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Learning Objectives

To understand fundamental concepts of 
Modeling & Simulation (M&S)

To understand the major sources of 
epistemic uncertainty in M&S
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How to study a system
System

Experiment 
with actual 

system

Experiment 
with a model of 
actual system

Physical 
model

Mathematical 
model

Analytical 
solution

Simulation
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What is Modeling?
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Why mathematical modeling?

Advantages

Disadvantages 
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An example of modeling

Free fall model
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Mathematical model

Dependent variable=f(Independent variable)

High dimensional

Parametric systems 

“Noisy” systems 
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Complexity of Mathematical Models

Simple

Complex 

Linear

Nonlinear 

Algebraic 
Equation
/ Closed-form

Differential 
Equation

Static 

Dynamic
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Model Taxonomy

System model

Deterministic Stochastic

Static Dynamic Static Dynamic

Continuous Discrete Continuous Discrete
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•Molecular Dynamics / Force Field

Modeling & Simulation at Multiple Scales

Various methods used to simulate at different length and time scales 

nm μm mm m

pico-s
ns
μs

ms

Length Scales

Time Scales

femto-s

s

•Tight Binding

•Kinetic Monte Carlo

•Finite Element Analysis

•Dislocation Dynamics

•Quantum Monte Carlo
•Self-Consistent Field (Hartree-Fock)

•Density Functional Theory
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Simulation-based Design
model refinement model refinement 

mathematical model
(first-principles, 

empirical, 
multiscale)

mathematical modelmathematical model
(first(first--principles, principles, 

empirical, empirical, 
multiscalemultiscale))

computer 
simulation

computer computer 
simulationsimulation

validationvalidationvalidation

Simulation-based designSimulationSimulation--based designbased design

scalable algorithms & scalable algorithms & 
solverssolvers

data/observationsdata/observationsdata/observations

geometry modeling &geometry modeling &
discretizationdiscretization schemesschemes

visualizationvisualization
data mining/sciencedata mining/science

optimizationoptimization
uncertainty quantificationuncertainty quantification

verificationverificationverificationapproximation approximation 
error controlerror control

numerical modelnumerical modelnumerical model

parameter inversionparameter inversion
data assimilationdata assimilation
model/data error controlmodel/data error control
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Two types of “uncertainties”
Aleatory uncertainty (variability, irreducible 
uncertainty, random error)

inherently associated with the randomness/fluctuation 
(e.g. environmental stochasticity, inhomogeneity of 
materials, fluctuation of measuring instruments)
can only be reduced by taking average of multiple 
measurements.

Epistemic uncertainty (incertitude, reducible 
uncertainty, systematic error)

imprecision comes from scientific ignorance, 
inobservability, lack of knowledge, etc.
can be reduced by additional empirical effort (such as 
calibration).
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Random Error

Determines the 
precision of any 
measurement 

Always present in 
every physical 
measurement

Better apparatus

Better procedure

Repeat

Estimate
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Systematic Error
Determines the accuracy
of any measurement

May be present in every 
physical measurement

calibration

uniform or controlled 
conditions (e.g., avoid 
systematic changes in 
temperature, light intensity, 
air currents, etc.)

Identify & eliminate or 
reduce

chronological data

24
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Uncertainties in Modeling & Simulation
Aleatory Uncertainty:

inherent randomness in the 
system. Also known as: 

• stochastic uncertainty

• variability 

• irreducible uncertainty 

Epistemic Uncertainty:
due to lack of perfect 
knowledge about the system. 
Also known as:

• Incertitude

• system error

• reducible uncertainty

Lack of 
data

Input 
Uncertainties

Conflicting 
Information

Conflicting 
Beliefs

Lack of 
Introspection

Measurement 
Errors

Lack of 
information 

about 
dependency
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Approximations in simulation

From mathematical models to numerical 
models

Taylor series

Functional analysis

From numerical models to computer codes
Discretization (differentiation, integration)

Searching algorithms (solving equations, 
optimization)
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Mathematical models Numerical models
Approximation in Taylor Series 

Truncation 
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Mathematical models Numerical models
Functional Analysis

Convert complex functions into simple and 
computable ones by transformation in 
vector spaces

Fourier analysis

Wavelet transform

Polynomial chaos expansion

Spectral methods

Mesh-free methods

…
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Mathematical models Numerical models
Functional Analysis

Approximate the original  by linear 
combinations of basis functions ’s as

In a vector space (e.g. Hilbert space) with 
an infinite number of dimensions
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Mathematical models Numerical models
Functional Analysis

An inner product is defined as a “projection”
in the vector space, such as

Typically we choose orthogonal basis functions 
’s such that

for orthonormal basis functions
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Mathematical models Numerical models
Functional Analysis

The coefficients    ’s are computed by

The computable function is

with truncation!
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Numerical Model Computer Code
Compute integrals

Quadrature
Approximate the integrand function by a 
polynomial of certain degree

Approximate the integral by the weighted sum 
of regularly sampled functional values

• e.g. Simpson’s 3/8 rule

( ) ( ) ( ) ( ) ( )
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Numerical Model Computer Code
Compute integrals

Monte Carlo simulation
Let p(u) denote uniform density function over [a, b] 

Let Ui denote i th uniform random variable generated 
by Monte Carlo according to the density p(u)

Then, for “large” N

Variance reduction (importance sampling) to improve 
efficiency

1
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b N

i
ia

b a
f x dx f U

N =

−
≈ ∑∫



Multiscale Systems Engineering Research Group

Numerical Model Computer Code
Compute derivatives

Finite-divided-difference methods
Approximated derivatives come from Taylor 
series

• e.g. forward-finite-difference
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Floating-Point Representation 

How does computer represent numbers?

Imperfect worldPerfect world
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Ariane 5

Exploded 37 seconds 
after liftoff

Cargo worth $500 million

Why
Computed horizontal 
velocity as floating point 
number

Converted to 16-bit 
integer

Worked OK for Ariane 4

Overflowed for Ariane 5
• Used same software
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Do you trust your computer?

Single precision: f = 1.172603…

Double precision: f = 1.1726039400531…

Extended precision: f = 1.172603940053178…

Correct one is: f = -0.8273960599468213

y
xyyyyxxyyxf

2
5.5)212111(75.333),( 8462226 ++−−−+=

f(x = 77617, y = 33096) = ?

Rump’s function:
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Another Story

On February 25, 1991

A Patriot missile battery assigned to 
protect a military installation at Dhahran, 
Saudi Arabia

But … failed to intercept a Scud missile

28 soldiers died

… an error in computer arithmetic

1101.0 ≠×
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IEEE 574 Standard

If E = 2w–1 and T ≠0, then v is NaN regardless of S.
If E = 2w–1 and T =0 , then v = (–1)S×∞.
If 1≤E ≤2w–2, then v = (–1)S×2E–bias×(1+21–p×T);

normalized numbers have an implicit leading significand bit of 1.
If E =0 and T ≠0, v = (–1)S×2emin×(0+21–p ×T);

denormalized numbers have an implicit leading significand bit of 0.
If E =0 and T =0 , then v = (–1)S×0 (signed zero)

where bias=2w–1–1 and emin = 2–2w–1=1–bias

TE

w bits t = p – 1 bits
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Distribution of Values

6-bit IEEE-like format
w = 3 exponent bits

t = 2 fraction/mantissa bits

bias = 3

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity
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Distribution of Values
(zoom-in view)

6-bit IEEE-like format
w = 3 exponent bits

t = 2 fraction/mantissa bits

bias = 3

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity
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Round-Off Errors

Overflow error – “not large enough”
Underflow error – “not small enough”
Rounding error – “chopping”

http://www.cs.utah.edu/~zachary/isp/applets/FP/FP.html

http://www.cs.utah.edu/~zachary/isp/applets/FP/FP.html
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Rounding

Round by chopping (round toward zero)
Truncate base expansion after (p-1)st digit

Machine epsilon 

Round to nearest (round to even)
Last digit is even in case of tie

Machine epsilon

p
machine

−= 1βε

p
machine

−= 1

2
1 βε

machinex
xxfl ε≤−)(

E
p
pE ddddD β

βββ
β ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++++±=× −

−
1
1

2
21

0



Multiscale Systems Engineering Research Group

Cancellation

Subtraction between two p-digit numbers 
having the same sign and similar 
magnitudes yields result with fewer than p
digits.

Significant digits of two numbers cancel.

Despite exactness of result, cancellation 
often implies serious loss of information. 

Relative uncertainty in difference is largely 
due to previous rounding errors. 

011)1()1( =−=−−+ εε
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Special Numbers

Expression Result

0.0 / 0.0 NaN

1.0 / 0.0 Infinity 

NaN < 1.0 false 

NaN == NaN false 

0.0 == -0.0 true

NaN + 1.0 NaN

Infinity + Infinity Infinity 

NaN == 1.0 false 

-1.0 / 0.0 -Infinity 

Infinity + 1.0 Infinity 

NaN > 1. 0 false 

standard range of 
values permitted by 
the encoding (from 
1.4e-45 to 
3.4028235e+38 for 
float) 
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Floating point Hazards

The result is 
2.600000000000001

The result is 
0.29 
28

This expression does NOT equal to this expression when

0.0 - f -f

! (f >= g) 

true 

f

f is 0

f < g f or g is NaN

f == f f is NaN

f + g – g g is infinity or NaN

double s=0; 
for (int i=0; i<26; i++) s += 0.1; 
System.out.println(s); 

double d = 29.0 * 0.01; 
System.out.println(d); 
System.out.println((int) (d * 100)); 
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Comparing Floating Point Numbers

Try to avoid floating point comparison directly
Testing if a floating number is greater than or less 
than zero is even risky.
Instead, you should compare the absolute value 
of the difference of two floating numbers with 
some pre-chosen epsilon value, and test if they 
are "close enough“
If the scale of the underlying measurements is 
unknown, the test “abs(a/b - 1) < epsilon” is more 
robust.
Don’t use floating point numbers for exact values
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Uncertainties in M&S

Model errors due to approximations in 
truncation or sampling

Taylor approximation

Functional analysis

Numerical errors due to floating-point 
representation

Round-off errors 
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Summary

Modeling is abstraction

M&S always has approximations
involved, which are important sources of 
epistemic uncertainty.

Computer tricks us
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Further Readings
Goldberg, D. (1991) “What every computer scientist should know about 
floating-point arithmetic,” ACM Computing Surveys, 23(1), 5-48


	Uncertainties in Modeling & Simulation
	Learning Objectives
	How to study a system
	What is Modeling?
	Why mathematical modeling?
	An example of modeling
	Mathematical model
	Complexity of Mathematical Models
	Model Taxonomy
	Modeling & Simulation at Multiple Scales
	Simulation-based Design
	Two types of “uncertainties”
	Random Error
	Systematic Error
	Uncertainties in Modeling & Simulation
	Approximations in simulation
	Mathematical models  Numerical models�Approximation in Taylor Series 
	Mathematical models  Numerical models�Functional Analysis
	Mathematical models  Numerical models�Functional Analysis
	Mathematical models  Numerical models�Functional Analysis
	Mathematical models  Numerical models�Functional Analysis
	Numerical Model  Computer Code�Compute integrals
	Numerical Model  Computer Code�Compute integrals
	Numerical Model  Computer Code�Compute derivatives
	Floating-Point Representation 
	Ariane 5
	Do you trust your computer?
	Another Story
	IEEE 574 Standard
	Distribution of Values
	Distribution of Values�(zoom-in view)
	Round-Off Errors
	Rounding
	Cancellation
	Special Numbers
	Floating point Hazards
	Comparing Floating Point Numbers
	Uncertainties in M&S
	Summary
	Further Readings

