Introduction of Computer-Aided Nano Engineering

Prof. Yan Wang
Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.
yan.wang@me.gatech.edu
Topics

- Computational Nano Engineering
- Modeling & Simulation (M&S)
- Approximations in M&S
Computational Nano-Engineering

- Extensive applications of CAD/CAM/CAE software tools in traditional manufacturing lead to
 - Scalable processes
 - Cost effective and high-quality products with short time-to-market

- Virtual Prototyping at nanoscales
 - Computer-Aided Nano-Design (CAND)
 - Computer-Aided Nano-Manufacturing (CANM)
 - Computer-Aided Nano-Engineering (CANE)
Computational Nano-Engineering

- Use Modeling & Simulation tools to systematically resolve the issue of “lack of design” at nano scales.

PAST: Discovery-Based Science and Product Development

- Discover novel Nanostructures, nanoparticles, and nanomaterials through investigator-initiated exploratory research on a broad range of materials
- Determine nanomaterial properties (chemical, physical, and biological)
- Identify potential applications of value
- Assess commercial viability
- Nanomaterials enter limited markets

FUTURE: Application-Based Problem Solving

- Start with existing needs, problems, or challenges in end-use application
- Design, produce, and scale up nano-based materials with exact properties needed (based on established understanding and methods)
- Large numbers of diverse products based on Nanomaterials By Design rapidly enter multiple markets
How to study a system

- Experiment with actual system
- Experiment with a model of actual system
 - Physical model
 - Mathematical model
 - Analytical solution
 - Simulation
What is Modeling?
Why mathematical modeling?

- Advantages
- Disadvantages
An example of modeling

- Free fall model
Mathematical model

- Dependent variable: \(y = f(x) \)
- High dimensional: \(y = f(x_1, x_2, \ldots) \)
- Parametric systems: \(y = f(x_1(u), x_2(u), \ldots, x_n(u), u) \)
- “Noisy” systems: \(y = f(x, \gamma) \)
Complexity of Mathematical Models

Simple
Complex

Linear
Nonlinear

Algebraic Equation / Closed-form
Differential Equation

Static
Dynamic
Model Taxonomy

System model

Deterministic
- Static
- Dynamic
 - Continuous
 - Discrete

Stochastic
- Static
- Dynamic
 - Continuous
 - Discrete
Simulation-based Design

- Mathematical model (first-principles, empirical, multiscale)
- Validation
- Optimization
- Uncertainty quantification
- Parameter inversion
- Data assimilation
- Model/data error control
- Visualization
- Data mining/science
- Numerical model
- Scalable algorithms & solvers
- Geometry modeling & discretization schemes
- Verification
- Approximation error control
- Computer simulation
- Data/observations
Modeling & Simulation at Multiple Scales

Various methods used to simulate at different length and time scales
Approximations in simulation

- mathematical models \Rightarrow numerical models
 - Taylor series
 - Functional analysis
- numerical models \Rightarrow computer codes
 - Discretization (differentiation, integration)
 - Searching algorithms (solving equations, optimization)
 - Floating-point representation
Mathematical models \rightarrow Numerical models
Approximation in Taylor Series

- Truncation
Mathematical models \rightarrow Numerical models

Functional Analysis

- Convert complex functions into simple and computable ones by transformation in vector spaces
 - Fourier analysis
 - Wavelet transform
 - Polynomial chaos expansion
 - Spectral methods
 - Mesh-free methods
 - ...
Mathematical models → Numerical models

Functional Analysis

- Approximate the original $f(x)$ by linear combinations of basis functions $\psi_i(x)$'s as

$$f(x) \approx \sum_{i=0}^{N} c_i \psi_i(x)$$

- In a vector space (e.g. Hilbert space) with an infinite number of dimensions

$$f(x) = \sum_{i=0}^{\infty} c_i \psi_i(x)$$
An inner product $\langle f, g \rangle$ is defined as a “projection” in the vector space, such as

$$\langle f, g \rangle := \int_{-\infty}^{\infty} f(x)g(x)W(x)dx$$

Typically we choose orthogonal basis functions $\psi_i(x)$’s such that

$$\langle \psi_i, \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i(x)\psi_j(x)W(x)dx = \begin{cases} \text{Constant} & (\forall \ i, j, i = j) \\ 0 & (i \neq j) \end{cases}$$

for orthonormal basis functions

$$\langle \psi_i, \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i(x)\psi_j(x)W(x)dx = \begin{cases} 1 & (i = j) \\ 0 & (i \neq j) \end{cases}$$
Mathematical models \rightarrow Numerical models

Functional Analysis

- The coefficients c_i's are computed by
 \[c_i = \frac{\langle f, \psi_i \rangle}{\langle \psi_i, \psi_i \rangle} \]

- The computable function is
 \[f(x) \approx \sum_{i=0}^{N} c_i \psi_i(x) \]

with truncation!
Functional Analysis
– Fourier Series Approximations

\[f(t) = a_0 + a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t) + a_2 \cos(2\omega_0 t) + b_2 \sin(2\omega_0 t) + \cdots \]

\[= a_0 + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t) \right] \]

where \(\omega_0 = \frac{2\pi}{T} \) is called the fundamental frequency.

- All periodic functions can be approximated by Fourier Series well!
- Is used in plane-wave density functional theory simulations
- Because of efficient Fast Fourier Transform (FFT)!

Multiscale Systems Engineering Research Group
Functional Analysis
– Fourier Series Approximations

- Inner products

\[a_0 = \frac{1}{T} \int_0^T f(t) \, dt \]

\[a_k = \frac{2}{T} \int_0^T \cos(k\omega_0 t) f(t) \, dt \quad (k = 1, 2, \ldots) \]

\[b_k = \frac{2}{T} \int_0^T \sin(k\omega_0 t) f(t) \, dt \]

<table>
<thead>
<tr>
<th>Fourier Series</th>
<th>Fourier Transform</th>
<th>Discrete Fourier Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{c}_k = \frac{1}{T} \int_0^T f(t) e^{-ik\omega_0 t} , dt)</td>
<td>(\tilde{F}(i\omega_0) = \int_{-\infty}^{\infty} f(t) e^{-i\omega_0 t} , dt)</td>
<td>(\tilde{F}n = \sum{n=0}^{N-1} f_n e^{-i\omega_0 n} \quad (k = 0, \ldots, N - 1))</td>
</tr>
<tr>
<td>(f(t) = \sum_{k=-\infty}^{\infty} \tilde{c}_k e^{ik\omega_0 t})</td>
<td>(f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{F}(i\omega_0) e^{i\omega_0 t} , d\omega_0)</td>
<td>(f_n = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{F}_k e^{ik\omega_0} \quad (n = 0, \ldots, N - 1))</td>
</tr>
</tbody>
</table>

- Computational complexity: \(O(N^2) \)
- FFT Complexity: \(O(N \log_2 N) \)
Functional Analysis – Wavelet Transform

- Wavelet basis functions

\[\psi_{a,b}(x) = \frac{1}{\sqrt{a}} \psi\left(\frac{x-b}{a}\right) \]

where \(\psi(x) \) is a continuous function in both the real and reciprocal spaces called mother wavelet, \(a \) is the scale factor, and \(b \) is the translation factor.

- \(\psi(x) \) satisfies
 - Admissibility
 - Regularity condition
Example Continuous Wavelet Functions
- Mexican hat

\[\psi(x) = \frac{2}{\sqrt{3}} \pi^{-1/4} \left(1 - x^2\right) e^{-x^2/2} \]
Example Continuous Wavelet Functions - Morlet

\[\psi(x) = e^{-\frac{x^2}{2}} \cos(5x) \]
Functional Analysis – Wavelet Transform

- **Continuous Transform**
 \[\tilde{f}(a, b) = \int_{-\infty}^{+\infty} f(x) \psi_{a,b}^*(x) dx \]
 where \(\psi_{a,b}^*(x) \) is the complex conjugate of \(\psi_{a,b}(x) \).

- **Inverse Transform**
 \[f(x) = \frac{1}{c_\psi} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} \tilde{f}(a, b) \psi_{a,b}(x) \frac{da}{a^2} db \]

- **Discrete Transform**
 \[\psi_{2^j,k}(x) = \frac{1}{\sqrt{2^j}} \psi \left(\frac{x - k}{2^j} \right) \]
Admissibility

\[\int_{0}^{+\infty} \frac{\left| \hat{\psi}(\omega) \right|^2}{|\omega|} \, d\omega < \infty \]

where \(\hat{\psi}(\omega) = \int_{-\infty}^{\infty} \psi(x) e^{-i\omega x} \, dx \) is the Fourier transform of \(\psi(x) \).

This implies \(\left| \hat{\psi}(\omega = 0) \right|^2 = 0 \) or equivalently \(\int_{-\infty}^{\infty} \psi(x) \, dx = 0 \) “No information loss in reconstruction”

“must be a wave with zero mean” -- wave-
Functional Analysis
– Wavelet Transform

Regularity condition

\[\tilde{f}(a, b = 0) \approx \frac{1}{\sqrt{a}} \left[\sum_{k=0}^{N} \frac{1}{k!} f^{(k)}(0) \int x^k \psi \left(\frac{x - 0}{a} \right) dx + O(x^{k+1}) \right] \]
\[= \frac{1}{\sqrt{a}} \left[\sum_{k=0}^{N} \frac{1}{k!} f^{(k)}(0) M_k a^{k+1} + O(a^{k+2}) \right] \]
\[= \frac{1}{\sqrt{a}} \left[\frac{1}{0!} f(0) M_0 a + \frac{1}{1!} f^{(1)}(0) M_1 a^2 + \ldots + \frac{1}{N!} f^{(N)}(0) M_N a^{N+1} + O(a^{k+2}) \right] \]

Wavelet functions should have some smoothness and concentration in both time and frequency domains.

Vanishing moments \(M_1, \ldots, M_N \) as the scale factor \(a \) increases (admissibility: \(M_O = 0 \))

“Fast Decay” -- -let
Approximations in M&S

- mathematical models ➔ numerical models
 - Taylor series
 - Functional analysis

- numerical models ➔ computer codes
 - Discretization (differentiation, integration)
 - Searching algorithms (solving equations, optimization)
 - Floating-point representation
Numerical Model \rightarrow Computer Code

Compute integrals

- Quadrature
 - Approximate the integrand function by a polynomial of certain degree
Numerical Model → Computer Code
Compute integrals

Quadrature

Approximate the integral by the weighted sum of regularly sampled functional values
- e.g. Simpson’s 3/8 rule

\[
I \approx \int_{x_0}^{x_3} f^{(3)}(x) \, dx = \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right]
\]
Monte Carlo simulation

- Let $p(u)$ denote uniform density function over $[a, b]$.
- Let U_i denote i^{th} uniform random variable generated by Monte Carlo according to the density $p(u)$.
- Then, for “large” N

$$\int_{a}^{b} f(x)dx \approx \frac{b - a}{N} \sum_{i=1}^{N} f(U_i)$$

- Variance reduction (importance sampling) to improve efficiency.
Finite-divided-difference methods

- Approximated derivatives come from Taylor series
 - e.g. forward-finite-difference

\[
f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + O(h^2) = f(x_i) + f'(x_i)h + O(h^2)
\]

\[
f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)
\]
Floating-Point Representation

- How does computer represent numbers?

Perfect world

Imperfect world
Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth $500 million

Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software
Do you trust your computer?

Rump’s function:
\[f(x, y) = 333.75y^6 + x^2(11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8 + \frac{x}{2y} \]

\(f(x = 77617, y = 33096) = ? \)

- Single precision: \(f = 1.172603\ldots \)
- Double precision: \(f = 1.1726039400531\ldots \)
- Extended precision: \(f = 1.172603940053178\ldots \)
- Correct one is: \(f = -0.8273960599468213 \)
Another Story

- On February 25, 1991
- A Patriot missile battery assigned to protect a military installation at Dhahran, Saudi Arabia
- But ... failed to intercept a Scud missile
- 28 soldiers died
- ... an error in computer arithmetic

\[0.1 \times 10 \neq 1 \]
IEEE 754 Standard

- If $E = 2^w - 1$ and $T \neq 0$, then v is NaN regardless of S.
- If $E = 2^w - 1$ and $T = 0$, then $v = (-1)^S \times \infty$.
- If $1 \leq E \leq 2^w - 2$, then $v = (-1)^S \times 2^{E - \text{bias}} \times (1 + 2^{1-p} \times T)$; normalized numbers have an implicit leading significand bit of 1.
- If $E = 0$ and $T \neq 0$, $v = (-1)^S \times 2^{\text{emin}} \times (0 + 2^{1-p} \times T)$; denormalized numbers have an implicit leading significand bit of 0.
- If $E = 0$ and $T = 0$, then $v = (-1)^S \times 0$ (signed zero) where $\text{bias} = 2^{w-1} - 1$ and $\text{emin} = 2 - 2^{w-1} = 1 - \text{bias}$
Distribution of Values

- 6-bit IEEE-like format
 - w = 3 exponent bits
 - t = 2 fraction/mantissa bits
 - bias = 3
Distribution of Values (zoom-in view)

- 6-bit IEEE-like format
 - \(w = 3 \) exponent bits
 - \(t = 2 \) fraction/mantissa bits
 - bias = 3

- Denormalized
- Normalized
- Infinity
Round-Off Errors

- Overflow error – “not large enough”
- Underflow error – “not small enough”
- Rounding error – “chopping”

http://www.cs.utah.edu/~zachary/isp/applets/FP/FP.html
Special Numbers

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 / 0.0</td>
<td>NaN</td>
</tr>
<tr>
<td>1.0 / 0.0</td>
<td>Infinity</td>
</tr>
<tr>
<td>-1.0 / 0.0</td>
<td>-Infinity</td>
</tr>
<tr>
<td>NaN + 1.0</td>
<td>NaN</td>
</tr>
<tr>
<td>Infinity + 1.0</td>
<td>Infinity</td>
</tr>
<tr>
<td>Infinity + Infinity</td>
<td>Infinity</td>
</tr>
<tr>
<td>NaN > 1.0</td>
<td>false</td>
</tr>
<tr>
<td>NaN == 1.0</td>
<td>false</td>
</tr>
<tr>
<td>NaN < 1.0</td>
<td>false</td>
</tr>
<tr>
<td>NaN == NaN</td>
<td>false</td>
</tr>
<tr>
<td>0.0 == -0.0</td>
<td>true</td>
</tr>
</tbody>
</table>

- standard range of values permitted by the encoding (from 1.4e-45 to 3.4028235e+38 for float)
Floating point Hazards

<table>
<thead>
<tr>
<th>This expression</th>
<th>does NOT equal to this expression</th>
<th>when</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - f</td>
<td>-f</td>
<td>f is 0</td>
</tr>
<tr>
<td>f < g</td>
<td>! (f >= g)</td>
<td>f or g is NaN</td>
</tr>
<tr>
<td>f == f</td>
<td>true</td>
<td>f is NaN</td>
</tr>
<tr>
<td>f + g - g</td>
<td>f</td>
<td>g is infinity or NaN</td>
</tr>
</tbody>
</table>

- The result is 2.600000000000001
- The result is 0.29
 28

```java
double s=0;
for (int i=0; i<26; i++) s += 0.1;
System.out.println(s);

double d = 29.0 * 0.01;
System.out.println(d);
System.out.println((int) (d * 100));
```
Comparing Floating Point Numbers

- Try to avoid floating point comparison directly
- Testing if a floating number is greater than or less than zero is even risky.
- Instead, you should compare the absolute value of the difference of two floating numbers with some pre-chosen epsilon value, and test if they are "close enough"
- If the scale of the underlying measurements is unknown, the test “abs(a/b - 1) < epsilon” is more robust.
- Don’t use floating point numbers for exact values
Uncertainties in M&S

- Model errors due to approximations in truncation or sampling
 - Taylor approximation
 - Functional analysis
- Numerical errors due to floating-point representation
 - Round-off errors
Two types of “uncertainties”

- **Aleatory uncertainty** (variability, irreducible uncertainty, random error)
 - inherently associated with the randomness/fluctuation (e.g. environmental stochasticity, inhomogeneity of materials, fluctuation of measuring instruments)
 - can only be reduced by taking average of multiple measurements.

- **Epistemic uncertainty** (incertitude, reducible uncertainty, systematic error)
 - imprecision comes from scientific ignorance, inobservability, lack of knowledge, etc.
 - can be reduced by additional empirical effort (such as calibration).
Random Error

- Determines the *precision* of any measurement
- *Always* present in every physical measurement
 - Better apparatus
 - Better procedure
 - Repeat
- Estimate
Systematic Error

- Determines the accuracy of any measurement
- *May* be present in every physical measurement
 - calibration
 - uniform or controlled conditions (e.g., avoid systematic changes in temperature, light intensity, air currents, etc.)
- Identify & eliminate or reduce
Uncertainties in Modeling & Simulation

- **Aleatory Uncertainty:**
 - inherent randomness in the system. Also known as:
 - stochastic uncertainty
 - variability
 - irreducible uncertainty

- **Epistemic Uncertainty:**
 - due to lack of perfect knowledge about the system. Also known as:
 - Incertitude
 - system error
 - reducible uncertainty
Summary

- Modeling is abstraction
- M&S *always* has approximations involved, which are important sources of epistemic uncertainty.
- Computer tricks us
Further Readings