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Learning Objectives

To understand the concept of 
independence in probability

To familiarize the Markov model and 
Markov property

To familiarize Chapman-Kolmogorov
equation
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Independence

One of the most important concepts 
defined in probability theory is 
independence.

The concept of independence is essential to 
decompose a complex problem into 
simpler and manageable components.

Markov models rely on assumptions of 
independence.
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Definition of Independence

Definition 3.1 (Conditional Independence). 
For , A is said to be conditionally 
independent with B on C if and only if 

.

Definition 3.2 (Independence). For , 
A is said to be independent with B if and only 
if .

, ,A B C ∈A

( ) ( ) ( )| | |p A B C p A C p B C∩ =

,A B ∈A

( ) ( ) ( )p A B p A p B∩ =

Independence can be seen as a special case of 
Conditional Independence where C=Ω.
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Knowledge Accumulation

Lemma 3.1. For  ,

Proof.

( ) ( ) ( )| | |p A B C p A B C p B C∩ = ∩

, ,A B C ∈A

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

| /

| /

| |

p A B C p A B C p C

p A B C p B C p C

p A B C p B C

∩ = ∩ ∩

= ∩ ∩

= ∩
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Equivalent Views of Independence

Theorem 3.2. For  ,

Proof.

( ) ( ) ( )| | |p A B C p A C p B C∩ = ( ) ( )| |p A B C p A C∩ =

, ,A B C ∈A

⇔

( ) ( )| |p A B C p A C∩ =⇔

( ) ( ) ( ) ( ) ( )| | | | |p A B C p A B C p B C p A C p B C∩ = ∩ =
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Graphoid Properties

The most intuitive meaning of ‘independence’ is 
that an independence relationship satisfies 
several graphoid properties.
With X,Y,Z,W as sets of disjoint random variables 
and “ ” denoting independence and “|” as 
condition,  the axioms of graphoid are: 

(A1) Symmetry
(A2) Decomposition
(A3) Weak union 
(A4) Contraction 
(A5) Intersection

⊥
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Graphoid - Symmetry

Remark 3.1. If knowing Y does not tell us 
more about X, then similarly knowing X
does not tell us more about Y. 

| |X Y Z Y X Z⊥ ⇒ ⊥
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Graphoid - Decomposition

Remark 3.2. If combined two pieces of 
information is irrelevant to X, either 
individual one is also irrelevant to X. 

( ), | |X W Y Z X Y Z⊥ ⇒ ⊥
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Graphoid - Weak Union 

Remark 3.3. Gaining more information 
about irrelevant Y does not affect the 
irrelevance between X and W. 

( ) ( ), | | ,X W Y Z X W Y Z⊥ ⇒ ⊥
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Graphoid - Contraction

Remark 3.4. If two pieces of information 
X and Y are irrelevant with prior 
knowledge of Z and X is also irrelevant to a 
third piece of information W after knowing 
Y, then X is irrelevant to both W and Y 
before knowing Y. 

( ) ( )( ) ( )| | , , |X Y Z X W Y Z X W Y Z⊥ ∧ ⊥ ⇒ ⊥
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Graphoid - Intersection

Remark 3.5. If combined information W 
and Y is relevant to X, then at least either 
W or Y is relevant to X after learning the 
other. 

( )( ) ( )( ) ( )| , | , , |X W Y Z X Y W Z X W Y Z⊥ ∧ ⊥ ⇒ ⊥
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Discrete-Time Markov Chain

State transition diagram

  

 

1x = 2x =

3x =
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Markov Property

A Markov chain  represents a Markov 
process of state transitions, where the 
“memoryless” Markov property is assumed.

Loosely speaking, the future state of a 
random variable            at time t+1 only 
depends on its current state      , not the 
complete transition history. 

33γ

  

 
23γ

12γ

31γ
13γ 32γ
21γ

11γ 22γ

1x = 2x =

3x =

( ) ( )( 1) ( ) (0) ( 1) ( )| , , |t t t tP x x x P x x+ +=…

( 1)tx +
( )tx
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Transition Probability

( ) ( )( )1 |t t
ijP x j x i+ = = = γ

33γ

  

 
23γ

12γ

31γ
13γ 32γ
21γ

11γ 22γ

1x = 2x =

3x =

( ), 1,2, 3i j =
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Transition Matrix

where

( )
11 12 13

21 22 233 3

31 32 33

ij ×

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

γ γ γ
γ γ γ γ

γ γ γ
Γ

33γ

  

 
23γ

12γ

31γ
13γ 32γ
21γ

11γ 22γ

1x = 2x =

3x =

3

1
1ijj=

=∑ γ ( )1,2, 3i =
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State Vector

where

33γ

  

 
23γ

12γ

31γ
13γ 32γ
21γ

11γ 22γ

1x = 2x =

3x =

( )( )t
iP x i= = δ ( )1,2, 3i =

( ) ( ) ( ) ( )
1 2 3, ,

t t t t⎛ ⎞= ⎜ ⎟
⎝ ⎠
δ δ δΔ
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State Transition

State update

Stationary distribution

33γ

  

 
23γ

12γ

31γ
13γ 32γ
21γ

11γ 22γ

1x = 2x =

3x =

( 1) ( )t t+ =Δ Δ Γ

=Δ ΔΓ
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Extensions of Discrete-Time Markov Chain

When the transition matrix is not 
constant, it is called a non-homogeneous 
Markov chain. 

When the time is not discrete, it is called 
continuous-time Markov chain. 

( )tΓ
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Ergodicity
Definition 3.3. A Markov chain  
is called irreducible if for all states , 
there exists a time t such that

Definition 3.4. A Markov chain  
is called aperiodic if for all states ,  

.

Definition 3.5. A Markov chain is called 
ergodic if it is both irreducible and 
aperiodic.

x Ω∈
( ) 0 ( , )t
ij i j> ∀γ

( )( ) ( )t t
ij= γΓ

( )( ) ( )t t
ij= γΓ

x Ω∈
{ }gcd : 0 1t

ijt > =γ

“every state is eventually reachable”

“it doesn’t get caught in cycles”
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Chapman-Kolmogorov Equation

Suppose there are a total of K states

( )

( ) ( ) ( )

(0)

(0)

1

|

| |

t s

K t s s s

k

P x j x i

P x j x k P x k x i

+

+

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∑
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Forward Differential Kolmogorov Equation

For a small time step h
( )

( ) ( ) ( )

(0)

(0)

1

|

| |

t h

K t h t t

k

P x j x i

P x j x k P x k x i

+

+

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∑

( ) ( ) ( )

( ) ( ) ( )

(0)

(0)

| |

| |

t h t t

k j

t h t t

P x j x k P x k x i

P x j x j P x j x i

+

≠

+

⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
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Forward Differential Kolmogorov Equation

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0(0)

(0)

(0)

| |

| |

| | 1

t h t

t h t t

k j

t t h t

P x j x i P x j x i

P x j x k P x k x i

P x j x i P x j x j

+

+

≠

+

⎛ ⎞ ⎛ ⎞= = − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞+ = = = = −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

( ) ( ) ( )

( ) ( ) ( )

(0)

(0)

| |

| |

t h t t

k j

t t h t

k j

P x j x k P x k x i

P x j x i P x k x j

+

≠

+

≠

⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
∑
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Forward Differential Kolmogorov Equation

Then we have

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0(0)

(0)

(0)

| |

| |

| |

t h t

t h t t

t h t tk j

P x j x i P x j x i

P x j x k P x k x i

P x k x j P x j x i

+

+

+≠

⎛ ⎞ ⎛ ⎞= = − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠= ⎢ ⎥⎛ ⎞ ⎛ ⎞− = = = =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0(0)

(0)

(0)

| | /

| | /

| | /

t h t

t t h t

t t h tk j

P x j x i P x j x i h

P x k x i P x j x k h

P x j x i P x k x j h

+

+

+≠

⎡ ⎤⎛ ⎞ ⎛ ⎞= = − = =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠= ⎢ ⎥⎛ ⎞ ⎛ ⎞− = = = =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∑
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Forward Differential Kolmogorov Equation

Define the jump rate as

Then 
( )

( )

( )

(0)

( ) (0)

( ) (0)

' |

|

|

t

tt
j k

tk j t
k j

P x j x i

q P x k x i

q P x j x i

←

≠
←

⎛ ⎞= =⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞= =⎜ ⎟⎢ ⎥⎝ ⎠= ⎢ ⎥⎛ ⎞− = =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑

( ) ( )( ) | / ( )
t h tt

k jq P x k x j h j k
+

←
⎛ ⎞= = = ≠⎜ ⎟
⎝ ⎠
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Summary

Independence is one of the essential properties in 
probability calculus

“Memoryless” Markov property simplifies 
inference in state transition
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