

Introduction of Computer-Aided Nano Engineering

Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A.

yan.wang@me.gatech.edu

Topics

- Computational Nano Engineering
- Modeling & Simulation (M&S)
- □Approximations in M&S

Computational Nano-Engineering

- Extensive applications of CAD/CAM/CAE software tools in traditional manufacturing lead to
 - Scalable processes
 - Cost effective and high-quality products with short time-to-market

(d) CAM

- □ Virtual Prototyping at nanoscales
 - Computer-Aided Nano-Design (CAND)
 - Computer-Aided Nano-Manufacturing (CANM)
 - Computer-Aided Nano-Engineering (CANE)

Computational Nano-Engineering

□ Use Modeling & Simulation tools to systematically resolve the issue of "lack of design" at nano scales.

PAST: Discovery-Based Science and Product Development

FUTURE: Application-Based Problem Solving

How to study a system

What is Modeling?

Why mathematical modeling?

□Advantages

□Disadvantages

An example of modeling

□Free fall model

Mathematical model

□ Dependent variable= $f(Independent \ variable)$ y = f(x)

■High dimensional

$$y = f\left(x_1, x_2, \ldots\right)$$

□Parametric systems

$$y = f(x_1(u), x_2(u), \dots, x_n(u), u)$$

□"Noisy" systems

$$y = f(x, \gamma)$$

Complexity of Mathematical Models

Model Taxonomy

Simulation-based Design

Modeling & Simulation at Multiple Scales

Various methods used to simulate at different length and time scales

Approximations in simulation

- **□**mathematical models → numerical models
 - Taylor series
 - Functional analysis
- □ numerical models → computer codes
 - Discretization (differentiation, integration)
 - Searching algorithms (solving equations, optimization)
 - Floating-point representation

Mathematical models → Numerical models Approximation in Taylor Series

■Truncation

Mathematical models → Numerical models Functional Analysis

- □Convert complex functions into simple and computable ones by transformation in vector spaces
 - Fourier analysis
 - Wavelet transform
 - Polynomial chaos expansion
 - Spectral methods
 - Mesh-free methods
 - • •

Mathematical models → Numerical models Functional Analysis

■Approximate the original f(x) by linear combinations of basis functions $\psi_i(x)$'s as

$$f(x) \approx \sum_{i=0}^{N} c_i \psi_i(x)$$

□In a vector space (e.g. Hilbert space) with an infinite number of dimensions

$$f(x) = \sum_{i=0}^{\infty} c_i \psi_i(x)$$

Mathematical models → Numerical models **Functional Analysis**

 \square An inner product $\langle f, g \rangle$ is defined as a "projection" in the vector space, such as

$$\langle f, g \rangle := \int_{-\infty}^{\infty} f(x)g(x)W(x)dx$$

Typically we choose orthogonal basis functions $\psi_i(x)$'s such that

$$\left\langle \psi_{i}, \psi_{j} \right\rangle = \int_{-\infty}^{\infty} \psi_{i}(x) \psi_{j}(x) W(x) dx = \begin{cases} Constant & (\forall i, j, i = j) \\ 0 & (i \neq j) \end{cases}$$

for orthonormal basis functions

$$\left\langle \psi_i, \psi_j \right\rangle = \int_{-\infty}^{\infty} \psi_i(x) \psi_j(x) W(x) dx = \begin{cases} 1 & (i=j) \\ 0 & (i\neq j) \end{cases}$$

Mathematical models → Numerical models Functional Analysis

 \Box The coefficients c_i 's are computed by

$$c_{_{i}} = \frac{\left\langle f, \psi_{_{i}} \right\rangle}{\left\langle \psi_{_{i}}, \psi_{_{i}} \right\rangle}$$

□The computable function is

$$f(x) \approx \sum_{i=0}^{N} c_i \psi_i(x)$$

with truncation!

Fourier Series Approximations

$$f(t) = a_0 + a_1 \cos(\omega_0 t) + b_1 \sin(\omega_0 t) + a_2 \cos(2\omega_0 t) + b_2 \sin(2\omega_0 t) + \cdots$$

$$= a_0 + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t) \right]$$

- where $\omega_0 = \frac{2\pi}{T}$ is called the *fundamental frequency*. \square All *periodic functions* can be approximated by Fourier Series well!
- □ Is used in *plane-wave density* functional theory simulations
- Because of efficient Fast Fourier Transform (FFT)!

Fourier Series Approximations

■ Inner products

$$a_{0} = \frac{1}{T} \int_{0}^{T} f(t) dt$$

$$a_{k} = \frac{2}{T} \int_{0}^{T} \cos(k\omega_{0}t) f(t) dt \qquad (k = 1, 2, ...)$$

$$b_{k} = \frac{2}{T} \int_{0}^{T} \sin(k\omega_{0}t) f(t) dt$$

Fourier Series	Fourier Transform	Discrete Fourier Transform
$\int \widetilde{c}_{k} = rac{1}{T} \int\limits_{0}^{T} f(t) e^{-ik\omega_{0}t} dt$	$\left ilde{F}\left(i\omega_{_{0}} ight)=\int\limits_{-\infty}^{\infty}f\left(t ight)e^{-i\omega_{_{0}}t}dt$	$igg ilde{F}_k = \sum_{n=0}^{N-1} f_n e^{-ik\omega_0 n} \hspace{0.5cm} (k=0,,N-1)$
$f(t) = \sum_{k=-\infty}^{\infty} \widetilde{c}_k e^{ik\omega_0 t}$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{F}(i\omega_0) e^{i\omega_0 t} d\omega_0$	$oxed{ f_n = rac{1}{N} \sum_{k=0}^{N-1} ilde{F}_k e^{ik\omega_0 n} } (n=0,,N-1) $

- \square Computational complexity: $O(N^2)$
- □ FFT Complexity: $O(N\log_2 N)$

Functional Analysis – Wavelet Transform

□ Wavelet basis functions

$$\psi_{a,b}\left(x\right) = \frac{1}{\sqrt{a}}\psi\left(\frac{x-b}{a}\right)$$

where $\psi(x)$ is a continuous function in *both* the real and reciprocal spaces called *mother wavelet*, a is the scale factor, and b is the translation factor.

- $\ \ \ \psi(x)$ satisfies
 - Admissibility
 - Regularity condition

Example Continuous Wavelet Functions - Mexican hat

$$\psi(x) = \frac{2}{\sqrt{3}} \pi^{-1/4} \left(1 - x^2 \right) e^{-x^2/2}$$

Example Continuous Wavelet Functions - Morlet

$$\psi(x) = e^{-x^2/2} \cos(5x)$$

Wavelet Transform

□Continuous Transform

$$\tilde{f}(a,b) = \int_{-\infty}^{+\infty} f(x)\psi_{a,b}^{*}(x)dx$$

where $\psi_{a,b}^*(x)$ is the complex conjugate of $\psi_{a,b}(x)$.

□Inverse Transform

$$f(x) = \frac{1}{c_{ab}} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} \tilde{f}(a,b) \psi_{a,b}(x) \frac{da}{a^2} db$$

■Discrete Transform

$$\psi_{2^{j},k}\left(x\right) = \frac{1}{\sqrt{2^{j}}} \psi\left(\frac{x-k}{2^{j}}\right)$$

Wavelet Transform

■Admissibility

$$\int_0^{+\infty} \frac{\left|\hat{\psi}(\omega)\right|^2}{\left|\omega\right|} d\omega < \infty$$

where $\hat{\psi}(\omega) = \int_{-\infty}^{\infty} \psi(x) e^{-i\omega x} dx$ is the Fourier transform of $\psi(x)$.

- This implies $|\hat{\psi}(\omega = 0)|^2 = 0$ or equivalently $\int_{-\infty}^{\infty} \psi(x) dx = 0$ "No information loss in reconstruction"
- "must be a wave with zero mean" -- wave-

Wavelet Transform

■Regularity condition

$$\begin{split} \tilde{f}\left(a,b=0\right) &\approx \frac{1}{\sqrt{a}} \left[\sum_{k=0}^{N} \frac{1}{k!} f^{(k)}(0) \int x^{k} \psi \left(\frac{x-0}{a}\right) dx + O(x^{k+1}) \right] \\ &= \frac{1}{\sqrt{a}} \left[\sum_{k=0}^{N} \frac{1}{k!} f^{(k)}(0) M_{k} a^{k+1} + O(a^{k+2}) \right] \\ &= \frac{1}{\sqrt{a}} \left[\frac{1}{0!} f(0) M_{0} a + \frac{1}{1!} f^{(1)}(0) M_{1} a^{2} + \ldots + \frac{1}{N!} f^{(N)}(0) M_{N} a^{N+1} + O(a^{k+2}) \right] \end{split}$$

- wavelet functions should have some smoothness and concentration in both time and frequency domains
- vanishing moments $M_1, ..., M_N$ as the scale factor a increases (admissibility: $M_0 = 0$)
- □"Fast Decay" -- -let

Approximations in M&S

- □ mathematical models → numerical models
 - Taylor series
 - Functional analysis
- **□numerical models** → computer codes
 - Discretization (differentiation, integration)
 - Searching algorithms (solving equations, optimization)
 - Floating-point representation

Numerical Model → Computer Code Compute integrals

□Quadrature

 Approximate the integrand function by a polynomial of certain degree

Numerical Model → Computer Code Compute integrals

□Quadrature

- Approximate the integral by the weighted sum of regularly sampled functional values
 - e.g. Simpson's 3/8 rule

$$I \approx \int_{x_0}^{x_3} f^{(3)}(x) dx = \frac{3h}{8} \Big[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \Big]$$

Numerical Model → Computer Code Compute integrals

■ Monte Carlo simulation

- Let p(u) denote uniform density function over [a, b]
- Let U_i denote i th uniform random variable generated by Monte Carlo according to the density p(u)
- Then, for "large" *N*

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1}^{N} f(U_{i})$$

 Variance reduction (importance sampling) to improve efficiency

Numerical Model → Computer Code Compute derivatives

- □ Finite-divided-difference methods
 - Approximated derivatives come from Taylor series
 - e.g. forward-finite-difference

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + O(h^2) = f(x_i) + f'(x_i)h + O(h^2)$$
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)$$

Floating-Point Representation

□ How does computer represent numbers?

Imperfect world

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million

□Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software

Do you trust your computer?

Rump's function:

Rump's function:

$$f(x,y) = 333.75y^6 + x^2(11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8 + \frac{x}{2y}$$

 $f(x = 77617, y = 33096) = ?$

- □ Single precision: f = 1.172603...
- □ Double precision: f = 1.1726039400531...
- □ Extended precision: f = 1.172603940053178...
- \Box Correct one is: f = -0.8273960599468213

Another Story

Dhahran
SAUDI ARABIA

- ■On February 25, 1991
- □ A Patriot missile battery assigned to protect a military installation at Dhahran, Saudi Arabia
- ■But ... failed to intercept a Scud missile
- □28 soldiers died
- ... an error in computer arithmetic

$$0.1 \times 10 \neq 1$$

IEEE 754 Standard

IEEE Floating Point Representation

IEEE Double Precision Floating Point Representation

1 bit	11 bits	52 bits
$\overline{}$		

s	exponent	mantissa
---	----------	----------

- □ If $E = 2^{w}$ -1 and $T \neq 0$, then v is NaN regardless of S.
- \square If $E = 2^w 1$ and T = 0, then $v = (-1)^{S} \times \infty$.
- \square If $1 \le E \le 2^w 2$, then $v = (-1)^S \times 2^{E-bias} \times (1 + 2^{1-p} \times T)$;

normalized numbers have an implicit leading significand bit of 1.

$$\square$$
 If $E = 0$ and $T \neq 0$, $v = (-1)^{S} \times 2^{emin} \times (0 + 2^{1-p} \times T)$;

denormalized numbers have an implicit leading significand bit of o.

$$\Box$$
 If $E = 0$ and $T = 0$, then $v = (-1)^S \times 0$ (signed zero)

where
$$bias=2^{w-1}-1$$
 and $emin = 2-2^{w-1}=1-bias$

Distribution of Values

□6-bit IEEE-like format

- w = 3 exponent bits
- t = 2 fraction/mantissa bits
- bias = 3

Distribution of Values (zoom-in view)

□6-bit IEEE-like format

- w = 3 exponent bits
- t = 2 fraction/mantissa bits
- bias = 3

Round-Off Errors

- ■Overflow error "not large enough"
- □Underflow error "not small enough"
- ■Rounding error "chopping"
- □ http://www.cs.utah.edu/~zachary/isp/applets/FP/FP.html

Special Numbers

Expression	Result
0.0 / 0.0	NaN
1.0 / 0.0	Infinity
-1.0 / 0.0	-Infinity
NaN + 1.0	NaN
Infinity + 1.0	Infinity
Infinity + Infinity	Infinity
NaN > 1. 0	false
NaN == 1.0	false
NaN < 1.0	false
NaN == NaN	false
0.0 == -0.0	true

□standard range of values permitted by the encoding (from 1.4e-45 to 3.4028235e+38 for float)

Floating point Hazards

This expression	does NOT equal to this expression	when
o.o - f	-f	f is o
f < g	! (f >= g)	f or g is NaN
f == f	true	f is NaN
f + g - g	f	g is infinity or NaN

```
double s=0;
for (int i=0; i<26; i++) s += 0.1;
System.out.println(s);
```

```
double d = 29.0 * 0.01;
System.out.println(d);
System.out.println((int) (d * 100));
```

- ☐ The result is
- 2.600000000000001
- ☐ The result is
- 0.29
- 28

Comparing Floating Point Numbers

- □Try to avoid floating point comparison directly
- □Testing if a floating number is greater than or less than zero is even risky.
- □ *Instead*, you should compare the absolute value of the difference of two floating numbers with some pre-chosen epsilon value, and test if they are "close enough"
- □ If the scale of the underlying measurements is unknown, the test "abs(a/b 1) < epsilon" is more robust.
- Don't use floating point numbers for exact values

Uncertainties in M&S

- Model errors due to approximations in truncation or sampling
 - Taylor approximation
 - Functional analysis
- ■Numerical errors due to floating-point representation
 - Round-off errors

Two types of "uncertainties"

- □Aleatory uncertainty (variability, irreducible uncertainty, random error)
 - inherently associated with the randomness/fluctuation (e.g. environmental stochasticity, inhomogeneity of materials, fluctuation of measuring instruments)
 - can only be reduced by taking average of multiple measurements.
- □ Epistemic uncertainty (incertitude, reducible uncertainty, systematic error)
 - imprecision comes from scientific ignorance, inobservability, lack of knowledge, etc.
 - can be reduced by additional empirical effort (such as calibration).

Random Error

- □Determines the *precision* of any measurement
- □*Always* present in every physical measurement
 - Better apparatus
 - Better procedure
 - Repeat
- ■Estimate

Systematic Error

- Determines the *accuracy* of any measurement
- *May* be present in every physical measurement
 - calibration
 - uniform or controlled conditions (e.g., avoid systematic changes in temperature, light intensity, air currents, etc.)
- □ Identify & eliminate or reduce

chronological data

Uncertainties in Modeling & Simulation

□Aleatory Uncertainty:

- *inherent randomness* in the system. Also known as:
 - stochastic uncertainty
 - variability
 - irreducible uncertainty

□ *Epistemic Uncertainty:*

- due to *lack of perfect* knowledge about the system. Also known as:
 - Incertitude
 - system error
 - reducible uncertainty

Summary

- Modeling is *abstraction*
- □M&S *always* has *approximations* involved, which are important sources of epistemic uncertainty.
- □Computer tricks us

Abstraction
Approximation
Round-off

Further Readings

□ Goldberg, D. (1991) "What every computer scientist should know about floating-point arithmetic," *ACM Computing Surveys*, **23**(1), 5-48