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Topics

ADFT-MD coupling

= First-Principles Molecular Dynamics

ADFT-KMC coupling
= on-the-fly KMC simulation

JMD-FEM coupling

= Quasicontinuum method
= Coarse-Grained Molecular Dynamics
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Modeling & Simulation at Multiple Scales
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Various methods used to simulate at different length and time scales
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7,00 of Multiscale Simulation Methods

2 First-principles MD (quantum-
atomistic coupling)

= Ehrenfest MD
= Born-Oppenheimer MD
= Car-Parrinello MD

0 on-the-fly KMC (DFT-KMC
coupling)
2 QM/MM coupling

0 Mathematical Homogenization

0 Heterogeneous Multiscale
Method

0 Multiscale FEM

0 quasi-continuum

0 coarse-grained molecular
dynamics

0 variational multiscale method
0 concurrent coupling

2 coupled atomistic/discrete-
dislocation

0 adaptive multiscale modeling,
0 bridging scale method

0 bridging domain method

2 DD/FEM coupling

2 TB/MD/FEM coupling

Q ...<new species born each year>...
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First-Principles Molecular Dynamics

0 The major idea is to replace the “predefined
potentials” in classical molecular dynamics
(MD) by first-principles electronic structure
calculation on-the-fly (i.e. keep electronic
variables as active degrees of freedom in MD).

= The Algorithm:

1. solve the electronic structure problem for a set of ionic
coordinates

2. evaluate forces
3. move atoms
4. repeat
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Classical MD

JBased on Newtonian dynamics

MR, (t) = F,(t) ==V V""" ({R,(1)})

I

where

Vo (R, (01) = SV (R, (1) + SV (R, ()R, (1)

I=1 I<J

+ 20 VI(R,(6),R,(£),R (1)) + -

I<J<K

is a few-body-additive-interaction approximation of
the true potential energy surface.

0The electrons follow adiabatically the classical nuclear
motion and can be integrated out so that the nuclei evolve
on Efl single global Born-Oppenheimer potential energy
surface.

QA priori construction of the global potential energ
surface suffers from the ‘dimensionality bottlenec Goorgia
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Time—Dependent Schrodinger Equation
m— ({r}.{R };t)= HD ({r} .{R };t)

ZZe
R, R‘

H=3 V- z z DI

7’ h2
) _Z 2M VI - Z 2m VZ' Vo ({r’i}’{RI})
I ! e
2

s

r—R‘

dTotal wavefunction can be decomposed as

O ({r},{R,};t)~ \P({rj;t);g({RJ;t)exp{%jdt‘E@(tv)]

fy

with a phase factor
= IdrdRT*Z*He\PZ
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Ehrenfest Molecular Dynamics

aSimultaneously solve

MR, (t)=-V V" ({R,(t)})

=V (¥ |H |¥)
= -V, [dr¥" H Y
zhiTz HY
ot o
-y 2’; VWV ({e) R, )W
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Born-Oppenheimer Molecular Dynamics

2In ground state BOMD, the time-independent electronic
structure problem is solved self-consistently from each
time for a given configuration of nuclei

MR () ==V, min(¥, |H |¥)

I
¥,

HY, =EWY,

QO Electrons are explicitly set to be fully relaxed for a given
configuration of nuclei, in contrast to Ehrenfest MD
where electron relaxation is implicit by solving the time-
dependent Schrodinger equation.

. . . Georgia
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BOMD with HF-SCF

dAssuming single Slater determinant ¥ = det{y }
MR (t)=-V, min{w}(‘l’o |H | Y,)

0 Constrained (orthonormal orbitals) minimization
min{ (Vo | H|Y) sty |ly)=29,

V’j}
O Define Lagrangian
L= <LP() ‘ He ‘ LIJ()> + ZWAZJ«WZ ‘ l//]> o 5,])

1The necessary condition of optimality ﬁﬁ/ 0 y, =0
leads to Hartree-Fock equations

HF _
i, V= ZA@"//J'

aThen the new equations of motion are

<LIIO ‘ He | LIJO>

MR (t)=-V, min{

‘”j}

HF .
. 9”;7' B ZiAijl//J
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BOMD with DFT

dBased on the Hellmann-Feynman theorem, MD force is

0 oH
Fy ==V, (¥, |7 |¥,) =~ (| 1| ¥,) = :
1
O Recall . 27 Z¢
6 €
H ({r.}.{R }) = V -
e({z}{[}) Z ; r.‘;R R‘ ]Zz:r_R‘
QThe force is computed by DFT as
—_ aH@
ZZe2 ZR62
__Z ‘TR -R ZZ:I \r—R |‘P (r,...,r, )dr..dr,
ZZ@ Ze

=2V R R, Ip(r)v\r—R s
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BOMD with DFT

1. Fix positions of nuclei {R.,...,Ry}, solve DFT equations
self—consistently;
o(rHdr'

Lo
2 |r R| j|r—
LOEDWAIZGL

o.  Find electrostatic force on each atom

ch (r)j| v, (r) = &Y, (r)

Z 7 e e’
_ dr
2V, ok, P R
3. Perform a time step and find new positions of nuclei;
MR (t)=F,

4. Repeat;

. . . Georgia
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Drawbacks of BOMD

J1The need to fully relax electronic
subsystem while moving the atoms makes
it computationally expensive.

dFull self-consistency at each MD step may
not be necessary, especially when system is
far from its equilibrium, since one simply
needs a rough idea of the force field for a
given atomic configuration

. . . Georgia
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Car-Parrinello Molecular Dynamics

R. Car and M. Parrinello (1985) Unified

approach for molecular dynamics and 2500 AT
density-functional theory. Phys. Rev. Lett. - ol
530 2471 2000 [-[ @CPPRL1985| -
| o AIMD =t

Publication and citation analysis: = 1500 |- @ -
0: number of publications which appeared -g X 8
up to the year » that contain the keyword 3 R P -
e . Z 1000 |- -
ab 1nitio molecular dynamics™ (or - ®
synonyma “first-principles MD”, Car- X ®
Parrinello simulations™ etc.) in title, 500 - g B
abstract or keyword list. - .

0
1970 1980 1990 2000

e: number of publications which appeared Year r

up to the year n that cite the 1985 paper by
Car and Parrinello
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Car-Parrinello Lagrangian

2 Car and Parrinello (1985) postulated the Lagrangian
1. . r ..
Lop = ;5 MR+ o w19 =¥, | H D)+ 2 A (W, [v) =9)
( Y

N AN J — _/
YT Y YT

Kinetic Energy Potential Energy Constraints

where p;’s are fictitious “masses” for the dynamics of
orbitals p.’s .
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Car-Parrinello Equations of Motion

AFrom Euler-Lagrange differential equations in classical
mechanics (to ensure 5_‘- (R, Rp‘// v it)dt =0 )

d oL, oL,
dt OR,  OR,
d a’COP a’CCP
dt oy oy,
2 Car-Parrinello equations of motion is derived as
MR (1) = —611;10110 HW )+ Tli{constraints({ v 1R )

p (1) = —%(‘PO H | WY, + %{Constraints({wi},{R]})}

l l

. . . Georgia
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CPMD with DFT

JCar-Parrinello equations of motion

OF ., [{w .} {R,}]

MR, =-
1771 6RI
Z 2
i jp(r, L‘)VI [6 dI'
r-R, (1)
ey - Pl ) T

5w ( ;
DFT”” + Zgww
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Verlet algorithm in CPMD Orbital Dynamics

QO First, a verlet step ignoring orthogonality constraint
(At H,y v, (1)
H;

7 (t+ At) = 2p (1) — w.(t — At) +

dThen, restore orthogonality
b+ AT = 7t + AD + &y, (1

0 Computationally dynamics is applied to ¢;’s in the
reciprocal space with Kohn-Sham orbitals

_ ;;Q(G’ k) exp [i(G +k)- r]

v, (r,k)
]
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CPMD Code

2The CPMD code is a planewave implementation
of DFT for first-principles molecular dynamics

QFirst version by Jurg Hutter at IBM Zurich
Research Lab with dozens of other contributors

AThe code is copyrighted jointly by IBM Corp and
by Max Planck Institute, Stuttgart

QIt is distributed free of charge to non-profit
organizations (http://www.cpmd.org/)

CPMD
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http://www.cpmd.org/

CPMD capabilities

JWavefunction optimization: direct minimization and
diagonalization

2 Geometry optimization: local optimization and simulated
annealing

dMolecular dynamics: NVE, NVT, NPT

aPath integral MD

JResponse functions

0 Excited states

dTime-dependent DFT (excitations, MD in excited states)
0 Coarse-grained non-Markovian metadynamics

JWannier, EPR, Vibrational analysis
1QM/MM

1See on-line manual at: .
http://cpmd.org/documentation/cpmd-html-manual
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On-the-tly KMC

1 Searching saddle points on the potential
energy surface (PES) on-the-fly while
performing KMC simulation

Search Saddle . Find Calculate Simulate Phase

Points on PES Activation Energy R‘(l,tresg)g;tsa%ts Transition by KMC

A 4

A 4
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On-the-tly KMC

Start from a minimum @
Randomly generate a set
of configurations around
the minimum and search
the saddle Eoints by the
Dimer method;

Locate the saddle points
connect to the
minimum;

Insert the new events
and propensities in the
event table in KMC and
simulate one step;

Repeat;
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Diftusion of adatom on Al(100)

Initial Saddle Final

v=7.10"¢g"

2.
AE =0.37 eV

v=5.10"g"

3.
AE =041 eV

v=2.10"s"

4.
AE =0.44 eV

v=3-10"g"
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AR » . Dimer Method

VV N [Henkelman & Jéonsson 1999]
K,
. F 1. Estimate:
O Dimer energy: E£=V,+V, E AR A
0 Curvature along Dimer: Vo=—>+ T(Fl —F,)N
E—-Q2V
c=-2Ch) F, =(F, +F,)/2

(AR)

F'=F"-F" F =F+E")/2

>.  Dimer rotates to find the
lowest curvature mode of
PES, i.e. minimize Dimer
energy

3. Translate Dimer towards
“‘uphill’ according to

—F!  ifC>0
F' =
F, -2F' ifC<0

4. Repeat

05 ia
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Quasicontinuum (QC) Method

aBased on the full atomistic model, use
mesh to reduce the degrees of freedom

Multiscale Systems Engineering Researc
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QC Method

aDisplacement of atom i: X; = X; + u;
aDisplacement of N atoms: {uu,,,...,, Uyt

O Empirically the total energy is the sum of site energy of
each atom

Elot — Z E:(u)

dthe Stillinger- Weber (SW) type site energy for atom 1 is
E, — E( ) 4 g®
with two-body potential £ = Z Vm (ri;)
Hét

and three-body potential £ — y\ Yv “](r, i Ti)
Hét k#(i,7)

where r;; =x; —x;
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QC Method

QThe total potential energy of the system (atoms +

external loads) is A
®wu) = E""(u) — Zf,-u,;

=1

where —fu; 1s the potential energy of the applied load f;
on atom 1

QThe goal of the static QC method is to find the atomic
displacements that minimize the total potential such that

= the number of degrees of freedom is substantially reduced from
3N;

= the computation of the total potential is accurately approximated
without the need to explicitly compute the site energy of all the
atoms;

= the critical regions can evolve with the deformation by
addition/removal of repatoms.

Multiscale Systems Enqgineering Research Group Tech



QC Method — Reduce DoF

2 Any atom not chosen as a repatom is constrained to move
according to the interpolated displacements

QThis first approximation of the QC then, it to replace the
ener EtOt b EtOt,h: N
gy y Emr.h — Z E‘;[Hh}
=1

dwith continuum displacement field

Jn"l'r_r ep

u = E Sl
a=I

where S, is the interpolation function with local
support
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QC Method — Local Energy

0 The Cauchy-Born rule assumes that a uniform deformation gradient
at the macro-scale can be mapped directly to the same uniform
deformation on the micro-scale. . . . . c o e e

M e

0 Thus, every atom in a region subject to a uniform deformation
gradient Fopy < O du  will be energetically equivalent.

“ox T Tx

0 The energy within an element in crystals can be estimated by
computing the energy of one atom in the deformed state and
multiplying by the number of atoms in the element.

0 Energy density for each element is - Eo(F)
() =
o

where Q) is the unit cell volume and E is the energy of the unit cell
when its lattice vectors are distorted according to F

T
N element

0 The total energy of an element is E'”" ~ E""" = Z Q.E(F,)
e=1

. Georgia
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(QC Method — Nonlocal Energy

0 Local energy does not approximate well where deformation of crystal
is non-uniform (e.g. surfaces and interfaces) and shorter than the cut-
off radius of inter-atomic potential. Reference Deformed

see)
OO oo

abHodoEoo
o o000

Heoogeo o . S -

0009000 interface 700719079 -)-surface
22085500 I e i
coddaon '

seRlecind
Penizie
0 Energy-based formulation: Nonlocal energy is weighted sum of

those of repatoms as

Nf' ep a'a"l'rf' ep
ploth o proth’ _ E :-‘?aEar[”h} where E ng = N
=1 =1

0 Force-based formulation: The force on repatom S is determined
by its neighborhood Gﬁ (a,B,... for repatom) N,

q tot.h N . Ay Juh
fa JE _ JE;(u™) ou —> [o &~ Z”ﬁ chsaf{xc)

< ah <
o, P ou ot 8 ceCp
Atomic-level force 4 " V\I :
. . r f ? o ¢ ”
in neighborhood ¢ g = E ou’ S I\lN elghts. Off
c = " a.h , = Y the atomic forces Georgia
of repatom o (}“‘L" lultiscale f}”a lineering Research Group Tech



QC Method — detailed issues

a2 Local-nonlocal energy coupling
< where N, +N,=N,,,

Etot NP Z”a (uy,) + ZHHE (up)

a=]

JLocal/ nonlocal crlterlon: whether a repatom should be
local or nonlocal?
= whether there is significant variantion of the deformation gradient

\ ! | " ]I i ,
\\ / s ocal il

i o \\\ /f" nelghbors :

0 Effects of local-nonlocal interface:
dPolycrystals

O Elastic/plastic deformation decomposmon
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QC Applications — nanoindentation

2 Silicone

2 Phase transformation

and dislocation

nucleation observed

0 Different phases
observed

(Smith et al. 2001)

Shear strain

Phases

Fig. 3. Companson of snapshots of the 2D finite element mesh after phase transformations have begun. Results

using the Stillinger—Weber (SW) potential and a tight-binding (TB) Hamultonian are shown. The figures show

the shear strain €. ((a) and (b)), and the phases that have formed ((c) and (d)). In (c) and (d). the symbol O

mndicates the betd phase, the symbol # indicates the bee phase, and the svmbol + indicates the bet3® phase

(see Fig. 4). Blank finite elements remain in the diamond phase. The indenter 15 shown as the black regions
in (c) and (d).



QC Applications — dislocation behavior
(Rodney & Phillips 1999)

dDislocation junction
under shear stress

FIG. 2. Sequence of snapshots of the junction geometry
under increasing stress. (a) Zero applied stress, (b) stress is
0.011p, (c) stress is 0.018u just before the junction breaks,

Multiscale Systems Enqil (d) stress is 0.018u at the end of the simulation.



Coarse Grained (CG) Molecular Dynamics

Qdisplacement of megh node j (does not have to coincident
with an atom)u, = i u, , 1s a weighted average of
displacements of atoms ,u ’S.

o Displacement field u(x Z N (

0 Coarse grained energy is the average of the canonical

ensemble of the atomistic Hamiltonian on the constrained
phase space {(X,p)}
E(u u ) - <HMD>u a jdxudpuHMpe_ﬂHMDA /

k? 7k

where B=1/(kT), 7 = j dxﬂdp#e‘ﬂHMDA is partition function, and
A= H 5(11 —Zﬂ ) ]y) (l'lj —Zﬂpufﬂ,/ ) enforces constraints.

0 The atomistic Hamiltonian Cohesive energy of atoms

. . . Georgia
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CGMD

aPartition function 7 = 7, Z

m~pot

JPotential part of partition function is

_g(Natom node> _%ﬁu?'Kﬂc'uk o
Z (u,p)=CC.p e w/ stiffness K, ZW DS

2 CG potential energy then is
3 1

Epot (uk:) = _aﬂ lOg Zpot = E(Natom node )kT T3 u Kjk’ uk
Thermal Harmomc
2 Computationally, the full CG energy is
E(u,a,)=U, += Z Lrul K )

where U =N E“" + S(Nawm - Nno de)kT is internal energy

and K, Zﬂ e, )_1 = Zﬂm#Nj(w#)Nk(a:ﬂ) is CG mass matrix

. . . Georgia
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CGMD Applications - MEMS/NEMS

ONEMS silicon micro-
resonator

= The coarse grained (CG)
region comprises most of the
volume

= The molecular dynamics
(MD) region contains most
of the simulated degrees of
freedom

* the CG mesh is refined to the
atomic scale where it joins
with the MD lattice.

Resonator Simulation:
Multiscale Domain
Decomposition

Coarse Grained Molecular Dynamics

|

™ g R
N, i o
"

M

ia
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Summary

JFirst-Principles MD

10n-the-fly KMC
2Quasicontinuum method
dCoarse-Grain Molecular Dynamics

Space
e
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Further Readings

First-Principles Molecular Dynamics

Q

Marx D. and Hutter J. (2000) Ab Initio Moleular Dynamics: Theory and
Implementation. In: J. Grotendorst (Ed.) Modern Methods and Algorithms of
Quantum Chemistry (Jiilich: John von Neumann Institute for Computing, ISBN 3-00-

005834-6), Vol.3, pp.329-477

On-the-fly KMC

a

Mei, D., Ge, Q., Neurock, M., Kieken, L., and Lerou, J. (2004) First-principles-based
kinetic Monte Carlo simulation of nitric oxide decomposition over Pt and Rh surfaces
under lean-burn conditions. Molecular Physics, 102(4): 361-369

Kratzer P. and Scheffler M. (2002) Reaction-limited island nucleation in molecular
beam epitaxy of compound semiconductors. Physical Review Letters, 88(3):
036102(1-4)

Battaile C.C., Srolovitz D.J., Oleinik I.1., Pettifor D.G., Sutton A.P., Harris S.J., and
Butler J.E. (1999) Etching effects during the chemical vapor deposition of (100)
diamond. Journal of Chemical Physics, 111(9): 4291-4299

Henkelman, G. and Jonsson, H. (2001) Long time scale kinetic Monte Carlo
simulations without lattice approximation and predefined event table. Journal of
Chemical Physics, 115(21): 9657-9666.

Trushin, O., Karim, A., Kara, A. and Rahman, T.S. (2005) Self-learning kinetic Monte
Carlo method: Application to Cu(111). Physical Review B, 72: 115401(1-9).

Xu, L. and Henkelman, G. (2008) Adaptive kinetic Monte Carlo for first-principles
accelerated dynamics. Journal Chemical Physics, 129: 114104(1-9).

Mei D., Xu L., and Henkelman G. (2009) Potential energy surface of Methanol
decomposition on Cu(110). Journal of Physical Chemistry C, 113:4522-4537

. . . Georgia
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Further Readings

Quasicontinuum

Q

Q

a

Q

Q

Tadmor E.B., Ortiz M., and Phillips R. (1996) Quansicontinuum analysis of defects in
solids. Phllosophlcal MagazmeA 73(6):1529-1563

Shenoy V.B., Miller R., Tadmor E.B., Rodney D., Phillips R., and Ortiz M. (1998) An
adaptive methodology for atomic scale mechanics: the quasmontlnuum method. J.
Mech. Phys. Sol., 47: 611-642

Knap J. and Ortiz M. (2001) Ana analysis of the quasicontinuum method. J. Mech.
Phys. Sol., 49: 1899-1923

Smith G.S., Tadmor E.B., Bernstein N. and Kaxiras E. (2001) Multiscale simulations of
Silicon Nanoindentation. Acta Mater. ., 49: 4089-4101

Rodney D. and Phillips R. (1999) Structure and strength of dislocation juncitons: An
atomic level analysis. Physical Review Letters, 82(8): 1704-1707

Coarse-grained molecular dynamics

a

Q

Rudd R.E. and Broughton J.Q. (1998) Coarse-grained molecular dynamics and the
atomic limit of finite elements. Physical Review B, 58(10):R5893-R5896

Rudd R.E. and Broughton J.Q. (2005) Coarse-grained molecular dynamics: Nonlinear
finite elements and finite temperature. Physical Review B, 72(14): 144104

Variational multiscale method

Q

Hu hes T.J.R., Feijoo G.R., Mazzei L., and Quincy J.-B. (1998) The variational
ultiscale method — a paradlgm for computatlonal mechanics. Computational
Methods in Applied Mechanics & Engineering, 166(1-2):3-24

. . . Georgia
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Further Readings

Concurrent coupling

0 Broughton J.Q., Abraham F.F., Bernstein N., Kaxiras E. (1999) Concurrent coupling of
length scales: methodology and application. Physical Review B, 60(4):2391-2403

Bridging domain method

0 Xiao S.P. and Belytschko T. (2004) A bridging domain method for coupling continua
with molecular dynamics. Computational Methods in Applied Mechanics &
Engineering, 193(17-20):1645-1669

Bridging scale method

0 Liu W.K,, Park H.S., Qian D., Karpov E.G., Kadowaki H., Wagner G.J. (2006) Bridging

scale methods for nanomechanics and materials. Computational Methods in Applied
Mechanics & Engineering, 195(13-16):1407-1421

0 Wagner G.J., Liu W.K. (2003) Coupling of atomistic and continuum simulations using
a bridging scale decomposition. Journal of Computational Physics, 190(1):249-274

0 Park H.S., Karpov E.G., Liu W.K. , Klein P.A. (2005) The bridging scale for two-
dimensional atomistic/continuum coupling. Philosophical Magazine, 85(1): 79-113
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