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Topics

JComputational Nano Engineering
JModeling & Simulation (M&S)
JApproximations in M&S
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Computational Nano-Engineering

0 Extensive applications of CAD/CAM/CAE software tools
in traditional manufacturing lead to

= Scalable processes
= Cost effective and high-quality products with short time-to-market
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(a) CAD (b) CAE (¢) CAPP/CAM (d) CAM

a Virtual Prototyping at nanoscales
= Computer-Aided Nano-Design (CAND)
= Computer-Aided Nano-Manufacturing (CANM)
= Computer-Aided Nano-Engineering (CANE)
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Computational Nano-Engineering

1 Use Modeling & Simulation tools to systematically resolve
the issue of “lack of design” at nano scales.

PAST: Discovery-Based Science and Product Development
Discover novel

Nanostructures, Determine .
iy nomaleral iy Assess ) Nanomaterials
properties _ .
investigator-initiated (chemical, » applications » CO'T"E_‘T_rtc'a' enter II'(mt'ted
exploratory research on physical, and of value viability markets
a broad range of biological)
materials
FUTURE: Application-Based Problem Solving
Design, produce, and La_rge numbers of
TRTET—— scale up nano-based diverse products
ad W ;IX'S g materials with exact based on
c?miﬁei, 2l;oinir:1]3::sre » properties needed Nanomaterials By
3 g lication (based on established Design rapidly
PP understanding and enter multiple
methods} markets
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How to study a system

Experiment Experiment
with actual with a model of
system actual system
Physical Mathematical
model model
Analytical Simulation
solution

- - - h
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What is Modeling?
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Why mathematical modeling?

JAdvantages

aDisadvantages
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An example of modeling

OFree fall model
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Mathematical model

ADependent variable=f(Independent variable)

y = f(x)
JHigh dimensional
Y= f(xuxza---)

aOParametric systems
Yy = f(iEl(U),£E2(u),...,$n(”d),u)
2“Noisy” systems

y=f(z,7)
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Complexity of Mathematical Models

Simple

ﬂ

Complex

Linear

ﬂ

Nonlinear

Algebraic
Equation
/ Closed-form

ﬂ

Differential
Equation

Static

ﬂ

Dynamic
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Model Taxonomy

System model

Static

Deterministic Stochastic
Dynamic Static Dynamic
Continuous Discrete Continuous Discrete
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Simulation-based Design

model refinement

visualization
data mining/science

math-ematiéal -modél
(first-principles,
[ validation ]4— optimization emp.irical,
Y uncertainty quantification multiscale)

parameter inversion v

data assimilation

model/data error control Simulation-based design geometn} modeling &

discretization schemes

h 4

{ numerical model J

[data / observations]s
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Modeling & Simulation at Multiple Scales

S Timfb. Scales.......... e
ms ;Dislocation Dynamics
HS """""""" o'F("'ﬁetlc Monte Carlo
NSi...... ‘; A GMoIecthr Dynamics / Force Field
piCO-S oTlght Blndlng
':. . 'Pﬁ'?.?.'.tX.l.:.L.'.r.‘Et.'.""al Theory
femto-s
oQuarﬂum 'Monte Carlo Length Scales
nm um mm m

Various methods used to simulate at different length and time scales
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Approximations in simulation

Jmathematical models @ numerical models
= Taylor series
= Functional analysis

dJnumerical models = computer codes
= Discretization (differentiation, integration)
= Searching algorithms (solving equations, optimization)
= Floating-point representation
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Mathematical models 2 Numerical models
Approximation in Taylor Series

OTruncation
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Mathematical models 2 Numerical models
Functional Analysis

1Convert complex functions into simple and

computable ones by transformation in
vector spaces

= Fourier analysis

= Wavelet transform

= Polynomial chaos expansion

= Spectral methods

= Mesh-free methods
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Mathematical models 2 Numerical models
Functional Analysis

OApproximate the original f(#) by linear
combinations of basis functions v (z)s as

flz) =" e (z)

OIn a vector space (e.g. Hilbert space) with
an infinite number of dimensions

fl@)=2. et ()
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Mathematical models 2 Numerical models
Functional Analysis

JAn inner product < I g> is defined as a “projection”
in the vector space, such as

(F.0)= | F(a)o(e)W (2}

OTypically we choose orthogonal basis functions
.(z)’s such that

(0,0, ) = [ (@ (oW (@) = |t (T 21 =)

0 (2 # 7)

for orthonormal basis functions

<¢“ ¢J> - jjo ¢2($)¢] ()W (z)dz = <
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Mathematical models 2 Numerical models
Functional Analysis

OThe coefficients c¢’s are computed by

)
o)

2The computable function is

N

f(z)= ), e (@)

with truncation!
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Functional Analysis
— Fouriler Series Approximations

f(t) = a, +a, cos(w,t)+b sin(w,t)+ a, cos(2w,t) + b, sin (2w,t) + -+
=aq, + i[ak cos (kw,t) + b, sin (kw,t) |
where ~_ 27 1is called the fundamental frequency.

DAll poerigdic functions can be approximated
by Fourier Series well!

1Is used in plane-wave density
Junctional theory simulations

aBecause of efficient Fast Fourier
Transtform (FFT)!
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Functional Analysis
— Fouriler Series Approximations

2 Inner products

|
a, = E_T[cos(kwot)f(t)dt
fsin(kwot)f(t)dt

(k=1,2,..)

Fourier Series

Fourier Transform

Discrete Fourier Transform

- 1 X ikt ~ “ » _ N-1 ‘
C, =?J‘f(t)62k“’“dt F(iw,) = J‘f(t)e_“"“dt E=fe™ (k=0,..,N-1)
0 —0 n=0
f(t): iékeikwgt f(t):iTF(Zwo)ewotdwo f :iNfl ~kekw (n:O,...,N—l)
fe=—o0 21 o B N =

0 Computational complexity:O(IN?)
2 FFT Complexity: O(Nlog,N)
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Functional Analysis

— Wavelet Transform

dWavelet basis functions
1 x—0b

-1

where ¥(z) is a continuous function in both the
real and reciprocal spaces called mother wavelet,
a 1s the scale factor, and b is the translation factor.

0 (z) satisfies
= Admissibility
= Regularity condition
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Example Continuous Wavelet Functions

- Mexican hat

2
Y(z) = \/g

~1/4 (1 _ 5132)6_36 /2

Mexican hat wavelet

A

FFT of Mexican hat wavelet
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Example Continuous Wavelet Functions

Mexican hat wavelet

- Morlet
Y(x) =e" " COS(5£E)

0.8}

0.6

0.4

0.2

|

0.2+

0.4+

0.6

0.8+

0.05

FFT of Mexican hat wawelet

0.04 -

0.03 -

0.02 -

0.01 -

-0.01 -

-0.02 -

-0.03 -

-0.04 -

-0.05 ! ! |
0 10 20 30

Multiscale Systems Enqgineering Research Group

|
40

|
50
Frequency (Hz)

|
60

|
70

|
80

|
90

ia
Tech

100



Functional Analysis
— Wavelet Transtform

JContinuous Transtform
flab)=[" fla)), (z)dz
where w:,b (z) is the complex conjugate of ¥ , (x) .

aInverse Transform
da

f(x) = i [ 17 Faby,, (5) 22 db

a

. ] A
aDiscrete Transform

T —k

ok - N R

b
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Functional Analysis
— Wavelet Transform
21Admissibility

400
)

T ¢ (z)e " dz is the Fourier transform of ().

2

A

()

o

dw < oo

where v (w)

0 This implies i@ =0 =0 or equivalently [ «(z)dz =0
“No information loss in reconstruction”

2“must be a wave with zero mean” -- wave-

Multiscale Systems Enqgineering Research Group Tech



Functional Analysis

— Wavelet Transform
ORegularity condition

f(a,b = O) ~ \/1, i 1' f(k)(O)J- ") (:13 — O)dx + O(xk”)}

. a

i
o

=N

'f(k)(O)Mkak+1 _I_O(ak+2):|

I
é\ S
|HIIZM2"

fOMa + %]“”(O)Mla2 + ...+ %]MV)(())]WN(LN+1 + O(am)}

!

BN

awavelet functions should have some smoothness
and concentration in both time and frequency
domains

avanishing moments M, ..., M, as the scale factor
a increases (admissibility: M =0)

0“Fast Decay” -- -let
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Approximations in M&S

omathematical models = numerical models
= Taylor series
= Functional analysis

Jnumerical models = computer codes
= Discretization (differentiation, integration)

= Searching algorithms (solving equations,
optimization)
= Floating-point representation
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Numerical Model > Computer Code
Compute integrals

2Quadrature

= Approximate the integrand function by a
polynomial of certain degree

n=0 n=1 n—=22
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Numerical Model > Computer Code
Compute integrals

2Quadrature

= Approximate the integral by the weighted sum
of regularly sampled functional values

e e.g. Simpson’s 3/8 rule

I~ :ff(?’)(x)dx = %[f(xo)Jr3f(771)+3f($2)+f($3ﬂ
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Numerical Model > Computer Code
Compute integrals

OMonte Carlo simulation
= Let p(u) denote uniform density function over [ a, 5]

= Let U. denote 7 ™ uniform random variable generated
by Monte Carlo according to the density p(u)

= Then, for “large” N

[ s =23 )

= Variance reduction (importance sampling) to improve
efficiency
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Numerical Model > Computer Code
Compute derivatives

aFinite-divided-difference methods

= Approximated derivatives come from Taylor
series

» e.g. forward-finite-difference
f(@a)=f(z)+ ' (2)(w, —2)+O(h) = f(z)+ ['(z)h+O(h°)
f'(iEZ) _ f(le)h_f(xZ) n O(h)
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Floating-Point Representation

JHow does computer represent numbers?

Perfect world Imperfect world

ia
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Ariane 5

= Exploded 37 seconds
after liftoff

= Cargo worth $500 million
OWhy

= Computed horizontal
velocity as floating point
number

= Converted to 16-bit
integer
= Worked OK for Ariane 4

= Overflowed for Ariane 5
e Used same software
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Do you trust your computer?

Rump’s function:
f(x,y)=333.75y° + x*(11x°y*> = y° —121y* =2) +5.5)° I

2
Ax=T77617, y = 33096) = 2 Y
2aSingle precision: f = 1.172603...

JDouble precision: f = 1.1726039400531...
JExtended precision: f = 1.172603940053178...
dCorrect one is: f = -0.8273960599468213

Bligi
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\ Another Story

10n February 25, 1991

A Patriot missile battery assigned to
protect a military installation at Dhahran,

Saudi Arabia
JBut ... failed to intercept a Scud missile
128 soldiers died
d... an error in computer arithmetic \

0.1x10=1
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IEEE 754 Standard

IEEE Floating Point Representauon

§ exponent E mantissa T

1 bit w bits 8 bits 23bits t = p— 1 bits

IEEE Double Precision Floaling Point Representaton
1 but 11 bits 52 bits

5 exponent mantissa

aIf F = 2v-1 and T #0, then vis NaN regardless of S.

QIf F = 2»-1and T =0, then v = (—1)°Xw,

QIf 1SE <2vw-2,then v = (—1)5%2F-btasx(14-21Px T));
normalized numbers have an implicit leading significand bit of 1.
QIf E =0 and T #0, v = (~1)Sx2eminx (04217 x T);
denormalized numbers have an implicit leading significand bit of o.
QIf F =0 and T =0, then v = (—1)°x0 (signed zero)

where bias=2""1-1 and emin = 2—2%-'=1-bias

Multiscale Systems Enqgineering Research Group
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Distribution of Values

16-bit IEEE-like format
= w = 3 exponent bits
= t = 2 fraction/mantissa bits
= bias = 3

A A A A A A A AAAAMMERNMAALL A A A A A A A

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized  Infinity
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Distribution of Values
(zoom-1n view)
06-bit IEEE-like format
= w = 3 exponent bits

= t = 2 fraction/mantissa bits
= bias = 3

A A A A AAAAAGSOOOOOOAALAAAAL A A A A

-1 -0.5 0 0.5 1
¢ Denormalized Normalize@ Infinity
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Round-Off Errors

V2 m

integers

] 1 2 3 il 5 2]
rationals

o 1 1 2 1 5§92 7 2 8 5 11 2pi13 7 15 4 ¥ 89 19 5 2414 44 23 & 25
i 4 2 4 1 4 pz2 4 1 4 2 4 iR 4 2 4 1 4 2 4 A 4 2 4 1
floats

0.0 05 075 1.01.250.51.75 2.0 2.5 a0 35 4.0 5.0 8.0

JO0vertlow error — “not large enough”
dUnderflow error — “not small enough”
JRounding error — “chopping”

Q http://www.cs.utah.edu/~zachary/isp/applets/FP/FP.html
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Special Numbers

Expression Result
0.0 / 0.0 NaN
1.0/ 0.0 Infinity
-1.0 / 0.0 -Infinity
NaN + 1.0 NaN
Infinity + 1.0 Infinity
Infinity + Infinity Infinity
NaN > 1.0 false
NaN == 1.0 false
NaN < 1.0 false
NaN == NaN false
0.0 ==-0.0 true

astandard range of
values permitted by
the encoding (from
1.4e-45 to
3.4028235e+38 for
float)
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Floating point Hazards

This expression | does NOT equal to this expression |when

0.0-f -f fiso

f<g '(f>=¢g) f or gis NaN

f== true fis NaN

f+g—g f g is infinity or NaN

QdThe result is

Sl sl 2.600000000000001
for (int i=0; i<26; i++) s += 0.1;
System.out.printin(s); OThe result is
0.29
double d = 29.0 * 0.01; 08
System.out.printin(d);
System.out.printin((int) (d * 100));
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Comparing Floating Point Numbers

2Try to avoid floating point comparison directly

OTesting if a floating number is greater than or less
than zero is even risky.

aInstead, you should compare the absolute value
of the difference of two floating numbers with
some pre-chosen epsilon value, and test if they
are "close enough”

QIf the scale of the underlying measurements is
unknown, the test “abs(a/b - 1) < epsilon” is more
robust.

aDon’t use floating point numbers for exact values

. . . Georgia
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Uncertainties in M&S

OModel errors due to approximations in
truncation or sampling

= Taylor approximation
= Functional analysis

JNumerical errors due to floating-point
representation

= Round-oft errors
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Two types of “uncertainties”

QAleatory uncertainty (variability, irreducible
uncertainty, random error)

= inherently associated with the randomness/fluctuation
(e.g. environmental stochasticity, inhomogeneity of
materials, fluctuation of measuring 1nstruments§

= can only be reduced by taking average of multiple
measurements.

OEpistemic uncertainty (incertitude, reducible
uncertainty, systematic error)

i im% ecision comes from scientific ignorance,
inobservability, lack of knowledge, etc.

= can be reduced by additional empirical effort (such as
calibration).

. . . Georgia
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Random Error

ODetermines the
precision of any
measurement

JAlways present in
every physical
measurement

= Better apparatus
= Better procedure
= Repeat

QaEstimate

Multiscale Systems Enqgineering Research Group
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Systematic Error

dDetermines the accuracy
of any measurement

dMay be present in every
physical measurement
= calibration

= uniform or controlled
conditions (e.g., avoid
systematic changes in
temperature, light intensity,
air currents, etc.)

dIdentify & eliminate or
reduce

2432

24.24 -

2416 -

24 .08 -

chronological data
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Uncertainties in Modeling & Simulation

QAleatory Uncertainty:
= inherent randomness in the
system. Also known as:
« stochastic uncertainty
« variability
« irreducible uncertainty

0 Epistemic Uncertainty:

= due to lack of perfect
knowledge about the system.
Also known as:

o Incertitude

Conflicting
nformatio

Input
Uncertainties

Beliefs

e System error

Lack of
Introspection

 reducible uncertainty information

about
dependency
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Summary

OModeling is abstraction

OM&S always has approximations
involved, which are important sources of
epistemic uncertainty.

aJComputer tricks us

NoS\rackion
Hniomation
Rejios @ﬁﬁ
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Further Readings

0 Goldberg, D. (1991) “What every computer scientist should know about
floating-point arithmetic,” ACM Computing Surveys, 23(1), 5-48
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