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ABSTRACT

Recently generalized interval probability was proposed as a new mathematical
formalism of imprecise probability. It provides a simplified probabilistic calculus
based on its definitions of conditional probability and independence. The Markov
property can be described in a form similar to classical probability. In this paper, an
expectation-maximization approach is developed to train generalized hidden Markov
models with generalized interval probabilities. With the consideration of systematic
error in measurement, the training process provides a robust learning mechanism,
where data quality requirement is not as restrictive as the traditional hidden Markov
model.

INTRODUCTION

Uncertainty in engineering analysis is composed of two components. One is the inher-
ent randomness because of fluctuation and perturbation, called aleatory uncertainty,
and the other is due to lack of perfect knowledge about the system, called epistemic
uncertainty. Epistemic uncertainty has different sources, such as lack of data, conflict-
ing information from multiple sources, conflicting beliefs among experts’ opinions,
lack of time for introspection, measurement errors, lack of dependency information,
etc. Given the very different nature of the two types of uncertainties, it is important
to differentiate and treat them separately. Neglecting epistemic uncertainty may lead
to decisions that are not robust. Sensitivity analysis is traditionally used in assessing
robustness. Conflating epistemic and aleatory uncertainties may increase the cost of
risk management. The extra knowledge gained in data clustering or regression analysis
can be used to reduce variance.

Aleatory uncertainty is traditionally and predominantly modeled by probability
distributions. In contrast, epistemic uncertainty has been modeled in several ways, such
as probability, interval, fuzzy set, random set, basic probability assignment, etc. Here
interval is used to quantify epistemic uncertainty. An interval is as simple as a pair of
numbers, i.e. the lower and upper bounds. The reason to choose intervals is two-fold.
First, intervals are natural to human users and simple to use. They have been widely
used to represent a range of possible values, estimates of lower and upper bounds for
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numerical errors, and measurement errors due to the available precision of instruments.
Second, intervals can be regarded as the most suitable way to represent the lack of
knowledge. Compared to other forms, interval methods require the least assumption.
An interval only needs two values for the bounds. In contrast, statistical distributions
need assumptions of distribution types, distribution parameters, and the functional
mapping from events to real values between 0 and 1. Fuzzy sets need assumptions
of not only lower and upper bounds, but also membership functions. Given that the
lack of knowledge is the nature of epistemic uncertainty, a representation with the
least assumption is the most desirable. Notice that an interval rL,U s only specifies
its lower bound L and upper bound U . It does not assume a uniform distribution of
values between L and U .

As a generalization of the Markov chain model, a hidden Markov model (HMM)
does not assume that the states of Markov chains are directly observable. Rather, prob-
abilistic dependencies exist between the true but hidden states and the observable. The
differentiation between the state variables and observable variables in HMMs captures
the uncertainty that commonly exists in observation and measurement. HMMs have
been successfully used in speech recognition, signature verification, communication
and control, bioinformatics, computation vision, network security, and other applica-
tions (Khreich et al. (2012)). Yet the traditional HMM does not differentiate the two
types of uncertainties, where systematic error in measurement and lack of training data
are the major sources of epistemic uncertainties.

Recently, a generalized hidden Markov model (GHMM) (Wang (2011b)) was pro-
posed to extend the HMM with the incorporation of epistemic uncertainty in hidden and
observable variables based on a new formalism of imprecise probability, generalized
interval probability (Wang (2010)). In this paper, the incremental training of GHMM is
studied, where the interval-valued transition and observation probabilities are updated
sequentially with newly acquired data. Given the resemblance between GHMM and
HMM, the traditional expectation-maximization algorithms can be applied almost
directly to the GHMM. It is shown that the robustness of training can be improved
when data have measurement errors.

BACKGROUND

Imprecise probability

Imprecise probability rp, ps combines epistemic uncertainty (as an interval) with
aleatory uncertainty (as probability measure), which is regarded as a generalization of
traditional probability. Gaining more knowledge can reduce the level of imprecision
and indeterminacy, i.e. the interval width. When p “ p, the degenerated interval
probability becomes a traditional precise one.

Many forms of imprecise probabilities have been developed. For example, the
Dempster-Shafer theory (Dempster (1967); Shafer (1976)) characterizes evidence with
discrete probability masses associated with a power set of values. The theory of co-
herent lower previsions (Walley (1991)) models uncertainties with the lower and upper
previsions with behavioral interpretations. The possibility theory (Dubois and Prade
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(1988)) represents uncertainties with Necessity-Possibility pairs. Probability bound
analysis (Ferson et al. (2003)) captures uncertain information with pairs of lower
and upper distribution functions or p-boxes. Interval probability (Kuznetsov (1995))
characterizes statistical properties as intervals. F-probability (Weichselberger (2000))
incorporates intervals and represents an interval probability as a set of probabilities
which maintain the Kolmogorov properties. A random set (Molchanov (2005)) is a
multi-valued mapping from the probability space to the value space. Fuzzy probability
(Möller and Beer (2004)) considers probability distributions with fuzzy parameters. A
cloud (Neumaier (2000)) combines fuzzy sets, intervals, and probability distributions.

In the applications of interval probability, the interval bounds p and p can be elicited
as the lowest and highest subjective probabilities about a particular event from a domain
expert. The expert may hesitate to offer just a precise value of probability. Different
experts could have different beliefs. In both cases, the range of probabilities gives the
interval bounds. When used in data analysis with frequency interpretation, the interval
bounds can be confidence intervals (e.g. the Kolmogorov-Smirnov confidence band)
calculated from data to enclose a cumulative distribution function. If extra data are
collected, the interval distribution may be reduced to a precise distribution function. For
parametric distributions such as exponential and Gaussian, the epistemic uncertainty is
represented by interval values of the parameters.

Imprecise probability quantifies aleatory and epistemic uncertainties simultane-
ously and can be used as an alternative to sensitivity analysis in assessing robustness
of probabilistic reasoning. In this paper, the new form of imprecise probability, gen-
eralized interval probability, is based on generalized interval. Generalized interval is
an algebraic and semantic extension of the classical set-based interval. As a result, the
probabilistic calculus in generalized interval probability is greatly simplified.

Generalized interval

The classical set-based interval (Moore (1966)) is defined as va, bw :“
tx P R|a ď x ď bu. Therefore va, bw is invalid when a ą b. In contrast, generalized
interval (Sainz et al. (2014); Markov (1979); Dimitrova et al. (1992)) does not have such
restriction. A generalized interval is defined as a pair of numbers x :“ rx, xspx, x P Rq.
The set of generalized intervals is denoted by KR “ trx, xs|x, x P Ru. The set of
proper intervals is IR “ trx, xs|x ď xu, and the set of improper intervals is IR “

trx, xs|x ě xu. The relationship between proper and improper intervals is established
with the operator dual as dualprx, xsq :“ rx, xs.

The inclusion relationship Ď between generalized intervals x “ rx, xs and y “

ry, ys is defined as rx, xs Ď ry, ys ðñ x ě y ^ x ď y. The less-than-or-equal-to
relationship ď is defined as rx, xs ď ry, ys ðñ x ď y ^ x ď y. The relationship
between generalized interval and classical interval is established with the operator △
defined as rx, xs△ :“ vminpx, xq,maxpx, xqw.

The calculation of generalized interval is based on the Kaucher arithmetic (Kaucher
(1980)), which is different from the classical interval arithmetic. For the special case
of x “ rx, xs ě 0 and y “ ry, ys ě 0, which is applicable to probability values in
this paper, the arithmetic is defined as follows. x ` y :“ rx ` y, x ` ys. x ´ y :“
rx ´ y, x ´ ys. x ˆ y :“ rx ˆ y, x ˆ ys. x{y :“ rx{y, x{yspy ą 0q. Compared to the
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semi-group formed by the classical set-based intervals without invertibility, generalized
intervals with the operations in Kaucher arithmetic form a group, which satisfies all
four conditions of closure, identities, associativity, and invertibility. Invertibility exists
in generalized intervals because x ´ dualx “ 0 and x{dualx “ 1. This property
significantly simplifies the computational structure. A monotonic interval function as a
pair of real-valued functions is defined as fpxq :“ rfpxq, fpxqs. For instance, logpxq :“
rlogpxq, logpxqs. The integral of fpxq is defined as

ş

fpxqdx :“ r
ş

fpxqdx,
ş

fpxqdxs.
Not only generalized interval based on the Kaucher arithmetic simplifies the com-

putational structure, it also provides more semantics than the classical set-based inter-
val. In a functional relation, each generalized interval has an associated logic quantifier,
either existential (D) or universal (@). The semantics of a generalized interval x P KR
is denoted by pQxx P x△q where Q : KR ÞÑ tD,@u. x is called existential if Qx “ D,
or universal if Qx “ @. If a real relation z “ fpx1, . . . , xnq is extended to the interval
relation z “ fpx1, . . . ,xnq, the interval relation z is interpretable if there is a semantic
relation pQx1x1 P x△

1 q ¨ ¨ ¨ pQxnxn P x△
n qpQzz P z△qpz “ fpx1, . . . , xnqq.

Generalized interval provides more semantic power to help verify completeness and
soundness of range estimations by logic interpretations. A complete range estimation
of possible values includes all possible occurrences without underestimation. A sound
range estimation does not include impossible occurrences without overestimation.

GENERALIZED INTERVAL PROBABILITY

Basic definitions

Given a sample space Ω and a σ-algebra A of random events over Ω, a generalized
interval probability p P KR is defined as p : A Ñ r0, 1s ˆ r0, 1s which obeys the
axioms of Kolmogorov: (1) ppΩq “ r1, 1s; (2) r0, 0s ď ppEq ď r1, 1s p@E P Aq; and
(3) for any countable mutually disjoint events Ei X Ej “ H pi ‰ jq, ppEi

Ť

Ejq “

ppEiq ` ppEjq.
A generalized interval probability p “ rp, ps is a generalized interval without the

restriction of p ď p. The new definition also implies ppHq “ r0, 0s. The probability of
union is defined by as ppAq :“

ř

SĎAp´dualq|A|´|S|ppSq for A Ď Ω.
The assignments of interval-valued probabilities to events are not arbitrary. They

should meet certain requirements. In generalized interval probability, the interval
probability values should satisfy the logic coherence constraint (LCC). That is, for
a mutually disjoint event partition

Ťn
i“1 Ei “ Ω,

řn
i“1 ppEiq “ 1. If the sample space

is continuous,
ş

xPΩ
ppxqdx “ 1.

Notice that the LCC is more restrictive than Walley’s coherence and avoiding sure
loss constraints (Walley (1991)). The LCC ensures that generalized interval probability
is logically coherent with precise probability. Suppose that ppEiq P IR pfor i “

1, . . . , kq and ppEiq P IR pfor i “ k ` 1, . . . , nq. It can be interpreted as

@p1 P p△pE1q, . . . , @pk P p△pEkq, Dpk`1 P p△pEk`1q, . . . , Dpn P p△pEnq,
n

ÿ

i“1

pi “ 1
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For instance, given that ppdownq “ r0.2, 0.3s, ppidleq “ r0.3, 0.5s, and ppworkingq “

r0.5, 0.2s for a system’s working status, we can interpret it as

p@p1 P v0.2, 0.3wqp@p2 P v0.3, 0.5wqpDp3 P v0.2, 0.5wqpp1 ` p2 ` p3 “ 1q (1)

With different quantifier assignments, we differentiate non-focal events from focal
events based on the respective logic interpretation. An event E is called focal if the
associated semantics for ppEq is universal. Otherwise, it is called non-focal if the
associated semantics is existential. The epistemic uncertainty associated with focal
events is ‘critical’ but ‘uncontrollable’ to the analyst, whereas the one associated with
non-focal events is ‘controllable’ and ‘complementary’. In the above example, the
interpretation in Eq.(1) shows that “down” and “idle” are focal events while “working”
is non-focal. If the analyst is more interested in “down” and “working”, he/she may
assign a different set of interval probability values, for instance, ppdownq “ r0.2, 0.3s,
ppworkingq “ r0.2, 0.5s, and ppidleq “ r0.6, 0.2s, with the interpretation

p@p1 P v0.2, 0.3wqp@p3 P v0.2, 0.5wqpDp2 P v0.2, 0.6wqpp1 ` p2 ` p3 “ 1q

Conditional probability, independence, and generalized interval Bayes’ rule

The concepts of conditional probability, independence, and Bayes’ rule are essential
for the classical probability theory. With independence, we can decompose a complex
problem into simpler and manageable components. With Bayes’ rule, information
can be combined and updated for assessment. Similarly, they are also important for
imprecise probabilities.

Different from the definitions in all other forms of imprecise probabili-
ties, the conditional probability in the generalized interval probability theory is
defined directly from marginal probability. The conditional interval probability
ppE|Cq for all E,C P A is defined as ppE|Cq :“ ppE X Cq{dualppCq “
“

ppE X Cq{ppCq, ppE X Cq{ppCq
‰

when ppCq ą 0. Thanks to the unique algebraic
properties of generalized intervals, this definition can greatly simplify computation in
applications. Only algebraic computation is necessary.

For A,B,C P A, A is said to be conditionally independent with B on C if and only
if ppA X B|Cq “ ppA|CqppB|Cq. For A,B P A, A is said to be independent with B
if and only if ppA X Bq “ ppAqppBq.

The most intuitive meaning of “independence” is that an independence relationship
satisfies several graphoid properties. It has been shown that generalized interval proba-
bility with the defined independence is graphoid , which has the properties of symme-
try, decomposition, composition, contraction, reduction, weak union, redundancy, and
intersection (Wang (2011a)).

With the definition of the conditional probability, a generalized interval Bayes’ rule
can be directly derived. For A P A and a mutually disjoint event partition

Ťn
j“1Ej “ Ω

with
řn

j“1 ppEjq “ 1, ppEi|Aq “ ppA|EiqppEiq{
řn

j“1 dualppA|EjqdualppEjq.
With the conditional probability and independence defined, a Markov chain model

with generalized interval probabilities is used to describe the evolution of a system as
the transitions of states which we do not have perfect knowledge about.
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Markov chain model with generalized interval probabilities

The imprecise Markov chain based on generalized interval probability can be
intuitively kept track of with its resemblance to the classical Markov chain. Given n
possible states of a system, a stationary discrete-time imprecise Markov chain is defined
by a state transition matrix A P KRnˆn with interval-valued transition probabilities
aij “ ppqk`1 “ i|qk “ jq, where qk is the state variable, and i “ 1, . . . , n and
j “ 1, . . . , n are its values. Given the probabilistic estimates of the states Πpkq P KRn

at time k with elements πpkq

i “ ppqk “ iq with i “ 1, . . . , n, the probabilistic estimates
of states at time k ` 1 is Πpk`1q “ AΠpkq. The logic coherence constraint of state
probabilities is automatically satisfied during the transition process, stated as follows.

Theorem 1 (Wang (2013)) (Markov logic coherence constraint) Given an inter-
val matrix A and an interval vector Πpkq with their respective elements aij (i “

1, . . . , n,j “ 1, . . . , n) and π
pkq

i (i “ 1, . . . , n) as generalized interval probabilities,
if

řn
i“1 aij “ r1, 1s (@j “ 1, . . . , n) and

řn
i“1 π

pkq

i “ r1, 1s, then the elements of
Πpk`1q “ AΠpkq denoted as πpk`1q

i (i “ 1, . . . , n) also satisfy
řn

i“1 π
pk`1q

i “ r1, 1s.
Notice that the multiplication distributivity of three probability intervals p1, p2, and

p3 exists, as pp1 ` p2qp3 “ p1p3 ` p2p3, because 0 ď p1,p2,p3 ď 1. However, for
generalized intervals a, b, and c, pa ` bqc “ ac ` bc does not necessarily hold in
general (Gardeñes and Trepat (1980); Markov (1995); Popova (2001)).

GENERALIZED HIDDEN MARKOV MODEL (GHMM)

Given N possible hidden state values S “ t1, . . . , Nu and M possible observable
symbols V “ tv1, . . . , vMu, a GHMM with temporal interdependency is defined as Λ “

pΠ,A,Bq, where Π “ pπiq1ˆN is a vector of initial interval probability distribution of
N possible states with element πi “ ppq0 “ iq, qt denotes the hidden state variable
at time t, A “ paijqNˆN is the matrix of state transition probabilities that captures the
temporal dependencies of hidden state variables with element aij “ ppqt`1 “ j|qt “ iq
denoting the interval-valued probability of transition from state i to state j at time t, and
B “ pbjkqNˆM is the matrix of observation probabilities with element bjk “ ppot “

vk|qt “ jq denoting the interval-valued probability of observing symbol vk given the
hidden state j and ot being the observable variable at time t. Given LCC, we have
řN

i“1 πi “ r1, 1s,
řN

j“1 aij “ r1, 1s for all i, and
řM

k“1 bjk “ r1, 1s for all j.
The training of a GHMM is to find its parameter Λ, given a sequence of T

observations o1:T “ to1, . . . , oT u, such that the maximum likelihood ppo1:T |Λq can
be achieved. In the next section, we will demonstrate that the expected-maximization
method developed in HMM can be easily extended to train the GHMM.

Expectation-maximization (EM) for parameter re-estimation

Similar to the traditional incremental learning of HMM parameters, the re-
estimation of interval parameters in the GHMM can be performed with the general-
ized expectation-maximization method (Dempster et al. (1977)) that maximizes the
expected log-likelihood logppo1:T , q1:T |Λ1q of the next predicted parameter Λ1 within
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the state space q1:T given the observations o1:T and current parameters Λ. If an auxiliary
function

QpΛ1|Λq “
ÿ

qPS
ppo1:T , q1:T |Λq logppo1:T , q1:T |Λ1q (2)

is defined, the parameter re-estimation is to solve the maximization problem
maxΛ1 QpΛ1|Λq, which is more complex than the traditional HMM since Q is an
interval function. Here we define it as two separate maximization problems

max
Λ1

ÿ

qPS
ppo1:T , q1:T |Λq log ppo1:T , q1:T |Λ1q (3)

and
max
Λ

1

ÿ

qPS
ppo1:T , q1:T |Λq log ppo1:T , q1:T |Λ1q (4)

Notice that in Kaucher arithmetic multiplication x ˆ y is defined as rxy, xys when
x ě 0, x ě 0, y ă 0, y ă 0 (Kaucher (1980)). Similar to the EM training for the HMM,
we can define auxiliary functions

γτ |tpiq :“ ppqτ “ i|o1:t,Λq (5)

and
ξτ |tpi, jq :“ ppqτ “ i, qτ`1 “ j|o1:t,Λq (6)

where γ1|T piq “ πi and γt|T piq “
řN

j“1 ξt|T pi, jq. The maximization problems in
Eqs.(3) and (4) are explicitly expressed in terms of the GHMM parameters as

max
π1,a1,b1

r

N
ÿ

i“1

γ1|T piq log π1
i `

T´1
ÿ

t“1

N
ÿ

i“1

N
ÿ

j“1

ξt|T pi, jq log a1
ij `

T
ÿ

t“1

N
ÿ

j“1

γt|T pjqδot“vm log b1
jms

(7)
and

max
π1,a1,b

1
r

N
ÿ

i“1

γ
1|T

piq log π1
i `

T´1
ÿ

t“1

N
ÿ

i“1

N
ÿ

j“1

ξ
t|T

pi, jq log a1
ij `

T
ÿ

t“1

N
ÿ

j“1

γ
t|T

pjqδot“vm log b
1

jms

(8)
subject to the logic coherent constraints

řN
i“1 πi

1 “ r1, 1s,
řN

j“1 aij
1 “ r1, 1s for all i,

and
řM

k“1 bjk
1 “ r1, 1s for all j, where δtrue “ 1 and δfalse “ 0. The solution is

π1
i “ γ1|T piq, a1

ij “

řT´1
t“1 ξt|T pi, jq

řT´1
t“1 γt|T piq

, b1
jm “

řT
t“1 γt|T pjqδot“vm
řT

t“1 γt|T pjq
(9)

π1
i “ γ

1|T
piq, a1

ij “

řT´1
t“1 ξ

t|T
pi, jq

řT´1
t“1 γ

t|T
piq

, b
1

jm “

řT
t“1 γt|T

pjqδot“vm

řT
t“1 γt|T

pjq
(10)

The training of the GHMM is based on Eqs.(9) and (10). A forward variable
αt|T piq “ ppo1:t, qt “ i|Λq and a backward variable βt|T piq “ ppot`1:T |qt “
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i,Λq are defined. Given the initial guess of parameters and a sequence of T ob-
served symbols, the prior probabilities πpiq’s and πpiq’s are updated as the expected
frequencies of state i’s at time t “ 1, γ1|T piq and γ

1|T
piq, respectively. This is

achieved by computing αt|T piq’s and βt|T piq’s, since γt|T piq9αt|T piqβt|T piq. A nor-
malization procedure is needed to make γt|T piq’s interval probability values. Recur-
sively, α1|T piq “ πibi,o1 and αt`1|T piq “ bi,ot`1

ř

qt
aqt,iαt|T pqtq. βT |T piq “ r1, 1s

and βt|T piq “ bi,ot`1

ř

qt`1
ai,qt`1βt`1|T pqt`1q. π1

i’s and π1
i’s are estimated from the

normalized γ1|T piq’s and γ
1|T

piq’s respectively.

Similarly, ξt|T pi, jq’s are computed based on ξt|T pi, jq9αt|T piqaijbi,ot`1βt`1|T pjq.
Thus a1

ij’s and a1
ij’s are estimated from the normalized

řT´1
t“1 ξt|T pi, jq’s and

řT´1
t“1 ξ

t|T
pi, jq’s respectively. The elements of observation matrix b1

jm’s are estimated
by counting the number of observations for symbols vm’s among all in the sequence
then adding the corresponding γt|T pjq’s for all t’s as b1

jm9
řT

t“1 γt|T pjqδot“vm . The
final b1

jm and b
1

jm are the normalized
řT

t“1 γt|T pjqδot“vm and
řT

t“1 γt|T
pjqδot“vm re-

spectively.

A numerical example

Here a simple example is used to illustrate the GHMM training process. The number
of hidden state is N “ 2 and the number of observable symbols is M “ 3. The underly-
ing true transition matrix is assumed to be precise, whereas the true observation matrix
is imprecise. Both are randomly generated. These two matrices are used to randomly
generate data for training purpose. At the beginning of the training, interval-valued
prior probability, transition matrix, and observation matrix are randomly generated.
The evolutions of the transition and observation matrices are shown Figures 1 and 2
respectively. In this example, 40 runs of trainings were taken. For each run, 5 sets
of observations, each of which has 10 symbols, are randomly generated based on the
underlying true matrices. During sampling, either the lower or upper observation matrix
is randomly chosen, with equal probability, to generate observations. This is to simulate
the observation error. For each run, all 5 sets of data are applied in the training. It stops
when either a convergence condition is met or a maximum of 10 iterations is reached.
The results are then used as the initial values for the next run.

Figures 1 and 2 show the parameter values at the end of each run, with 40 runs
plotted sequentially. The dashed and solid lines correspond to the values of lower and
upper bounds for the interval probabilities respectively. The circles indicate the training
results when the same data are used to train the HMM with precise probabilities. The
plus signs (+) show the training results when the observation data are sampled from
the middle values of the imprecise observation matrix, which are the training results
when there is no measurement error in observation. The figures show that the plus
signs are roughly bounded by the dashed and solid lines. In contrast, the circles drift
away from the plus signs, which indicates that the training results can be significantly
different from the true ones when measurement error is not considered and the data
with measurement errors are used to directly train the HMM. With measurement errors,
training the GHMM instead of the HMM can be more robust.

883Vulnerability, Uncertainty, and Risk ©ASCE 2014



10 15 20 25 30 35 40

a
11

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

a
12

10 15 20 25 30 35 40

a
21

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

a
22

Figure 1. The training of a 2 ˆ 2 transition matrix A.
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Figure 2. The training of a 2 ˆ 3 observation matrix B.

CONCLUSION

In this paper, an expectation-maximization approach is developed to train hidden
Markov models with generalized interval probability. The unique calculus of gener-
alized interval probability allows for modeling independence and Markov properties
under both aleatory and epistemic uncertainty more intuitively than other forms of
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imprecise probability. It is shown that from imprecise data with measurement errors
the training of GHMM’s is more robust than the training of HMM’s.
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