

Hidden Markov Model

Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu

Learning Objectives

□To familiarize the hidden Markov model as a generalization of Markov chain

To understand the three basic problems (evaluation, decoding, and learning) in HMM model construction and applications

Hidden Markov Model (HMM)

- HMM is an extension of regular Markov chain
- ■State variables *q*'s are not directly observable
- All statistical inference about the Markov chain itself has to be done in terms of observable o's

HMM

• *o*'s are conditionally independent given $\{q_t\}$.

□However, $\{o_t\}$ is not an independent sequence, nor a Markov chain itself.

HMM Components

State sequence: $Q = \{q_1, q_2, \dots, q_T\}$ with N possible values

Observation sequence: $O = \{o_1, o_2, \dots, o_T\}$ with *M* possible symbols $\{v_1, v_2, \dots, v_M\}$

State transition matrix: $\mathbf{A} = (a_{ij})_{N \times N}$ where $a_{ij} = P(q_{t+1} = j | q_t = i)$

Observation matrix: $\mathbf{B} = (b_{ik})_{N \times M}$ where $b_{ik} = b_i(v_k) = P(o_t = v_k | q_t = i)$

□Initial state distribution: $\Delta = (\delta_i)_{1 \times N}$ where $\delta_i = P(q_1 = i)$

Model's parameters $\lambda = \{A, B, \Delta\}$

Three Basic Problems in HMM

- **Evaluation:** Given a model with parameters λ and a sequence of observations $O = \{o_1, o_2, \dots, o_T\}$, what is the probability that the model generates those observations $P(O|\lambda)$?
- **Decoding:** Given a model with parameters λ and a sequence of observations $O = \{o_1, o_2, \dots, o_T\}$, what is the most likely state sequence $Q = \{q_1, q_2, \dots, q_T\}$ in the model that produces the observations?
- **Learning:** Given a set of observations $O = \{o_1, o_2, ..., o_T\}$, how can we find a model with the parameters λ with the maximum likelihood $P(O|\lambda)$?

Georgia

Evaluation Problem

■Given an O={
$$o_1, o_2, ..., o_T$$
}, P(O| λ)=?
■Naïve algorithm
■ because of lemma 3.1
 $P(O \mid \lambda) = \sum_{Q^{(d)}} P(O, Q^{(d)} \mid \lambda) = \sum_{Q^{(d)}} P(O \mid Q^{(d)}, \lambda) P(Q^{(d)} \mid \lambda)$
where $Q^{(d)}$ is one of all possible combinations of state sequences
■ assume conditional independence between
observations
 $P(O \mid Q^{(d)}, \lambda) = \prod_{t=1}^{T} P(o_t \mid q_t, \lambda) = \prod_{t=1}^{T} b_{q_t}(o_t)$
 $P(Q^{(d)} \mid \lambda) = \delta_{q_1} \prod_{t=1}^{T-1} P(q_{t+1} \mid q_t, \lambda) = \delta_{q_1} \prod_{t=1}^{T-1} a_{q_tq_{t+1}}$

 However, the number of possible combinations of state sequences is huge!

Evaluation Problem – Forward Algorithm

Define a forward variable $\alpha_t(i) = P(o_1, o_2, \dots, o_t, q_t = i \mid \lambda)$ which can be recursively calculated by

 $\alpha_{1}(i) = P(o_{1}, q_{1} = i \mid \lambda) = P(q_{1} = i \mid \lambda)P(o_{1} \mid q_{1} = i, \lambda) = \delta_{i}b_{i}(o_{1})$ $\alpha_{_{t+1}}(i) = P(o_{_1}, \dots, o_{_{t+1}}, q_{_{t+1}} = i \mid \lambda)$ $= P(q_{++1} = i \mid \lambda) P(o_{++1}, \dots, o_{++1} \mid q_{++1} = i, \lambda)$ $= P(q_{t+1} = i \mid \lambda) P(o_{t+1} \mid q_{t+1} = i, \lambda) P(o_1, \dots, o_t \mid q_{t+1} = i, \lambda)$ $= P(o_{t+1} \mid q_{t+1} = i, \lambda) P(o_1, \dots, o_t, q_{t+1} = i \mid \lambda)$ $= P(o_{t+1} \mid q_{t+1} = i, \lambda) \sum_{a} P(o_1, \dots, o_t, q_t, q_{t+1} = i \mid \lambda)$ $= P(o_{t+1} \mid q_{t+1} = i, \lambda) \sum_{a} P(q_{t+1} = i \mid q_t, \lambda) P(o_1, \dots, o_t, q_t \mid \lambda)$ $= b_i(o_{t+1}) \sum_{q_i, i} \alpha_{q_i, i} \alpha_t(q_t)$ $P(O \mid \lambda) = \sum_{i=1}^{N} P(O, q_T = i \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i)$ Georgia

Evaluation Problem – Backward Algorithm

□ Define a backward variable $\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots, o_T | q_t = i, \lambda)$ □ which can be recursively calculated by

$$\begin{split} \beta_{T}(i) &= 1\\ \beta_{t}(i) &= P(o_{t+1}, \dots, o_{T} \mid q_{t} = i, \lambda) \\ &= P(o_{t+1} \mid q_{t} = i, \lambda) P(o_{t+2}, \dots, o_{T} \mid q_{t} = i, \lambda) \\ &= P(o_{t+1} \mid q_{t} = i, \lambda) P(o_{t+2}, \dots, o_{T}, q_{t} = i \mid \lambda) / P(q_{t} = i \mid \lambda) \\ &= P(o_{t+1} \mid q_{t} = i, \lambda) \sum_{q_{t+1}} P(o_{t+2}, \dots, o_{T}, q_{t} = i, q_{t+1} \mid \lambda) / P(q_{t} = i \mid \lambda) \\ &= P(o_{t+1} \mid q_{t} = i, \lambda) \sum_{q_{t+1}} \frac{P(o_{t+2}, \dots, o_{T} \mid q_{t} = i, q_{t+1}, \lambda) P(q_{t} = i, q_{t+1} \mid \lambda)}{P(q_{t} = i \mid \lambda)} \\ &= P(o_{t+1} \mid q_{t} = i, \lambda) \sum_{q_{t+1}} \frac{P(o_{t+2}, \dots, o_{T} \mid q_{t} = i, q_{t+1}, \lambda) P(q_{t} = i, q_{t+1} \mid \lambda)}{P(q_{t} = i \mid \lambda)} \\ &= P(o_{t+1} \mid q_{t} = i, \lambda) \sum_{q_{t+1}} P(o_{t+2}, \dots, o_{T} \mid q_{t+1}, \lambda) P(q_{t+1} \mid q_{t} = i, \lambda) \\ &= b_{i}(o_{t+1}) \sum_{q_{t+1}} a_{i,q_{t+1}} \beta_{t+1}(q_{t+1}) \end{split}$$

Decoding Problem

Given an $O = \{o_1, o_2, ..., o_T\}$, find a $Q^* = \{q_1^*, q_2^*, ..., q_T^*\}$ with the maximum of P(O|Q)

Viterbi Algorithm is a dynamic programming method to solve the decoding problem

Dynamic Programming

Breaking down complex problems into subproblems in a recursive manner.

□e.g. search the shortest path in the Traveling Salesman Problem

Decoding Problem – Viterbi Algorithm

Define an auxiliary probability

$$\boldsymbol{\rho}_t(i) \coloneqq \max_{\boldsymbol{q}_1, \dots, \boldsymbol{q}_{t-1}} P(\boldsymbol{q}_1, \dots, \boldsymbol{q}_{t-1}, \boldsymbol{q}_t = i, \boldsymbol{o}_1, \dots, \boldsymbol{o}_t \mid \boldsymbol{\lambda})$$

which is the highest probability that a single path leads to $q_t = i$ at time t

Recursively

$$\begin{split} \rho_{t+1}(j) &= \max_{i} \left\{ \rho_{t}(i) P(q_{t+1} = j \mid q_{t} = i, \lambda) P(o_{t+1} \mid q_{t+1} = j) \right\} \\ &= \max_{i} \left\{ \rho_{t}(i) P(q_{t+1} = j \mid q_{t} = i, \lambda) \right\} P(o_{t+1} \mid q_{t+1} = j) \\ &= \max_{i} \left\{ \rho_{t}(i) a_{ij} \right\} b_{j}(o_{t+1}) \end{split}$$

Decoding Problem – Viterbi Algorithm – cont'd

□ Define an auxiliary variable $\psi_{t+1}(j) = \arg \max_{i} \left\{ \rho_t(i) a_{ij} b_j(o_{t+1}) \right\} = \arg \max_{i} \left\{ \rho_t(i) a_{ij} \right\}$ to store the optimal state at time *t* to reach state *j* at time *t*+1.

□The algorithm is

1. initialize

$$\rho_1(j) = \delta_j b_j(o_1) \quad (\forall j, j = 1, \dots, N)$$

$$\psi_1(j) = 0$$

2. recursion

$$\rho_{t+1}(j) = \max_{i} \left\{ \rho_t(i) a_{ij} \right\} b_j(o_{t+1})$$
$$\psi_{t+1}(j) = \arg\max_{i} \left\{ \rho_t(i) a_{ij} \right\}$$

Decoding Problem – Viterbi Algorithm – cont'd

3. terminate

•The optimal probability $P^* = \max_{i} \left\{ \rho_T(j) \right\}$

•The optimal final state $q_T^* = \arg \max_j \left\{ \rho_T(j) \right\}$

• 4. backtrack state sequence

$$q_t^* = \psi_{t+1}(q_{t+1}^*)$$

Learning Problem

 \Box Given an O={ o_1, o_2, \ldots, o_T }, find a $\lambda^* = \{A^*, A^*\}$ $\mathbf{B}^*, \mathbf{\Delta}^*$ with the maximum likelihood $P(O|\lambda)$ $\lambda^* = \arg \max_{\lambda} \left\{ P(O \mid \lambda) \right\} = \arg \max_{\lambda} \left\{ \log P(O \mid \lambda) \right\}$ Global optimum needs to search all possible state and observation sequences $\lambda^* = \arg \max \left\{ \sum_{O^{(d)}} \sum_{Q^{(d)}} \log P(O^{(d)} \mid Q^{(d)}, \lambda) \right\}$ □Instead, Baum-Welch Algorithm is usually used to search heuristically

Learning Problem – Baum-Welch Algorithm

□Algorithm

- I.Guess some parameters λ
- 2. Determine some "probable paths" { $Q^{(1)}, \ldots, Q^{(d)}$ }
- 3. Estimate the number of transitions â_{ij}, from state *i* to state *j*, given the current estimate of λ.
- 4. Estimate the number of the observation v_k emitted from state *i* as $\hat{b}_i(v_k)$
- 5. Estimate the initial distribution $\hat{\delta}_{i}$
- 6. Re-estimate λ ' from A_{ij} 's and $B_i(v_k)$'s
- 7. If λ' and λ is close enough, stop; otherwise, assign $\lambda = \lambda'$ and go back to step 2.

Learning Problem – Baum-Welch Algorithm – cont'd Define an auxiliary likelihood

$$\xi_t(i, j) = P(q_t = i, q_{t+1} = j \mid o_1, \dots, o_T, \lambda)$$

which is the probability that a transition $q_t = i$ and $q_{t+1} = j$ occurs at time *t* given the complete observations $\{o_1, o_2, \dots, o_T\}$ and model parameters λ

$$\begin{aligned} \text{Learning Problem} - \\ \text{Baum-Welch Algorithm} - \text{cont'd} \\ \xi_t(i,j) &= P(q_t = i, q_{t+1} = j \mid o_1, \dots, o_T \mid \lambda) \\ &= \frac{P(q_t = i, q_{t+1} = j, o_1, \dots, o_T \mid \lambda)}{P(o_1, \dots, o_T \mid \lambda)} \\ &= \frac{P(o_1, \dots, o_T \mid q_t = i, q_{t+1} = j, \lambda) P(q_t = i, q_{t+1} = j \mid \lambda)}{P(o_1, \dots, o_T \mid \lambda)} \\ &= \frac{\left[P(o_1, \dots, o_t \mid q_t = i \mid \lambda) P(o_{t+1} \mid q_{t+1} = j, \lambda) \right]}{P(o_1, \dots, o_T \mid \lambda)} \\ &= \frac{\left[P(o_1, \dots, o_t \mid q_t = i \mid \lambda) P(q_{t+1} = j \mid q_t = i, \lambda) P(q_t = i \mid \lambda) \right]}{P(o_1, \dots, o_T \mid \lambda)} \\ &= \frac{\left[P(o_1, \dots, o_t, q_t = i \mid \lambda) P(q_{t+1} = j \mid q_t = i, \lambda) \right]}{P(o_1, \dots, o_T \mid \lambda)} \\ &= \frac{\alpha_t(i) a_{ij} b_i(o_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^N \alpha_T(i)} \end{aligned}$$

$$\begin{aligned} & \text{Learning Problem} - \\ & \text{Baum-Welch Algorithm} - \text{cont'd} \\ \hline & \text{Estimate parameters} \\ \hat{a}_{ij} = \frac{\sum_{t=1}^{T} P(q_t = i, q_{t+1} = j \mid o_1, \dots, o_T, \lambda)}{\sum_{t=1}^{T} P(q_t = i \mid o_1, \dots, o_T, \lambda)} = \frac{\sum_{t=1}^{T} \xi_i(i, j)}{\sum_{t=1}^{T} \sum_{k=1}^{N} \xi_i(i, k)} \\ \hat{b}_i(v_k) = \frac{\sum_{t=1}^{T} P(o_t = v_k, q_t = i, q_{t+1} = j \mid o_1, \dots, o_T, \lambda)}{\sum_{t=1}^{T} P(q_t = i \mid o_1, \dots, o_T, \lambda)} \\ = \frac{\sum_{t=1}^{T} 1_{o_t = v_k} \xi_i(i, j)}{\sum_{t=1}^{T} \sum_{k=1}^{N} \xi_i(i, k)} \\ \hat{\delta}_i = \sum_{k=1}^{N} P(q_1 = i, q_2 = k \mid o_1, \dots, o_T, \lambda) = \sum_{k=1}^{N} \xi_1(i, k) \end{aligned}$$

Learning Problem – Baum-Welch Algorithm – cont'd How to measure two models, λ' and λ, are close enough?

$$p = \sum_{O^{(d)}} P(O^{(d)} \mid \lambda)$$

$$Cross \, Entropy = p_1(x) \log \frac{p_1(x)}{p_2(x)}$$

HMM Applications

HMM has been applied in many fields that are based on the analysis of discrete-valued time series, such as

- speech recognition (Rabiner, 1989)
- Image recognition
- genetic profile and classification (Eddy, 1998)

Kalman Filter

- Can be regarded as a special case of HMM
 Also known as the *Gaussian linear state-space* model
- ■State series are linearly dependent on history, subject to process white noises.

$$\mathbf{x}_t = \mathbf{C}\mathbf{x}_t + \mathbf{w}_t$$

□Observations are also linearly dependent on states, subject to measurement noises.

$$\mathbf{y}_t = \mathbf{D}\mathbf{x}_t + \mathbf{v}_t$$

Summary

Hidden Markov model is a generalization Markov chain

Further Readings

- Rabiner L.R. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. *Proceedings of the IEEE*, 77(2): 267-296
- Eddy S.R. (1998) Profile hidden Markov models. Bioinformatics Review, 14(9): 755-776
- Dempster A.P., Laird N.M., and Rubin D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society, Series B*. **39**(1): 1-38
- Wu C.F.J. (1983) On the convergence properties of the EM algorithm. *The Annals of Statistics*, **11**(1): 95-103
- **HMM Software Packages**

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

