checks if
the number of planar surfaces equals the number of line entities
plus two. Line 4 to Line 8 sums the number of circle and arc entities
and ensures that there is a conical surface for each one. Line 9 to
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Fig. 16. SWRL rule for ExtrudeFeature classification.

Line 11 tests if the total number of spline surfaces is equal to the
total number of 2D ellipse, conic, spline, and polyline entities. Fi-
nally, Line 12 to Line 13 sums all the sketch entities and the num-
ber of surfaces created, and then checks if the number of surfaces is
equal to the number of sketch entities plus two. If all of the above
is true, then Line 14 assigns the object stored in ‘F’ as a member of
the ExtrudeFeature class.

Note that the rules are nothing more than a series of AND log-
ical conjunctions. If any part of the rule fails, the inference will
not apply. If the feature were interacting with an existing model,
these rules would no longer hold true. Such rules would have to in-
clude exceptions, and equivalent tests that incorporate the feature
creation and validation rules need to be employed. After the rule in
Fig. 16 is applied, the extrude feature in the example can be recog-
nized by Protégé-OWL as shown in Fig. 17.

Fig. 18 shows a SWRL rule to classify a feature as a member of
the RevolveFeature class. It ensures that the sum of planar and
conical surfaces created by ‘F must be less than or equal to the
sum of line entities belonging to ‘S’; the sum of toroidal and

Name

hitp://www.CAD-ontology. com/RevolveFeature_Rule

SWRL Rule

SketchBasedFeature(?F) A hasReferenceSketch(?F, ?S) A

hasNumberLineEntity2D(?S, 7NE1) A rCreatePlanarSurfac es(?F, 7NS1) A

hasNumberCreateConicalSurfaceinstances(?F, 7NS2) A swrib:divide(?HNS2, 7NS2, 2) A

swrib:add(?TNS1, 2NS1, 2HNS2) A swrib:lessThanOrEqual(?TNS1, ?NE1) A

hasNumberCircleEntity2D(?S, ?NE2) A hasNumberArcEntity2D(?S, ?NE3) A

swrib:add(7TNE2, ?NE2, ?NE2, ?7NE3) A

hasNumberCreateSphericalSurfaceinstances(?F, ?NS3) A swrib:divide(?HNS3, ?NS3, 2) A
reateToroidalSurfac (?F, PNS4) A swrib:divide(?HNS4, 7NS4, 2) A

swrib:add(?TNS2, ?HNS3, 7HNS4) A swrib:equal(?TNS2, 7TNE2) A

hasNumberE lipseEntity2D(?S, ?NE4) A hasNumberConicEntity2D(?S, ?NES) A

hasNumberSplineEntity2D(?S, ?NEG) A hasNumberPolylineEntity2D(?S, ?NET) A

swrib:add(?7TNE3, ?NE4, ?NE4, 7NES, 7NE6, ?NET) A

hasNumberCreateSpiineSurfaceinstances(?F, ?NS5) A swrib:divide(?HNSS, ?NSS, 2) A

swribequal(?HNSS, 7TNE3) -

RevolveFeature(?F)

Fig. 18. SWRL rule for RevolveFeature classification.

spherical surfaces belonging to ‘F’ must equal the number of circle
and arc entities belonging to ‘S’; and the number of spline surface
belonging to ‘F’ must equal the sum of ellipse, conic, polyline, and
spline entities belonging to ‘S’. This rule is only true when the angle
of rotation is equal to 360°. When it is less, two additional planar
surfaces have to be recognized, in which case a different rule has
to be created since OR operators cannot be used.

The above examples illustrate that SWRL rules can be used to
classify features without relying solely on semantics of feature def-
initions. Geometry information can significantly reduce the ambi-
guity in the feature mapping process. Yet, defining sufficient and
necessary rules for accurate and robust classification requires in-
depth knowledge of CAD systems and the complexity of the rules
will increase. Rule exceptions will occur if features are used to
add or remove materials to an existing model. Because with only
AND operators, more rules would be needed for any exception. In
addition, without checking if the parameters of the surfaces corre-
spond to the entities in the sketch, it could be possible to generate
false positives.

4.4. Limitations of SWRL rules

SWRL rules were built to infer new property relationships be-
tween existing individuals. However, SWRL shares OWL'’s open
world assumption, which restricts some reasoning abilities. In the
open world assumption, something cannot be determined to not
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Fig. 17. Protégé recognizes the extrude feature after the ExtrudeFeature SWRL rule is applied.



S. Tessier, Y. Wang/Advanced Engineering Informatics 27 (2013) 76-92 91

exist until explicitly stated. For example, if there is a class Parent
with a restriction that any individual with property hasChild is a
Parent, then only conclusions can be made about individuals that
have children. If the individual does not have any instances of
the hasChild property, it cannot be concluded that the individual
is not a Parent. The open world assumption works this way to allow
for introduction of new data over time. This prevents new informa-
tion from invalidating previous conclusions. Unfortunately, this
has some major implications. SWRL only supports monotonic infer-
encing, so SWRL rules cannot modify or remove existing informa-
tion from the ontology. The monotonicity also means SWRL rules
cannot support negation (NOT operator), nor disjunction (OR).
Only conjunction (AND) statements can be used. Nevertheless, it
is still possible to work around these limitations. Negation can be
expressed if there is a property explicitly stating an individual can-
not be a member of a class, or if an integer datatype property is
used to specify that there are no instances of specific property.
However, the open world assumption greatly increases the diffi-
culty of expressing any feature recognition rule in a robust manner.
Closed world reasoning can be made possible by introducing inte-
ger datatype properties to count specific instances of a class. Yet,
these integers must be instantiated and exported by the program
that creates the OWL exchange file.

In OWL, object properties relate an individual of one class to
individuals of another class with cardinalities specified as the set
of necessary and sufficient property restrictions placed upon them.
The cardinality restriction can be specified as greater than, less
than, or exactly a fixed integer number. For example, an extrude
feature could have the property restriction ‘Cardinality(hasSketch)
= 1". However, the cardinality cannot be specified as a variable or
equation. Rules such as ‘Cardinality(createsPlaneSurface) < Cardi-
nality(hasLineEntity)' cannot be used. Property restrictions on the
values of datatype properties are not allowed either. Because the
restrictions available to OWL classes are limited, we had to use
combinations of rules, which could have been simpler if the cardi-
nality restriction were flexible enough.

5. Concluding remarks

While ontology has been regarded as a powerful tool to solve
interoperability for heterogeneous data, the existing approaches
for CAD data exchange rely too heavily on standard neutral format
with rigid feature specifications or direct mapping purely based on
semantic similarity of class-level feature definitions. Approaches
that do not emphasize automation will likely be too source con-
suming to develop and maintain for affordable and effective ex-
change. Our solution presented in this paper emphasizes a CAD
feature ontology should be based on well established, understand-
able, and fundamental nomenclature while retaining necessary
freedom to model the wide variety of features available in different
CAD systems. The proposed approach focuses on describing fea-
tures in a more fundamental way via a shared global base ontology,
so as to allow for improved automation in the mapping process. By
introducing SWRL rules to serve as necessary and sufficient condi-
tions for defining features locally in different CAD systems, features
in the base form with universally accepted information elements
can be recognized as members of a given class in the target system
before any semantic mapping process occurs, thereby eliminating
unnecessary semantic mapping procedures. With such an ap-
proach, features that represent the same shape concept but are
semantically or structurally different could still be identified as
matches.

It should be noted that the main strength of this approach is its
capability to support exchange in an open and distributed environ-
ment with no predetermined feature standards. Each CAD system

would only be responsible for exporting data in the shared base
ontology format which are no more than the basic geometry, topol-
ogy, sketch dimensions and constraints, and for creating rules to
import data from this format. No specific knowledge of the other
systems is required. In contrast, existing commercial one-to-one
translators require extensive knowledge of the target systems.
With the assumption of such prior knowledge, ad hoc mapping
procedures for a few of the extensively used systems could be very
efficient. Yet our approach is meant to demonstrate the foundation
on which an ontology-based neutral exchange format could be
developed for its intended flexibility, which also eliminates unnec-
essary semantic similarity calculations by rule-based reasoning.
With future improvement of property restrictions in OWL, such
rules could be incorporated into the class definitions more
formally.

The main benefits that the proposed approach will bring to CAD
software vendors are summarized as follows. The dynamic map-
ping approach does not require the library of the source system
during the data exchange process, therefore companies’ proprie-
tary feature information is protected without the need of sharing.
When a new feature or a new CAD system is introduced, it does
not affect the standardized shared base ontology which only con-
tains the fundamental elements of the widely accepted 2D sketch
and B-Rep information. Therefore, CAD vendors have the freedom
to introduce new features without incurring new issues of interop-
erability. In addition, by adopting the new ontology format to for-
mally document the feature definitions and the existing rules for
feature evaluation and verification used in their CAD software sys-
tems, companies can have a systematic way to manage corporate
internal knowledge with ease of retention, retrieval, and reuse.

Much work still needs to be done in developing improved
mapping processes for heterogeneous CAD data using ontologies.
Representing a feature in terms of necessary and sufficient condi-
tions based on geometry creation rules needs more efforts to cap-
italize its full benefits over a purely semantic approach. As
incorporating the closed world reasoning into OWL is an ongoing
effort by researchers (e.g. Grimm et al. [46,47], Katz and Parsia
[48], and Knorr et al. [49]), the necessary and sufficient property
restriction rules could possibly be extended to allow for full
description of feature concepts. The current open world assump-
tion reasoning of OWL only benefits building databases with
inserting new information. When using an ontology as an ex-
change format, all information that will be used is included in
the file, so there is no addition of new data that could invalidate
previous logic determinations.

Other areas of future work include methods to improve the
extraction and storage of feature data. An improved way, with
the persistent naming issue resolved, to store B-Rep data in the
ontological format after each feature creation in the history tree
is needed. Complete local feature ontologies for different CAD sys-
tems are also desirable. However, the creation of such local ontol-
ogies will require a deep understanding of each target system'’s
feature library and how each feature is defined and geometrically
constructed. Further deliberation of better matching beyond B-
rep data is needed when there is no single feature in the target sys-
tem that adequately resembles the shape described in the base
ontology. Any level of automation for feature composition is note-
worthy. Once the complete translation of features between all
available CAD systems (both commercial and open-source) is
achieved, more research needs to be done to comprehensively
compare the efficacy of the new approach versus a purely semantic
approach, or a purely ad hoc one-to-one approach. As another ben-
efit of this approach is its support of instance-level dynamic map-
ping processes, future research could be done in a completely
distributed environment with research groups focusing on individ-
ual CAD systems. This would enable research on collaborative
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design to progress more quickly without the need of expertise on
multiple CAD systems to contribute.
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