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Quantum Mechanical Methods

JApproximation methods made to solve the
Schrodinger equation

= Time- dependent

m— ({r}.{R, };t)= HCD({rZ.},{RI};t)

where
_ n’ 2
) zzM] v ;2 Z r

- Time—independent
HY ({r},{R,}) = E¥({r}.{R })

= “Eigenvalue problem”
(P |H| W)= EQV | W) E=(¥|HW¥) /(¥
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Quantum Mechanical Methods

JQuantum Monte Carlo (QMC): scaling with
the number of atoms N nearly exponential,
and polynomials O(MP) with respect to the
number of electrons M.

JHartree-Fock (HF): scaling with O(IN4) or
higher (depends on how the correlations
are treated)

JDensity-Functional Theory (DFT): scaling
with O(IN3)

ATight-Binding (TB): scaling with O(IN3)
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Quantum Mechanical Methods

SCF (Hartree-Fock) calculations;
Basis set: STO, GTO, plane waves
Correlations: CC, Cl, MP perturbation theory

Density-Functional-based calculations;
Basis set;: GTO, plane waves
Correlations: LDA + corrections
Tight-binding
calculations;

B Slater-Koster
approximation.

Level of sophistication

Empirical potentials

10’ 10° 10° 10°
Number of atoms in the system under consideration

ia
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Quantum Monte Carlo (QMC)

JThe most accurate (and expensive)
approach to calculate electronic property

1Can compute both ground and excited
states

aSufficient to address most issues involving
inter-atomic forces and chemical
properties
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Two popular QMC methods

dVariational quantum Monte Carlo (VMC)

= The expected values are calculated via MC

integration over 3N dimensional space of
electron coordinates R={r,,r,,...,ry}

o (Y IH[W) [ ¥ (RYH¥(R)IR
YY) [ ¥ (R)¥(R)IR
aDiffusion quantum Monte Carlo (DMC)

= Starting from a trial wave function, the
distribution of electrons evolves along a
(imaginary) time
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VMC

OMetropolis MC algorithm
= Start the ‘walker’ with a random position R;

= Make a trial move to a new position R'; with a
probability density T(R'«—R). That is, the
probability that the walker is now in the
volume element dR'is dR'xT(R'<—R)

= Accept the trial move with probability

T(R <« R")P(R")
T(R'«< R)P(R)

A(R'« R) = min (1,

" repeat
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VMC

2 With an enormous number of walkers, after an equilibrium state is

achieved, the average number of walkers in the volume element dR is
denoted by n(R)dR

2 Equilibrium means the average number of walkers from dR to dR' is
the same as that from dR' to dR

0 Since the probability that the next move of a walker at R is
dR'A(R'—R)T(R'«R), the average number moving from dR to dR' in
a single move is dR'A(R'—R)T(R'—R)xn(R)dR.

0 Balance:
AR'—R)T(R'—<R)n(R)dARAR'=A(R—RHT(R—R")n(R"YdR'dR

0 Hence n(R) AR <« R")T(R « R")

n(R')  AR'< R)T(R'« R)
0 Since the ratio of acceptance in Metropolis algorithm is
AR <« R') T(R'«< R)P(R)

AR'«<~ R) T(R « R"P(R")
0 Therefore the equilibrium walker density n(R) is proportional to P(R)
n(R)  P(R)
n(R") PR Goorgia
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VMC

0 The expected value of H evaluated with a trial wave

function W, provides a rigorous upper bound on the exact
ground-state energy F, as

j\P )dR>E
K2 (R) ( R

T
dwhich is evaluated using the Metropolis MC algorithm in

the form

j 3 (R)HY,(R)dR -
E, where W, 'HY = E, is “Local energy”
j | R)[ dR

2The configuratlon space probability density
P(R) = YR)[ /[| ¥(R)[ dR
aWith a sample set of M points

1 M
NM;EL(R
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VMC Algorithm

[ Initial setup ]

-

Propose a move ]

!

[ Evaluate probability ratio ]

|

[ Metropolis accept / reject ]

1 accept

[Update electron position ]

, l

[ Calculate local enargy ]

refect

{
[ Output result ]




DMC

dsolving an imaginary-time many-body
Schrodinger equation
~ 00(R, 1)

ot
where E..is an energy offset

= (H - E,)®(R,1)

OIn the integral form
O(R,t+7) = [G(R « R',7)D(R,t)dR'

where G(R « R',7) = (R |exp(-7(H - E,))|IR") isa
Green function
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DMC
d“path integral”

W,

X




DMC

JFixed-node approximation

““““““““
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Hartree-Fock (HF) Self-Consistency Field (SCF)

QEfficiently calculate ground-state
electronic structures

aBased on two simplifications:

= Born-Oppenheimer approximation: solve the
Schrodinger equation for the electrons in the
field of static nuclei

= Replace the many-electron Hamiltonian with
an effective one-electron Hamiltonian which
acts on one-electron wave functions called
orbitals
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Slate Determinant

O HF approximation (Fock 1930; Slater 1930) is the
simplest theory that incorporates the antisymmetry of
the wave function

\P(...,Xi,...,Xj,...) = —‘P(...,xj,...,xz.,...)
where x,={r,0,} represents the coordinates and spin of electron .

1The antisymmetry ensures that no two electrons can have
the same set of quantum numbers and the Pauli exclusion

rinciple is satisfied.
S Wl(xl) l/jl(xz) l/jl(XN)
\P(...,XZ.,...,X],’.”) _ Wz(le) l/jz(:xz) wz(XN)
WN(X1> WN<X2) l//N(XN)

where ¥,(x))=¢(r)5,  with 5 _]! (0, =0))
o %00, 0 otherwise Georgia
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HF-SCF

OThe exact ground-state wave function, as
our target of calculation, cannot be
represented as a single Slater determinant.

aYet we use a Slater determinant as a
variational trial function and minimize the
expected value of Hamiltonian w.r.t. the
orbitals wi(r;)’s

dBorn-Oppenheimer approximation

A D M

1 Izr_R‘ 1#]

I'—l'
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HF-SCF

QHartree-Fock approximated Hamiltonian

1
H— Z h(i) + EZ 9(%,7)

=]

. 1
| and 9(i,7) =

r; — rj

where h(i) = Z

Rll

dapplied to the Slater determinant
(W | 32 i) | B) = N |LRI_ZLR|h|u}—Z/du Ve (%),

(U > 9(i,5) | 9) =) (Wt | g | V) — > (Ut | g | Yuibr)
ij kl Kl )
where (Vi | g | Ymidn) = / / dzydzothy (@ )1y (Iz)ﬁ U (21)0n (22)
J o 1 — Iz
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HF-SCF

0 Define operators J, and K, as
Jp(z) = /dm’iﬁ"‘;(:{?’j%u(1’)1"‘(:{?) Kph(x) = /dm o (x )it (2 Yy ()

12
dDefine Coulomb operator J and exchange operator K

J = Z JTIJ& :Z}:‘Lk,
k

dThe energy becomes
FE = ZHHFH— (J—K) | ).

under orthonomality constramt {,l-k't.i;-’-i' ) = Ot
0The minimization with the Lagrange multipliers A,
I'eqLIiI'eS oF — Z i‘LM [{:ﬁh':?k | 'lli'.-’g:} —_ {:11.?1 | 51-":-‘3:}] =10
. kl
with §F = > (06U | F | ) + (U | F | 604> Fock operator F =h+J - K

QThatis, *
Fibe =) Aty
z

0The solution is  Fy, = =, with orbital energies ¢,’s
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HF-SCF

0 Fyy, = =0 1S solved by a self-consistency
procedure

Jthe many electron problem is approximated by a
sequential calculation of the motion of one
electron in the average potential field generated
by the rest of the electrons and nuclei.
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HF-SCF

aBasis functions y
(@)= D) C x, ()

p:1 I T T
GTO-2G — |
- 0.5 L“Q\.::‘ GTO'-3G ________
= Plane waves ~ € N\ GTO4G -
= Slate orbitals ~ ¢ ” 4
2
= Gaussian orbitals ~ ¢ ” 4 0.25 |
= Approximation of STO , o ; -
by GTO-NG | ,

2
T

N -8
- De 7
1=1 7
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HF-SCF

JGeneralized Eigenvalue Problem
= Plug v = Z C x,(x) into Hy = By , we have

HZqCqu - Ezqcpxq L
= With left inner product for each pair of p and g
H =, | H|x,) S, =, 1 x,)

= We have HC = ESC

where H = [H, ] is the Hamilton matrix, S =[S, ] is the
overlap matrlx C= [C ] is the denszty matrlx w1th

occupzed
=20

= In unitform H C'= EC'

where C'=V1C, H'=V'HV, and matrix V transforms S
to the unit matrix as V-:SV=I.

] ] ] Georgia
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HF-SCF

JHartee-Fock-Roothaan equations
FC), = =,SCy,

where elements of Fock matrix F= [F,,]is

Fog=hpg+> > Ol (2(pr | g | gs)— (prl|glsq)
ks

and hpg=1(p|h|gq = f{iaf‘x;{r} {—T E R

i Y & 1
prlglgs) = ffffa?"lffai"z“ip{rl]?fr( mquuhsilzﬁ
= density matrix P= [P, ] occupied
Fpg =2 Z ka{j;ﬁ' =2 E Chi ";k
* Fock matrix k_ k

Fyqg="hpg+ 52 Prs (2(pa| g gs) = (pr|g|sq)

Xqlr)

11_1|

= Energy

1,
E = Zquhpq—l— Z PooPrs [up;r | q | gs) — =(pr | g| sq)

pq‘as S B B 2 Tm:ﬁ@



HF-SCF Algorithm

Input data
(atom coordinates and numbers,
the number of electrons)

|

Generate the one=electron and
overlap matrices

L 4

Bring overlap matrix to unit form

w

Make a first guess
for the density matrix

!

Calculate Coulomb and Exchange
contributions, construct the Fock matrix

d

vectors found

Construct

new density
matrix from

the e

igen=

A

E

w

Diagonalize the Fock matrix

No

Convergence

reached

Output
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Density Functional Theory (DFT)

dVery efficiently calculate ground-state electronic
structures

JBased on three simplifications:

= Born-Oppenheimer approximation: solve the
Schrodinger equation for the electrons in the field of
static nuclei

= Electrons interacts with a density field p(r), which is
approximated by wave functions

= Approximations of the unknown exchange-correlation
energy functional, which accounts for complicated
correlated motion of electrons (e.g. local-density

approximation (LDA), generalized gradient
approximation (GGA) ).
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DFT

DEnergy

oeCup

Z / (__) .':ljm (r)dr—l_fi{s.rf dI‘ 2/ ;O rl drldrg—l—EM[p ]

1 — 1‘2|
Kinetics of External Coulombic /
non-interacting interaction
electrons Unknown
exchange and
0Kohn-Sham equations correlation
1 o Ze p(r')dr'
——=V* + L + +V (r r)=c¢ r
{ ; ;r_RI‘ o Ve ®) [Yn0) = 2,0, 0)
kinetic External Hartree  Exchange-Correlation , (r) = OF [p(r)]
potential potential  potential v 5p(r)

p(r) = D"y, ()]
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DFT

JExchange-correlation potential
= depends on density and its variations
V. [pl(x) =V, | p(r),Vp(r),V(Vp(r)),...
= Local density approximation (LDA): only r (not
gradients)
BEPA(x) = [ plv)e, [p(r)ldr
where ¢ [p(r)]=Cxp"’(r) and ¢ =-3/4x(3/ )"

= Generalized gradient approximation (GGA):
with gradient

S (x) = [ Flp(x), Vp(r))dr

Georgia
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DFT Algorithm

Input data
{(atom coordinates and the number
of electrons); Theory level specified.

¥

Generate input guess density

L

L 4

Construct the Hartree potential

v

Construct the effective potential
{sum of Hartree, exchange and external potentials)

Solve the Kohn=Sham equations

v

Generate the output density
from the solutions to
the Kohn-Sham equations

Repeat the cycle
using the output
density as
the mmput density

Y Output:
No the input an Yes Calculate
utput densities energy and

the same? forces
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Summary

2Quantum Monte Carlo
JHartree-Fock Self-Consistency Field
ODensity Functional Theory

ApraTmAlen
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Further Readings

Quantum Monte Carlo

0 Foulkes W.M.C., Mitas L., Needs R.J. and Rajagopal G. (2001)
Quantum Monte Carlo simulations of solids. Reviews of Modern

Physics, 73(1):33-83
Density Functional Theory

0 Koch W. and Holthausen M.C. (2001) A Chemist’s Guide to Density
Functional Theory (Weinhaim: Wiley-VCH) ISBNs:3-527-30372-3,

3-527-60004-3
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