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•Molecular Dynamics / Force Field

Modeling & Simulation at Multiple Scales

Various methods used to simulate at different length and time scales 
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•Tight Binding

•Kinetic Monte Carlo

•Finite Element Analysis

•Dislocation Dynamics

•Quantum Monte Carlo
•Self-Consistent Field (Hartree-Fock)

•Density Functional Theory
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Zoo of Multiscale Simulation Methods

First-principles MD (quantum-
atomistic coupling)

Ehrenfest MD
Born-Oppenheimer MD
Car-Parrinello MD

on-the-fly KMC (DFT-KMC 
coupling)
QM/MM coupling

Mathematical Homogenization
Heterogeneous Multiscale
Method
Multiscale FEM

quasi-continuum
coarse-grained molecular 
dynamics
variational multiscale method
concurrent coupling
coupled atomistic/discrete-
dislocation
adaptive multiscale modeling, 
bridging scale method
bridging domain method
DD/FEM coupling
TB/MD/FEM coupling
…<new species born each year>…
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First-Principles Molecular Dynamics

The major idea is to replace the “predefined 
potentials” in classical molecular dynamics 
(MD) by first-principles electronic structure 
calculation on-the-fly (i.e. keep electronic 
variables as active degrees of freedom in MD).

The Algorithm:
1. solve the electronic structure problem for a set of ionic 

coordinates

2. evaluate forces

3. move atoms

4. repeat
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Classical MD
Based on Newtonian dynamics

where

is a few-body-additive-interaction approximation of 
the true potential energy surface. 
The electrons follow adiabatically the classical nuclear 
motion and can be integrated out so that the nuclei evolve 
on a single global Born-Oppenheimer potential energy 
surface.
A priori construction of the global potential energy 
surface suffers from the ‘dimensionality bottleneck’.
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Time-Dependent Schrödinger Equation

where

Total wavefunction can be decomposed as

with a phase factor
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Ehrenfest Molecular Dynamics
Simultaneously solve
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Born-Oppenheimer Molecular Dynamics

In ground state BOMD, the time-independent electronic 
structure problem is solved self-consistently from each 
time for a given  configuration of nuclei 

Electrons are explicitly set to be fully relaxed for a given 
configuration of nuclei, in contrast to Ehrenfest MD 
where electron relaxation is implicit by solving the time-
dependent Schrödinger equation.
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BOMD with HF-SCF
Assuming single Slater determinant

Constrained (orthonormal orbitals) minimization

Define Lagrangian

The necessary condition of optimality 
leads to Hartree-Fock equations

Then the new equations of motion are
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BOMD with DFT

Based on the Hellmann-Feynman theorem, MD force is

Recall

The force is computed by DFT as
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BOMD with DFT

1. Fix positions of nuclei {R1,…,RN}, solve DFT equations 
self-consistently;

2. Find electrostatic force on each atom;

3. Perform a time step and find new positions of nuclei;

4. Repeat;
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Drawbacks of BOMD

The need to fully relax electronic 
subsystem while moving the atoms makes 
it computationally expensive.

Full self-consistency at each MD step may 
not be necessary, especially when system is 
far from its equilibrium, since one simply 
needs a rough idea of the force field for a 
given atomic configuration
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Car-Parrinello Molecular Dynamics

R. Car and M. Parrinello (1985) Unified 
approach for molecular dynamics and 
density-functional theory. Phys. Rev. Lett.
55: 2471. 

Publication and citation analysis: 
□: number of publications which appeared 
up to the year n that contain the keyword 
“ab initio molecular dynamics” (or 
synonyma “first-principles MD”, Car-
Parrinello simulations” etc.)  in title, 
abstract or keyword list.

●: number of publications which appeared 
up to the year n that cite the 1985 paper by 
Car and Parrinello
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Car and Parrinello (1985) postulated the Lagrangian

where μi’s are fictitious “masses” for the dynamics of 
orbitals ψi’s . 
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From Euler-Lagrange differential equations in classical 
mechanics (to ensure )

Car-Parrinello equations of motion is derived as
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CPMD with DFT

Car-Parrinello equations of motion
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Verlet algorithm in CPMD Orbital Dynamics 

First, a verlet step ignoring orthogonality constraint

Then, restore orthogonality

Computationally dynamics is applied to ci’s in the 
reciprocal space with Kohn-Sham orbitals
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CPMD Code

The CPMD code is a planewave implementation 
of DFT for first-principles molecular dynamics

First version by Jürg Hutter at IBM Zurich 
Research Lab with dozens of other contributors

The code is copyrighted jointly by IBM Corp and 
by Max Planck Institute, Stuttgart

It is distributed free of charge to non-profit 
organizations (http://www.cpmd.org/)

http://www.cpmd.org/
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CPMD capabilities
Wavefunction optimization: direct minimization and 
diagonalization
Geometry optimization: local optimization and simulated 
annealing 
Molecular dynamics: NVE, NVT, NPT
Path integral MD 
Response functions 
Excited states 
Time-dependent DFT (excitations, MD in excited states) 
Coarse-grained non-Markovian metadynamics
Wannier, EPR, Vibrational analysis
QM/MM 

See on-line manual at: 
http://cpmd.org/documentation/cpmd-html-manual

http://cpmd.org/documentation/cpmd-html-manual
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On-the-fly KMC

Searching saddle points on the potential 
energy surface (PES) on-the-fly while 
performing KMC simulation 

Find
Activation Energy

Calculate 
Rate Constants

(TST/hTST)

Simulate Phase 
Transition by KMC

Search Saddle 
Points on PES
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On-the-fly KMC
1. Start from a minimum 

configuration;
2. Randomly generate a set 

of configurations around 
the minimum and search 
the saddle points by the 
Dimer method;

3. Locate the saddle points 
connect to the 
minimum;

4. Insert the new events 
and propensities in the 
event table in KMC and 
simulate one step;

5. Repeat;



Multiscale Systems Engineering Research Group

Diffusion of adatom on Al(100)
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Dimer Method
[Henkelman & Jónsson 1999]

Dimer energy: 

Curvature along Dimer:

1. Estimate:

2. Dimer rotates to find the 
lowest curvature mode of 
PES, i.e. minimize Dimer
energy

3. Translate Dimer towards 
‘uphill’ according to

4. Repeat
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Quasicontinuum (QC) Method

Based on the full atomistic model, use 
mesh to reduce the degrees of freedom

representative atoms
(repatoms)
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QC Method
Displacement of atom i: 

Displacement of N atoms: {u1,u2,…,,uN}

Empirically the total energy is the sum of site energy of 
each atom

the Stillinger-Weber (SW) type site energy for atom i is

with two-body potential

and three-body potential

where 
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QC Method
The total potential energy of the system (atoms + 
external loads) is

where −fiui is the potential energy of the applied load fi
on atom i
The goal of the static QC method is to find the atomic 
displacements that minimize the total potential such that

the number of degrees of freedom is substantially reduced from 
3N;
the computation of the total potential is accurately approximated 
without the need to explicitly compute the site energy of all the 
atoms;
the critical regions can evolve with the deformation by 
addition/removal of repatoms.
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QC Method – Reduce DoF

Any atom not chosen as a repatom is constrained to move 
according to the interpolated displacements

This first approximation of the QC then, it to replace the 
energy Etot by Etot,h:

with continuum displacement field

where Sα is the interpolation function with local 

support
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QC  Method – Local Energy
The Cauchy-Born rule assumes that a uniform deformation gradient 
at the macro-scale can be mapped directly to the same uniform 
deformation on the micro-scale.

Thus, every atom in a region subject to a uniform deformation 
gradient will be energetically equivalent.

The energy within an element in crystals can be estimated by 
computing the energy of one atom in the deformed state and 
multiplying by the number of atoms in the element.
Energy density for each element is

where Ω0 is the unit cell volume and E0 is the energy of the unit cell 
when its lattice vectors are distorted according to F

The total energy of an element is
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QC  Method – Nonlocal Energy
Local energy does not approximate well where deformation of crystal 
is non-uniform (e.g. surfaces and interfaces) and shorter than the cut-
off radius of inter-atomic potential.

Energy-based formulation: Nonlocal energy is weighted sum of 
those of repatoms as

where 

Force-based formulation: The force on repatom β is determined 
by its neighborhood Cβ (α,β,… for repatom)

Atomic-level force 
in neighborhood c
of repatom α

“weights” of 
the atomic forces
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QC  Method – detailed issues

Local-nonlocal energy coupling
where Nloc+Nnl=Nrep

Local/nonlocal criterion: whether a repatom should be 
local or nonlocal?

whether there is significant variantion of the deformation gradient 

Effects of local-nonlocal interface:

Polycrystals

Elastic/plastic deformation decomposition
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QC Applications – nanoindentation
(Smith et al. 2001)

Silicone
Phase transformation 
and dislocation 
nucleation observed

Different phases 
observed
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QC Applications – dislocation behavior
(Rodney & Phillips 1999)

Dislocation junction 
under shear stress
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Coarse Grained (CG) Molecular Dynamics
displacement of mesh node j (does not have to coincident 
with an atom) , is a weighted average of 
displacements of atoms μ’s.

Displacement field

Coarse grained energy is the average of the canonical 
ensemble of the atomistic Hamiltonian on the constrained 
phase space {(x,p)}

where β=1/(kT), is partition function, and

enforces constraints.

The atomistic Hamiltonian 
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CGMD
Partition function Z = ZkinZpot

Potential part of partition function is

w/ stiffness

CG potential energy then is

Computationally, the full CG energy is

where is internal energy

and is CG mass matrix
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CGMD Applications – MEMS/NEMS

NEMS silicon micro-
resonator

The coarse grained (CG) 
region comprises most of the 
volume

The molecular dynamics 
(MD) region contains most 
of the simulated degrees of 
freedom

the CG mesh is refined to the 
atomic scale where it joins 
with the MD lattice.
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Summary

First-Principles MD

On-the-fly KMC

Quasicontinuum method

Coarse-Grain Molecular Dynamics
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Further Readings
First-Principles Molecular Dynamics

Marx D. and Hutter J. (2000) Ab Initio Moleular Dynamics: Theory and 
Implementation. In: J. Grotendorst (Ed.) Modern Methods and Algorithms of 
Quantum Chemistry (Jülich: John von Neumann Institute for Computing, ISBN 3-00-
005834-6), Vol.3, pp.329-477

On-the-fly KMC
Mei, D., Ge, Q.,  Neurock, M., Kieken, L., and Lerou, J. (2004) First-principles-based 
kinetic Monte Carlo simulation of nitric oxide decomposition over Pt and Rh surfaces 
under lean-burn conditions. Molecular Physics, 102(4): 361-369
Kratzer P. and Scheffler M. (2002) Reaction-limited island nucleation in molecular 
beam epitaxy of compound semiconductors. Physical Review Letters, 88(3): 
036102(1-4) 
Battaile C.C., Srolovitz D.J., Oleinik I.I., Pettifor D.G., Sutton A.P., Harris S.J., and 
Butler J.E. (1999) Etching effects during the chemical vapor deposition of (100) 
diamond. Journal of Chemical Physics, 111(9): 4291-4299 
Henkelman, G. and Jónsson, H. (2001) Long time scale kinetic Monte Carlo 
simulations without lattice approximation and predefined event table. Journal of 
Chemical Physics, 115(21): 9657-9666. 
Trushin, O., Karim, A., Kara, A. and Rahman, T.S. (2005) Self-learning kinetic Monte 
Carlo method: Application to Cu(111). Physical Review B, 72: 115401(1-9). 
Xu, L. and Henkelman, G. (2008) Adaptive kinetic Monte Carlo for first-principles 
accelerated dynamics. Journal Chemical Physics, 129: 114104(1-9). 
Mei D., Xu L., and Henkelman G. (2009) Potential energy surface of Methanol 
decomposition on Cu(110). Journal of Physical Chemistry C, 113:4522-4537 
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Further Readings
Quasicontinuum

Tadmor E.B., Ortiz M., and Phillips R. (1996) Quansicontinuum analysis of defects in 
solids. Philosophical Magazine A, 73(6):1529-1563
Shenoy V.B., Miller R., Tadmor E.B., Rodney D., Phillips R., and Ortiz M. (1998) An 
adaptive methodology for atomic scale mechanics: the quasicontinuum method. J. 
Mech. Phys. Sol., 47: 611-642
Knap J. and Ortiz M. (2001) Ana analysis of the quasicontinuum method. J. Mech. 
Phys. Sol., 49: 1899-1923
Smith G.S., Tadmor E.B., Bernstein N. and Kaxiras E. (2001) Multiscale simulations of 
Silicon Nanoindentation. Acta Mater., 49: 4089-4101
Rodney D. and Phillips R. (1999) Structure and strength of dislocation juncitons: An 
atomic level analysis. Physical Review Letters, 82(8): 1704-1707

Coarse-grained molecular dynamics
Rudd R.E. and Broughton J.Q. (1998) Coarse-grained molecular dynamics and the 
atomic limit of finite elements. Physical Review B, 58(10):R5893-R5896
Rudd R.E. and Broughton J.Q. (2005) Coarse-grained molecular dynamics: Nonlinear 
finite elements and finite temperature. Physical Review B, 72(14): 144104

Variational multiscale method
Hughes T.J.R., Feijóo G.R., Mazzei L., and Quincy J.-B. (1998) The variational
multiscale method – a paradigm for computational mechanics. Computational 
Methods in Applied Mechanics & Engineering, 166(1-2):3-24
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Further Readings
Concurrent coupling

Broughton J.Q., Abraham F.F., Bernstein N., Kaxiras E. (1999) Concurrent coupling of 
length scales: methodology and application. Physical Review B, 60(4):2391-2403

Bridging domain method

Xiao S.P. and Belytschko T. (2004) A bridging domain method for coupling continua 
with molecular dynamics. Computational Methods in Applied Mechanics & 
Engineering, 193(17-20):1645-1669

Bridging scale method

Liu W.K., Park H.S., Qian D., Karpov E.G., Kadowaki H., Wagner G.J. (2006) Bridging 
scale methods for nanomechanics and materials. Computational Methods in Applied 
Mechanics & Engineering, 195(13-16):1407-1421

Wagner G.J., Liu W.K. (2003) Coupling of atomistic and continuum simulations using 
a bridging scale decomposition. Journal of Computational Physics, 190(1):249-274

Park H.S., Karpov E.G., Liu W.K. , Klein P.A. (2005) The bridging scale for two-
dimensional atomistic/continuum coupling. Philosophical Magazine, 85(1): 79-113
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