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Quantum Mechanical Methods

Approximation methods made to solve the 
Schrödinger equation

Time-dependent

where

Time-independent

“Eigenvalue problem”
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Quantum Mechanical Methods

Quantum Monte Carlo (QMC): scaling with 
the number of atoms N nearly exponential, 
and polynomials O(Mp) with respect to the 
number of electrons M.
Hartree-Fock (HF): scaling with O(N4) or 
higher (depends on how the correlations 
are treated)
Density-Functional Theory (DFT): scaling 
with O(N3)
Tight-Binding (TB): scaling with O(N3)



Multiscale Systems Engineering Research Group

Quantum Mechanical Methods
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Quantum Monte Carlo (QMC)

The most accurate (and expensive) 
approach to calculate electronic property

Can compute both ground and excited 
states

Sufficient to address most issues involving 
inter-atomic forces and chemical 
properties
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Two popular QMC methods

Variational quantum Monte Carlo (VMC)
The expected values are calculated via MC 
integration over 3N dimensional space of 
electron coordinates R={r1,r2,…,rN}

Diffusion quantum Monte Carlo (DMC)
Starting from a trial wave function, the 
distribution of electrons evolves along a 
(imaginary) time 
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VMC

Metropolis MC algorithm
Start the ‘walker’ with a random position R;

Make a trial move to a new position R'; with a 
probability density T(R'←R). That is, the 
probability that the walker is now in the 
volume element dR' is dR'×T(R'←R)

Accept the trial move with probability

repeat
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VMC
With an enormous number of walkers, after an equilibrium state is 
achieved, the average number of walkers in the volume element dR is 
denoted by n(R)dR
Equilibrium means the average number of walkers from dR to dR' is 
the same as that from dR' to dR
Since the probability that the next move of a walker at R is 
dR'A(R'←R)T(R'←R), the average number moving from dR to dR' in 
a single move is dR'A(R'←R)T(R'←R)×n(R)dR.
Balance: 
A(R'←R)T(R'←R)n(R)dRdR'=A(R←R')T(R←R')n(R')dR'dR
Hence 

Since the ratio of acceptance in Metropolis algorithm is

Therefore the equilibrium walker density n(R) is proportional to P(R)
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VMC
The expected value of Ĥ evaluated with a trial wave 
function ΨT provides a rigorous upper bound on the exact 
ground-state energy E0 as

which is evaluated using the Metropolis MC algorithm in 
the form

The configuration-space probability density 

With a sample set of M points 

where ΨT−1ĤΨT = EL is “Local energy”
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VMC Algorithm
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DMC

solving an imaginary-time many-body 
Schrödinger equation

where ET is an energy offset

In the integral form 

where is a 
Green function
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DMC

“path integral”
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DMC

Fixed-node approximation
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Hartree-Fock (HF) Self-Consistency Field (SCF)

Efficiently calculate ground-state 
electronic structures

Based on two simplifications:
Born-Oppenheimer approximation: solve the 
Schrödinger equation for the electrons in the 
field of static nuclei

Replace the many-electron Hamiltonian with 
an effective one-electron Hamiltonian which 
acts on one-electron wave functions called 
orbitals
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Slate Determinant
HF approximation (Fock 1930; Slater 1930) is the 
simplest theory that incorporates the antisymmetry of 
the wave function

where xi={ri,σi} represents the coordinates and spin of electron i.

The antisymmetry ensures that no two electrons can have 
the same set of quantum numbers and the Pauli exclusion 
principle is satisfied.

where with 
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HF-SCF

The exact ground-state wave function, as 
our target of calculation, cannot be 
represented as a single Slater determinant. 

Yet we use a Slater determinant as a 
variational trial function and minimize the 
expected value of Hamiltonian w.r.t. the 
orbitals ψi(rj)’s.

Born-Oppenheimer approximation
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HF-SCF

Hartree-Fock approximated Hamiltonian

applied to the Slater determinant 

where

where and
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HF-SCF
Define operators Jk and Kk as

Define Coulomb operator J and exchange operator K

The energy becomes

under orthonomality constraint

The minimization with the Lagrange multipliers Λkl
requires
with , Fock operator 

That is,

The solution is with orbital energies εk’s.
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HF-SCF

is solved by a self-consistency
procedure

the many electron problem is approximated by a 
sequential calculation of the motion of one 
electron in the average potential field generated 
by the rest of the electrons and nuclei.
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HF-SCF

Basis functions

Plane waves ~  
Slate orbitals ~ 

Gaussian orbitals ~ 

Approximation of STO 
by GTO-NG
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HF-SCF

Generalized Eigenvalue Problem
Plug into , we have

With left inner product for each pair of p and q

We have
where H = [Hpq] is the Hamilton matrix, S = [Spq] is the 

overlap matrix, C = [Cpq] is the density matrix with 

In unit form
where C'=V−1C, H'=V−1HV, and matrix V transforms S

to the unit matrix as V−1SV=I.
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HF-SCF

Hartee-Fock-Roothaan equations

where elements of Fock matrix F= [Fpq] is 

and

density matrix P= [Ppq] 

Fock matrix 

Energy 
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HF-SCF Algorithm
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Density Functional Theory (DFT)

Very efficiently calculate ground-state electronic 
structures
Based on three simplifications:

Born-Oppenheimer approximation: solve the 
Schrödinger equation for the electrons in the field of 
static nuclei
Electrons interacts with a density field ρ(r), which is 
approximated by wave functions
Approximations of the unknown exchange-correlation 
energy functional, which accounts for complicated 
correlated motion of electrons (e.g. local-density 
approximation (LDA), generalized gradient 
approximation (GGA) ).
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DFT

Energy

Kohn-Sham equations

External Coulombic
interaction 

Unknown  
exchange and 
correlation 

Kinetics of 
non-interacting 
electrons 
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DFT

Exchange-correlation potential
depends on density and its variations

Local density approximation (LDA): only r (not 
gradients)

where and

Generalized gradient approximation (GGA): 
with gradient
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DFT Algorithm
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Summary

Quantum Monte Carlo

Hartree-Fock Self-Consistency Field

Density Functional Theory
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Further Readings
Quantum Monte Carlo

Foulkes W.M.C., Mitas L., Needs R.J. and Rajagopal G. (2001) 
Quantum Monte Carlo simulations of solids. Reviews of Modern 
Physics, 73(1):33-83

Density Functional Theory
Koch W. and Holthausen M.C. (2001) A Chemist’s Guide to Density 
Functional Theory (Weinhaim: Wiley-VCH) ISBNs:3-527-30372-3, 
3-527-60004-3
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