

Markov Model and Markov Property

Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. <u>yan.wang@me.gatech.edu</u>

Learning Objectives

- ■To understand the concept of independence in probability
- To familiarize the Markov model and Markov property
- To familiarize Chapman-Kolmogorov equation

Independence

- One of the most important concepts defined in probability theory is independence.
- The concept of independence is essential to decompose a complex problem into simpler and manageable components.
- Markov models rely on assumptions of independence.

Definition of Independence

■ **Definition 3.1** (*Conditional Independence*). For $A, B, C \in A$, *A* is said to be *conditionally independent* with *B* on *C* if and only if $p(A \cap B | C) = p(A | C)p(B | C).$

Definition 3.2 (*Independence*). For $A, B \in A$, A is said to be *independent* with B if and only if $p(A \cap B) = p(A)p(B)$.

Independence can be seen as a special case of Conditional Independence where $C=\Omega$.

Knowledge Accumulation

Lemma 3.1. For $A, B, C \in \mathcal{A}$, $p(A \cap B \mid C) = p(A \mid B \cap C) p(B \mid C)$

Equivalent Views of Independence

Theorem 3.2. For $A, B, C \in \mathcal{A}$, $p(A \cap B \mid C) = p(A \mid C)p(B \mid C) \Leftrightarrow p(A \mid B \cap C) = p(A \mid C)$

Proof. $p(A \cap B \mid C) = p(A \mid B \cap C) p(B \mid C) = p(A \mid C) p(B \mid C)$ $\Leftrightarrow p(A \mid B \cap C) = p(A \mid C)$

Graphoid Properties

- The most intuitive meaning of 'independence' is that an independence relationship satisfies several graphoid properties.
- □With *X*,*Y*,*Z*,*W* as sets of disjoint random variables and " \perp " denoting independence and " \mid " as condition, the axioms of graphoid are:
 - (A1) Symmetry
 - (A2) Decomposition
 - (A3) Weak union
 - (A4) Contraction
 - (A5) Intersection

Graphoid - Symmetry

$X \perp Y \mid Z \Longrightarrow Y \perp X \mid Z$

Remark 3.1. If knowing *Y* does not tell us more about *X*, then similarly knowing *X* does not tell us more about *Y*.

Graphoid - Decomposition

$X \perp (W, Y) \mid Z \Longrightarrow X \perp Y \mid Z$

Remark 3.2. If combined two pieces of information is irrelevant to X, either individual one is also irrelevant to X.

Graphoid - Weak Union

 $X \perp (W, Y) \mid Z \Longrightarrow X \perp W \mid (Y, Z)$

Remark 3.3. Gaining more information about irrelevant *Y* does not affect the irrelevance between X and W.

Graphoid - Contraction

$$(X \perp Y \mid Z) \land (X \perp W \mid (Y, Z)) \Rightarrow X \perp (W, Y) \mid Z$$

Remark 3.4. If two pieces of information X and Y are irrelevant with prior knowledge of Z and X is also irrelevant to a third piece of information W after knowing Y, then X is irrelevant to both W and Y before knowing Y.

Graphoid - Intersection

 $\left(X \perp W \mid \left(Y, Z\right)\right) \land \left(X \perp Y \mid \left(W, Z\right)\right) \Rightarrow X \perp \left(W, Y\right) \mid Z$

Remark 3.5. If combined information W and Y is relevant to X, then at least either W or Y is relevant to X after learning the other.

Discrete-Time Markov Chain

■State transition diagram

Markov Property

□A Markov chain represents a Markov process of state transitions, where the "memoryless" Markov property is assumed. $P\left(x^{(t+1)} \mid x^{(t)}, \dots, x^{(0)}\right) = P\left(x^{(t+1)} \mid x^{(t)}\right)$ □Loosely speaking, the future state of a random variable $x^{(t+1)}$ at time *t*+1 only depends on its current state $x^{(t)}$, not the complete transition history.

Transition Probability

$$P(x^{(t+1)} = j \mid x^{(t)} = i) = \gamma_{ij} \quad (i, j = 1, 2, 3)$$

Transition Matrix

$$\Gamma = \left(\gamma_{ij}\right)_{3\times 3} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

~ 3

$$\sum_{j=1}^{3} \gamma_{ij} = 1 \quad (i = 1, 2, 3)$$

 γ_{22}

x = 2

Georgia Tech

 γ_{23}

 γ_{21}

x = 3

 γ_{33}

 γ_{32}

 γ_{13}

K

 γ_{31}

State Vector

$$\Delta^{\left(t\right)} = \left(\delta_1^{\left(t\right)}, \delta_2^{\left(t\right)}, \delta_3^{\left(t\right)}\right)$$

where
$$P(x^{(t)} = i) = \delta_i \ (i = 1, 2, 3)$$

State Transition

State update $\Delta^{(t+1)} = \Delta^{(t)} \Gamma$

■Stationary distribution

 $\Delta = \Delta \Gamma$

Extensions of Discrete-Time Markov Chain

- □When the transition matrix $\Gamma^{(t)}$ is not constant, it is called a *non-homogeneous Markov chain*.
- ■When the time is not discrete, it is called *continuous-time Markov chain*.

Ergodicity

Definition 3.3. A Markov chain $\Gamma^{(t)} = (\gamma_{ij}^{(t)})$ is called *irreducible* if for all states $x \in \Omega$, there exists a time *t* such that $\gamma_{ij}^{(t)} > 0 \ (\forall i, j)$

"every state is eventually reachable"

Definition 3.4. A Markov chain $\Gamma^{(t)} = (\gamma_{ij}^{(t)})$ is called *aperiodic* if for all states $x \in \Omega$, $gcd \{t : \gamma_{ij}^t > 0\} = 1$.

"it doesn't get caught in cycles"

Definition 3.5. A Markov chain is called *ergodic* if it is both irreducible and aperiodic.

Chapman-Kolmogorov Equation

□Suppose there are a total of *K* states

$$P\left(x^{(t+s)} = j \mid x^{(0)} = i\right)$$

= $\sum_{k=1}^{K} P\left(x^{(t+s)} = j \mid x^{(s)} = k\right) P\left(x^{(s)} = k \mid x^{(0)} = i\right)$

\Box For a small time step h

$$P\left(x^{(t+h)} = j \mid x^{(0)} = i\right)$$

= $\sum_{k=1}^{K} P\left(x^{(t+h)} = j \mid x^{(t)} = k\right) P\left(x^{(t)} = k \mid x^{(0)} = i\right)$

$$= \sum_{k \neq j} P\left(x^{(t+h)} = j \mid x^{(t)} = k\right) P\left(x^{(t)} = k \mid x^{(0)} = i\right)$$
$$+ P\left(x^{(t+h)} = j \mid x^{(t)} = j\right) P\left(x^{(t)} = j \mid x^{(0)} = i\right)$$

$$P\left(x^{(t+h)} = j \mid x^{(0)} = i\right) - P\left(x^{(t)} = j \mid x^{(0)} = i\right)$$
$$= \sum_{k \neq j} P\left(x^{(t+h)} = j \mid x^{(t)} = k\right) P\left(x^{(t)} = k \mid x^{(0)} = i\right)$$
$$+ P\left(x^{(t)} = j \mid x^{(0)} = i\right) \left[P\left(x^{(t+h)} = j \mid x^{(t)} = j\right) - 1\right]$$

$$= \sum_{k \neq j} P\left(x^{(t+h)} = j \mid x^{(t)} = k\right) P\left(x^{(t)} = k \mid x^{(0)} = i\right)$$
$$-P\left(x^{(t)} = j \mid x^{(0)} = i\right) \sum_{k \neq j} P\left(x^{(t+h)} = k \mid x^{(t)} = j\right)$$

$$P\left(x^{(t+h)} = j \mid x^{(0)} = i\right) - P\left(x^{(t)} = j \mid x^{(0)} = i\right)$$
$$= \sum_{k \neq j} \left[P\left(x^{(t+h)} = j \mid x^{(t)} = k\right) P\left(x^{(t)} = k \mid x^{(0)} = i\right) - P\left(x^{(t+h)} = k \mid x^{(t)} = j\right) P\left(x^{(t)} = j \mid x^{(0)} = i\right) \right]$$
There were hence

Then we have

$$\begin{bmatrix} P\left(x^{(t+h)} = j \mid x^{(0)} = i\right) - P\left(x^{(t)} = j \mid x^{(0)} = i\right) \end{bmatrix} / h$$

= $\sum_{k \neq j} \begin{bmatrix} P\left(x^{(t)} = k \mid x^{(0)} = i\right) P\left(x^{(t+h)} = j \mid x^{(t)} = k\right) / h \\ -P\left(x^{(t)} = j \mid x^{(0)} = i\right) P\left(x^{(t+h)} = k \mid x^{(t)} = j\right) / h \end{bmatrix}$
Multiscale Systems Engineering Research Group

Define the jump rate as

$$q_{k \leftarrow j}^{(t)} = P\left(x^{(t+h)} = k \mid x^{(t)} = j\right) / h \quad (j \neq k)$$

□Then

$$P'\left(x^{(t)} = j \mid x^{(0)} = i\right)$$

= $\sum_{k \neq j} \begin{bmatrix} q_{j \leftarrow k}^{(t)} P\left(x^{(t)} = k \mid x^{(0)} = i\right) \\ -q_{k \leftarrow j}^{(t)} P\left(x^{(t)} = j \mid x^{(0)} = i\right) \end{bmatrix}$

Summary

□Independence is one of the essential properties in probability calculus

"Memoryless" Markov property simplifies inference in state transition

